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Abstract—As Internet applications have become more diverse
in recent years, users having heavy demand for online video
services are more willing to pay higher prices for better services
than light users that mainly use e-mails and instant messages.
This encourages the Internet Service Providers (ISPs) to explore
service differentiations so as to optimize their profits and al-
location of network resources. Much prior work has focused
on the viability of network service differentiation by comparing
with the case of a single-class service. However, the optimal
service differentiation for an ISP subject to resource constraints
has remained unsolved. In this work, we establish an optimal
control framework to derive the analytical solution to an ISP’s
optimal service differentiation, i.e. the optimal service qualities
and associated prices. By analyzing the structures of the solution,
we reveal how an ISP should adjust the service qualities and
prices in order to meet varying capacity constraints and users’
characteristics. We also obtain the conditions under which ISPs
have strong incentives to implement service differentiation and
whether regulators should encourage such practices.

I. INTRODUCTION

Recent years have witnessed increasing commercialization
of the Internet and considerably rising diversities of Inter-
net applications and users. Users having heavy demand for
quality-sensitive services such as online video services are
often willing to pay higher prices for better service qualities,
while light users tend to have low willingness-to-pay for
elementary services such as e-mails and instant messages.
Such heterogeneity in the users’ characteristics has rendered
the traditional practice of uniform prices, regardless of the
quality of service, inefficient in both generating profits and
allocating network capacity. In light of this, there has been
tremendous interest in designing pricing strategies to provide
differentiated services. Many schemes [17-H19] have been
designed, e.g., Paris Metro Pricing (PMP) [17] proposed by
Andrew Odlyzko. In such a scheme, network is partitioned
into several logically separated channels, each of which uses
a fraction of the entire network capacity and a different price,
and the channels with higher prices attract fewer users but
provide better services.

An important theoretical question naturally arises: what is
the optimal service differentiation for an ISP subject to its
capacity constraints so as to maximize its profit? Despite the
vast literature on network service differentiation, this question
has remained unanswered. Prior work [4, |8 [10, 20] mostly
focused on the viability of PMP-type of differentiation and did
not investigate the optimal service differentiation. To tackle the
optimal service differentiation, we delve a bit into the ISP’s

decision-making process. In deciding the optimal strategy,
an ISP needs to answer two questions: what are the service
qualities to offer and what are the associated prices for them.
For the former question, even the range of the optimal set
of service qualities is hard to determine; for the latter one,
it needs to find the optimal quality-price mapping for the
chosen service qualities. The problem is actually a dynamic
optimization problem in a functional space and the domain
of the price mapping is to be determined. As the realized
quality in a service class depends on the allocated network
capacity and the aggregate user demand, which is determined
by the available service qualities and the corresponding prices,
another major challenge is to model the ISP’s capacity alloca-
tion plan subject to network capacity constraints and determine
the realized quality in terms of network congestion. In other
words, ISPs need to allocate limited network capacity to each
service class so as to guarantee the promised service quality.
In view of the complexity of the optimal service differentia-
tion, the common practice of prior work is to adopt simplifying
assumptions. For instance, Jain ef al. [8] assumed the ISP
only provides two service classes. Shakkottai et al. [20]
overlooked the congestion externalities and considered a loose
upper bound (under the first degree price discrimination) of
the ISP’s optimal profits instead. Chau er al. [4] considered
a finite number of service classes, analyzed the viability of
differentiated pricing, but did not solve the optimal strategy.
In this work, we solve an ISP’s optimal service differen-
tiation in generic settings by explicitly modelling the ISP’s
capacity allocation plan subject to network capacity constraints
and incorporating the dual approach in microeconomics [14]] to
transform the problem into a tractable optimal control problem.
As for the network capacity constraints, we consider two
typical scenarios: a) the fixed capacity scenario, where an
ISP has limited network capacity, and b) the variable capacity
scenario, where an ISP can invest to expand the capacity of
its network infrastructure. Our findings include the following.
o We formulate a profit maximization problem subject to
capacity constraints under an optimal control framework
and derive the analytical optimal service differentiation
of an ISP, i.e., the qualities and prices of service classes.
o We find that the optimal differentiation strategy offers
service classes with sufficiently high qualities and prices
such that users with low value will not join the services,
even under abundant capacity. We characterize an ISP’s
market share by users’ virtual valuation function [16].



o We show that when an ISP expands its capacity, it should
increase market share by offering more premium service
classes and reducing prices. When there are more high-
end users, it is optimal for the ISP to offer a narrower
range of premium service classes with higher prices.

o We show that if network capacity is scarce, an ISP has
strong incentives to implement service differentiation and
regulators should encourage such practices in order to
improve the total user surplus; otherwise, it is optimal
for the ISP to provide a single-class service.

To the best of our knowledge, our work is the first to
analytically derive and characterize an ISP’s optimal service
differentiation subject to network capacity constraints. We
believe that our findings will help ISPs to better price network
services and guide regulators to design regulations. The rest of
the paper is organized as follows. Section II discusses related
work. Section III presents the model and formulate the ISP’s
profit-maximizing problem as a nested optimization problem.
In Section IV, we derive the analytical solution of the optimal
service differentiation and study the structure of the solution.
We reveal the dynamics of the solution under varying market
environments in Section V and conclude in Section VI.

II. RELATED WORK

Much theoretical economics literature has considered prod-
uct differentiation. Mussa and Rosen [[15] analyzed the optimal
product mix for a monopolist offering several qualities of
a product to consumers with different preferences for qual-
ity. Maskin and Riley [[L1] characterized the optimal selling
strategy of a monopolist, and Champsaur and Rochet [2]
studied the product differentiation for two competing firms.
Both adopt a common assumption that the quality of the
product can be unilaterally decided by the seller. However,
these models are inapplicable to network services because the
quality of services are influenced by both the user demand
and the network capacity. Chander and Leruth [3]] studied the
best strategy of a monopolist in the presence of congestion
effects. Nevertheless, they did not provide the solution of the
optimal strategy and their congestion model does not capture
the scarcity of capacity in network markets.

Various pricing schemes for providing differentiated net-
work services has been proposed [17H19]]. In particular, Paris
Metro Pricing (PMP) [I17] has attracted considerable attention
for its simplicity. Since PMP does not guarantee the quality
of service for users, which depends on the spontaneous user
demand, its viability and effectiveness need to be established.
Prior studies [4, 6, 18, [10, 20] addressed the viability of PMP.
Shakkottai et al. [20] characterized the types of environments
in which simple flat-rate pricing is efficient in extracting
profits. Lee et al. [9] extended the model of [20] to explicitly
consider the congestion externalities and indicate that when the
network is congested, a simple flat-rate pricing is inefficient
in extracting profits. Jain et al. [8] analyzed the ISP’s profit-
maximizing problem when the ISP is restricted to provider two
service classes. Chau et al. [4] provided sufficient condition
of congestion externalities for the viability of PMP. Several

studies investigated the competition among service providers.
For example, Gibbens et al. [6] analyzed the competition
between two ISP’s and show that in any equilibrium compet-
itive outcome, both ISPs offer a single-class service. Ma [10]]
studied usage-based pricing scheme and competition among
oligopolistic service provides. These studies focused on the
viability of PMP and its variants by comparing with a single-
class service. Our work, however, focuses on the theoretical
problem of solving the ISP’s optimal service differentiation
subject to capacity constraints. We establish an optimal control
framework to derive the analytical solution to the ISP’s optimal
service differentiation and characterize its properties.

III. MODEL
A. ISP and User Model

We consider an ISP and a continuum of users with hetero-
geneous characteristics. Suppose the ISP offers a set N of
service classes and adopts ﬂat—rateﬂ pricing [1] for all service
classes. For each service class ¢ €¢ N, we denote p; as the
price and ¢; as the congestion level, a measure of service
quality. Correspondingly, we denote p = {p; : i € N’} and
q = {g; : i € N'} as the price and congestion vectors.

Once the menu of services (p,q) is decided, users will
make choices according to their preferences over the bundles
{(piyq;) : © € N'}. We characterize each user by her intrinsic
value of the network service § € © = [0, 1]. We denote f(0)
and F'(0) as the probability density and cumulative distribution
functions of users’ value, and assume that f(6) is continuously
differentiable and strictly positive over ©. When a user with
value 0 chooses a service class (p, q), we define her utility as

u(p, ¢;0) = 0v(q) —p, (D)
which can be interpreted as follows.

o v(-) is a satisfaction discount function which captures the
negative effect of congestion on users’ intrinsic values.

e Ov(q) is the user’s achieved value over the service under
a congestion level ¢, and thus u(p, ¢; 0) is the user’s net
surplus, i.e., the achieved value 6v(q) minus the price p.

o Without loss of generality, we normalize the range of
congestion level q to the interval [0,1] and assume that
v(-) : [0,1] — Ry is continuously differentiable and
strictly decreasing, satisfying v(0) = 1 and v(1) = 0.
This models that the user’s value is at maximum without
congestion, i.e., ¢ = 0, and decreases to zero when the
network is heavily congested, i.e., ¢ — 1.

We assume that users are individually rational, i.e., any user
with value 6 chooses either a) to join the service class k that
yields the highest nonnegative utilit

k = arg max u(pj, g5 0) 2

'Our analysis can be extended to handle usage-based pricing schemes.
Interested readers are referred to the Appendix for details.

2Technically, we should write k € arg max;jen u(pj,qj;0). By using
the equal sign, we assume when there are more than one service classes that
maximize the user’s utility, the user will choose the one by her own criteria.



or b) to opt out of the ISP’s services if joining any service
class induces a negative utility, i.e., u(p;, q;;0) < 0,Vi € N.
To unify the above two cases, we assume the existence of a
dummy service class 0 which satisfies pg = 0 and g9 = 1,
and therefore, any user can always choose service class 0 to
gain zero utility. We denote the set of user types that choose
the service class i as ©;(p, q). Notice that if the ISP offers
two service classes ¢ and j such that p; > p; and ¢; > gj,
no user would choose class ¢ because it is inferior to class j
in terms of both price and congestion. Therefore, without loss
of generality, we can sort the indexes of non-dummy service

classes in an ascending order of congestion level as follows:
p1>p2> .. >pw and g1 < g2 < ... < g

Lemma 1: Given that |[N| < 400, we define a set of
vectors {6;i = 0,1,..., [N} as

PN
0o =1, 0|N\ = #a
0, = —Li Pl g q 0 IN] -1
v(qi) — v(gi+1)
If 1> 6, > ... > 0y, then ©;(p,q) can be characterized by

O(p,q) = [0s,0;—1],

Lemma [1f| states that if each service class can capture some
users, the set of user types captured by the service class 4 is an
interval [0;, 0;_1]. If there exists any service class that captures
no users, we can always exclude it from the ISP’s menu of
services without affecting its profits and capacity consumption.
Thus, without loss of generality, we assume that the ISP does
not offer such empty service classes and the condition of
Lemma (1| naturally holds, and consequently, the population
of users that choose service class 7 can be calculated as

0;_1
di(p,q) & /@ R /9 FO)d0, )

i=1,2,.., |V @)

i

and the ISP’s revenue can be expressed as ) ..\ pidi(p, Q).

B. Network Congestion and Capacity Allocation

Since the ISP usually has limited network capacity, it needs
to design a capacity allocation plan to guarantee the promised
service quality in terms of congestion in each service class. In
general, the required amount of network capacity by a service
class is determined by its promised service congestion and
user population. For each service class ¢ € A/, we model the
implied capacity to guarantee a congestion level ¢; under the
aggregate user population d; as a function C(d;,¢;), which
decreases in ¢; and increases in d;.

Assumption 1: The implied capacity function satisfies
C(d,q) = d-w(q), where w(q) : [0,1] — R is continuously
differentiable, decreasing in ¢ and satisfies w(1) = 0.

The form of implied capacity function in Assumption [I]
models the capacity sharing [4} 6] nature of network services,
under which the service capacity is shared by all users. The

3Due to space limitation, we defer all the proofs to the Appendix.

function w(q) models the capacity required to maintain the
congestion level ¢ given that the service class has a unit user
demand. Under Assumption [I] the implied capacity function
satisfies C'(ed,q) = eC(d,q), indicating that users will not
perceive any difference in terms of congestion after service
partitioning or multiplexing. This form is a generalization of
C(d,q) = d/q (to see this, let w(q) = 1/q), which has been
considered in much prior work [4} (6} (8} [10].

We model the ISP’s capacity allocation plan by a vector ¢ =
{c; : Vi € N}, where c¢; is the capacity allocated to service
class 7. To guarantee the congestion level of each service class,
the ISP’s capacity allocation plan ¢ must satisfy

Intuitively, when the ISP has limited network capacity and
some of the inequalities in (6) do not bind, it probably has
not taken full advantage of the capacity and can gain more
profits by readjusting the menu of services. We will strictly
characterize this in Theorem [I] in Section IV-C.

We have by far established the relationship between the
ISP’s menu (p, q) of services and the capacity allocation plan
c. We next proceed to analyze the ISP’s limitation in capacity
and formulate the ISP’s profit-maximizing problem.

C. Profit Maximization Problem

We first analyze the network capacity constraints of the ISP.
In this work, we focus on two typical scenarios:

o (Fixed Capacity) The ISP’s services are supported by an
existing network infrastructure and hence face a maxi-
mum network capacity, denoted by C)y.

o (Variable Capacity) The ISP may invest to expand its
network infrastructure. In this scenario, the ISP needs
to find out the optimal amount of capacity to consume
(invest). We capture the cost of consuming capacity c¢ in
total by S(c), a continuously nondecreasing function.

The ISP aims to find the optimal service menu (p,q)
and the capacity allocation plan c subject to the capacity
constraints in order to maximize its profits. In the fixed
capacity scenario, the allocated capacity should not exceed the
maximum capacity, i.e., > ;s C(di(p, q), qi) < Cys, and the
ISP’s profit maximization problem is formulated as follows.

maximize J = Z pidi(P,q) (N
p.q Y.

subject to O;(p,q) ={0 €O :i= arg max 0v(q;) — p;},
J
di(p,q) = Jo,(p.q f(0)d0, Vie N,
and Y.\ C(di(p,a),¢i) < Cur.

Likewise, in the variable capacity scenario, the ISP’s invest-
ment in capacity is characterized by S(} ..\ C(di(p, q), ¢)).
and the profit maximization problem is formulated as follows.
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subject to  ©,(p,q) ={# € © :i=arg max Ov(q)—p(q)}
= Jo.(p.a f( ) , YieN.

By far, we have formulated the ISP’s profit maximization
problems as nested optimization problems with equilibrium
constraints. In the next section, we demonstrate how they can
be transformed into more tractable optimal control problems
by using a dual approach and derive the analytic solutions.

and  d;(

IV. OPTIMAL CONTROL FRAMEWORK

Two of the main challenges in solving the nested opti-
mization problems (7) and (§) include: 1) the set of optimal
service classes N'* is hard to predetermine, and 2) the sets
of user demand O;(p,q) are subject to the nonlinear user
utility maximization problems which require different treat-
ments depending on the connectedness of N. To address these
problems, we need a unified and succinct representation of the
ISP’s strategy. This section is organized as follows. Subsec-
tion A introduces a dual representation of the ISP’s strategy
and subsection B reformulates the ISP’s profit maximization
problem into a tractable optimal control problem using a dual
approach. In subsection C, we presents the analytic solution
to the ISP’s optimal service differentiation. In subsection D,
we study the characteristics of the optimal solution.

A. Dual Approach

We denote Q C [0, 1] as a set of provided service qualities in
terms of congestion and the ISP’s pricing and capacity alloca-
tion plan can be represented by two mappings p(-) : @ — R
and ¢(+) : @ — R4, which map levels of congestion to the
corresponding capacities and prices. As mentioned before, we
assume that Q contains a dummy service class with congestion
level ¢ = 1 and p(q) = ¢(q) = 0. Since the optimal service
domain Q* of the mappings is also undetermined, the strategy
space is difficult to handle. To this end, we introduce a dual
approach, widely used in economics [2} [14], to describe the
ISP’s decision in terms of the user’s choice, rather than the
levels of congestion and prices.

Definition 1: For any type 6, we define ¢(6) as the chosen
service quality that maximizes the user’s utility, satisfying

q(0) € argmax 0v(q) — p(q)- )
qeQ

The indirect utility of user type 6 is defined by
IUOE 0
(0) = max fuv(q)

—p(q)- (10)

When there exist multiple optimal choices, we assume that

user # chooses one from them according to her own criteria. ]

Given a finite set (or more generally a compact set) of choices,
the optimal choice ¢(¢) always exists. The indirect utility V()

4As we explain in the Appendix, this will not affect the correctness of later
analysis.

defines the maximum utility that can be achieved by users of
type 6 under their optimal choice of services. The advantage
of the dual approach is that the ISP’s strategy (Q, p(-)) can be
equivalently represented by the user’s indirect utility V'(-) and
optimal choice ¢(-), both of which have favorable properties
and a fixed domain, i.e., © = [0, 1]. Next, we characterize the
properties of ¢(-) and V'(-).

Lemma 2: The user’s optimal choice function g¢(-)
[0,1] — Q is nonincreasing in 6.

The Lemma [2] states that a user with higher value would not
choose a service class with worse congestion, and whatever
the user’s criteria of breaking ties of optimal choices is, the
monotonicity of ¢(-) always holds. An immediate consequence
is that ¢(-) is piecewise continuous.

By Definition [1] any user of type 6’s maximum utility V()
can also be expressed by the following equation:

V(0) = 6v(q(0)) — p(q(0)), VO €O, (11

Furthermore, according to the envelope theorem [[12], V'(-) is
absolutely continuous and hence differentiable almost every-
where, and thus we have

V'(0) = v(q()), for almost all 6§ € O. (12)

The following lemma allows us to represent an ISP’s pricing
strategy using V'(+) and ¢(-).

Lemma 3: Let ¢(-) and V(-) be any two mappings from
O to R and Q the range of ¢(-). If ¢(-) is nonincreasing and

[’
V(o) = V(0) +/ v(g(s))ds, VO €O,

0
then there exists an unique pricing p(-) : R4 — R such that

V(o) —plq).

= max 0 — and ¢(f) € argmax 6v
max §v(g) —p(q) and ¢(6) € argmax Hu(q)
By the envelope theorem [12], the indirect utility function
V() and the user’s choice function ¢(-) meet the condition in
Lemma [3| Therefore, given the user’s choice function ¢(-) and
an initial level V(0) of the indirect utility, we can recover the

ISP’s service differentiation strategy as follows.

o The set of provided service quahtles is Q = q([O 1)).

o The pricing strategy is p(q) = Jv(q fo ))ds —

V(0), where 9 is the type that satlsﬁes q(¥) = q

Given the above discussions, the ISP’s profit maximization
problem boils down to finding the corresponding user’s choice
function ¢*(-) and the indirect utility level V*(0) under the
optimal service differentiation scheme Q* and p*()ﬂ

B. Optimal Control Framework

We demonstrate that the ISP’s profit maximization problem
can be transformed into an optimal control problem, the solu-

SWe take a detour to show the existence and uniqueness of optimal strategy.
In the rest of the section, we first transform the ISP’s profit-maximizing
problem to an equivalent optimal control problem, and find out the unique
candidate solution that satisfies the necessary condition, i.e., the Pontryagin’s
Maximum Principle [S]]. Finally we use the sufficient conditions to prove that
the solution is indeed the optimal strategy. We leave the details to the proof
of Theorem [T]in the Appendix.



tion to which is the user’s choice function ¢*(-) and the indirect
utility level V*(-) under the optimal service differentiation.

Lemma 4: Under the ISP’s optimal service differentiation
scheme, the initial level of indirect utility satisfies V*(0) = 0.

Lemma [4] states that under the ISP’s optimal service differ-
entiation, users with the lowest valuation, i.e., § = 0, obtains
zero utility. Consequently, we can set the indirect utility level
V(0) to be zero when searching for the optimal strategy.

To calculate the total profits of the ISP using V'(-) and ¢(+),
we can perform integration with respect to the user type 6
instead of over the service class domain Q, i.e.,

/ p(q) ( f(9)d9> dg =/ [0v(q(0)) — V(0)]£(0)do.
Q 2(q) 0

The consumed capacity can be calculated by integrating the
unit capacity function w(q) over the user types 6 as follows.

Lemma 5: The total consumption of network capacity in
the system can be calculated by fol w(q(6))f(6)do.

By Lemma [5] we can define a state variable

0
W) 2 [ wlal)f(:)as (13)
to measure the aggregate capacity consumption by users with
valuation lower than 6. In particular, W (1) is the total capacity
consumption of the entire system.

Lemma 6: The user’s choice function ¢*(-) under the op-
timal service differentiation can be determined by solving the
following optimal control problems.

a) For the fixed capacity scenario:

maximize

OJM
imize 1= [ 0u(a(0) = VO)L (000

subject to  ¢(-) nonincreasing, ¢(6) € [0,1] V6,
V'(0) = v(a(6)), V(0) =0,
W(0) = w(g(6)) £(6), W(0) =0,
and W(0y) < Cyy. (14)

b) For the variable capacity scenario:

maximize J = / [Bv(q(8)) — V(6)]f(0)d0 — S(W(0ar))
q(-) 0

subject to  ¢(-) nonincreasing, ¢(6) € [0,1] V6,
V'(0) = v(q(6)), V(0)=0,
W'(6) = w(q(6))f(0), W(0)=0. (15)

The above problems and are more tractable than
the original ones and (§). In these two optimal control
problems, the user’s choice function ¢(+) is the control variable
in the functional space {q(-) € RI%!|q() nonincreasing} and
the indirect utility function V(-) and capacity consumption
function W (-) are the so-called state variables.

C. Optimal Solution

Notice that the monotonicity constraint on ¢(-) requires
special treatments. In particular, we adopt the following steps.

e« We first consider a relaxed optimal control problem
in which the monotonicity constraint is removed. By
using the Pontryagin’s Maximum Principle [5], we find
a candidate optimal control solution g(-).

o We check whether ¢(-) satisfies the sufficient conditions
for optimality. If so, ¢(-) is indeed an optimal control of
the relaxed problem and we proceed to the next step.

o If G(-) meets the monotonicity constraint, then it is also
an optimal control of the original problem @, ie.¢*(-) =
q(+); otherwise, we conduct further analysis based on ¢(-).

We use the fixed capacity scenario to illustrate the key steps

in solving the relaxed optimal control problem. We first define

the Hamiltonian H as follows:
H[0,q(-), V), W(), A1(), A2(:)] (16)
= [00(q(0)) =V ()] F(0)+ 1 (0)v(q(8))+A2(B)w(q(8)) f(6),

where A1(-) and Ao(-) are the so-called co-state variables
satisfying the following transversality conditions:

d  OH

W (0)

d,  OH

a9 oW

A1) =0, (1) <0, A(DW()—-Cu]=0.

It immediately follows that A1 (f) = F'(f) — 1 and A2(0) is a
constant over [0, 1]. If all the network capacity is consumed,
i.e., W(1)—C)ps = 0, the slackness condition gives A2(1) < 0;
otherwise A2(1) = 0. In either case, we define \y(0) = —p
where 4 is a nonnegative real constant.

The economic interpretation of the Hamiltonian and the co-
state variables are as follows. The co-state constant p is the
shadow price of the network capacity which evaluates the
contribution to total profits by consuming per unit capacity.
The Hamiltonian H is the surrogate profit the ISP extracts
from the users of type 6, which consists of three components
on the right-hand side of (I6). The first component is the
direct impact of the control variable ¢(-) on the object function
[Bv(q(6)) — V(0)]f(0). The control variable ¢(¢) also has
an indirect impact on the object function: it influences the
value of V(6 + 60) in the next infinitesimal type by the
differential V'(0) = v(q(0)), which is captured by the second
component. Moreover, the third component characterizes the
cost of capacity consumption.

According to the Pontryagin’s Maximum Principle, if an
optimal control ¢(-) exists, then along the optimal trajectories,
q(+) is the point-wise maxima of the Hamiltonian H:

[9v(a) = V(O)]£(6) + [F(0) — 1]0v(q) — pw(a) f(6), (T)

where ‘7() is the optimal trajectory of state. The economic
interpretation is that to maximize its total profits, the ISP has
to maximize the surrogate profit it extracts from each type of
users. Neglecting the components irrelevant to ¢ in (I7), we

see that ¢(+) is the point-wise maxima of ¥(6, ¢), defined by

¥(0,q) 2 (e - 1‘”9)) o(g) — ().

70) (1%)



By far we have illustrated the first step, i.e., to use the Max-
imum Principle to find the possible candidate optimal control
¢(+). Due to space limitation, we show the remaining steps in
the proof of Theorem [I]and proceed to present our results, i.e.,
q*(+) and the corresponding optimal service differentiation Q*
and p*(-). We introduce the following Assumption [2f and [3| to
facilitate further analysis.

Assumption 2: The virtual valuation function G () = 6 —
1}59()0) , which is the coefficient of v(g) in || has a unique
zero point 6y on (0,1) and is strictly increasing on (g, 1).

The virtual valuation function G(-) is first defined by Myer-
son in [16] designing revenue-optimal auctions. One sufficient
condition for Assumption [2]is the standard monotone hazard
rate assumption in the mechanism design literature such as [7]].
Assumption [2]is satisfied by many common distributions, e.g.,
normal, exponential and beta distributions. We denote G~1(6)
as the inverse function of G(6) over the interval (6o, 1).

Assumption 3: We define h(q) = w'(q)/v'(q) as a virtual
capacity function and assume that it is decreasing in g over
the interval (0, 1).

The virtual capacity function h(-) is defined as the ratio of
the marginal unit capacity w’(q) needed to support service
quality at a congestion level ¢ to the marginal value of a
user 6§ whose best choice of quality is ¢g. h(g) measures
the marginal capacity needed so as to marginally increase
the user value at the level ¢ of congestion in the system.
Assumption [3| intuitively states that more capacity is required
of the service class with milder congestion to further improve
users’ achieved values. Furthermore, we define a function
h=1(-) over the interval [h(1), +00), whose value is the inverse
of h(-) over [h(1),h(0)] and zero over (h(0), +00).

Under Assumption [2] and [3] we are able to derive a concise
analytic solution of the optimal control problem and simplify
the presentation of our results as follows.

Theorem 1: For the fixed capacity scenario, let C' £ [1 —
F(00)]w(0). If Cpy < C, the user choice function ¢*(-) and
the shadow price p are uniquely determined by the following
set of equations.

a) The user choice function:

fw):{L € 0.0)

h=HG(0)/p), VO € 16,1]
b) The marginal userﬂ 0 that uses the network services:
6= G (- h(1)).

c) The capacity equation:

AMﬂWWsz.

Otherwise, the ISP’s optimal differentiation is to provide a
single-class service, which satisfies Q@ = {0} and p*(0) = 6.

6The marginal user 0 is the type of user that is indifferent between joining
and opting-out of the services. Users with valuations below 6 do not join the
services while users with valuations above 6 do.

The upper bound C' defined in Theorem (1| is a threshold
that determines whether the system’s capacity is abundance.
Notice that the parameterization of our model is quite flexible.
When w(0) = +00, we have C = +o0. In this case, ¢ = 0 is
unreachable, which models the situation where the user always
perceive the congestion externality. On the other hand, when
w(0) < 400, we have C' < +oo. This setting can be used
to model the situation where users perceive no congestion ex-
ternality when congestion level drops below certain threshold.
From Theorem (I} we see that if the ISP’s network capacity
is limited, i.e. Oy < C, all the inequalities in @ will be
binding under the ISP’s optimal service differentiation.

Theorem [I] characterizes the optimal user choice function
q*(-) for the fixed capacity scenario. With necessary modifi-
cations, we can apply similar procedures to derive the solution
for the variable capacity scenario as follows.

Theorem 2: For the variable capacity scenario, if the cost
function S(-) is convex with S(0) = 0, the optimal user choice
function ¢*(-) and the associated capacity consumption W*(1)
are uniquely determined by the following set of equations.
a) The user choice function:

L Vo € [0,0);
q (9) = {h—l(G(g)/S/(W*(l)))7 Vo € [é, 1]'

b) The marginal user 0 that uses the network services:
0=G71(S'(W*()h(1)).

¢) The capacity equation:

AwW@V@M=WW)

After we have obtained ¢*(-) by the above theorems, the op-
timal service differentiation scheme becomes straightforward.

Corollary 1: Under the ISP’s optimal service differentia-
tion, the service classes form an interval Q* = [¢*(1), ¢*(0)],
and the associated prices satisfy

9
P =iole)~ [ ol (s)ds, Vo€
0

where 9 is the user type such that ¢*(¢) = ¢. Furthermore,
p*(+) is continuously differentiable and decreasing in g.

D. Characteristics of the Optimal Solution

In this subsection, we study the structures and properties of
the optimal service differentiation scheme and the correspond-
ing user choices. We first concentrate on the fixed capacity
scenario and the following corollary characterizes the shadow
price u of network capacity.

Corollary 2: For any given user distribution F'(-) satisfy-
ing Assumption [2] the shadow price ;o decreases in the system
capacity Cjy with the asymptotic limit lim¢,, ,&p = 0.

Corollary [2] intuitively states that the marginal value of
capacity decreases when the ISP has more capacity, a common



diminishing return effect, and this marginal value drops to zero
when the capacity becomes abundant.

This next result explicitly shows the type of users that will
be served under an ISP’s optimal service differentiation.

Corollary 3: Under an ISP’s optimal service differentia-
tion, users with values lower than the marginal user value 6
will not use any network service. In particular, the marginal
user value 6 satisfies that

a) if h(1) = 0, 0 is the unique solution to the equation
G(0)=6— 1;{%” =0, ie. 6 = 6.

b) if h(1) > 0, 6 depends on both the user distribution F(-)
and the fixed capacity Cy;. Given any F(-), 0 decreases
in Cpy with the asymptotic limit limg,, ,& = 0.
Corollary [3]states that the optimal service differentiation offers
the service classes with sufficiently low levels of congestion
and high prices such that the users with low value will not
use any service, even when the network capacity is abundant.
The intuition behind Corollary (3| is that by offering premium
services with high quality and high prices, the gains from the
high-end users outweigh the loss of low-end market share.
Next, we turn to the structure of the optimal choices of users
with values 6 above 6. Letting § 2 min{G~*(uh(1)),1}, we
rewrite their choices ¢*() as follows.

-1 (GO) j )
h ( . ) , Vle [9_, 0];
0, Vo € [6,1].

q"(0) =

Over the interval [0, ], a user of type 6 joins the service class
q*(0) such that G(0) = ph(q*(9)), i.e., the user’s virtual
valuation G(f) equals the cost of maintaining service class
q*(0), which is the shadow price multiplied by the virtual
capacity. In other words, under the ISP’s optimal service
differentiation, each user of type 6 will choose the service class
with highest quality and price that it can afford. Moreover,
when h(0) < +oo, the cost of maintaining services is upper
bounded by wph(0), and the user’s virtual valuation might be
higher than this bound. In this case, high-end users will be
bunched up in the service class ¢ = 0. The following corollary
characterizes this bunching phenomenon.

Corollary 4: When h(0) < +oo, there exists a threshold
C < C 2 [1 - F(#)]w(0) such that

a) If Cyy < C, q(0) is strictly decreasing in [0, 1], implying
that all the users that actually choose the ISP’s services
are completely differentiated under the optimal strategy.

b) If C < Cyr < C, we have § < 1 and ¢(#) = 0 for all
6 € [0, 1], implying that high-end users are bunched up
in the best service class with ¢ = 0.

When h(0) = +oo, ¢(f) is strictly decreasing on [6,1],
implying again that users are completely differentiated.

We can analyze the solution for the variable capacity
scenario in a similar way. In Theorem [2} the marginal price of
network capacity at the optimal consumption level W*(1) is
S’(W*(1)), which plays the same role as the shadow price x in
Theorem 1| and depends on both the user distribution F(-) and

the cost function S(-). Therefore, the above discussions can
be readily extended to handle the variable capacity scenario.

In summary, Corollaries [3| and 4] show that an ISP’s optimal
service differentiation scheme always offers service classes
with sufficiently low levels of congestion and high prices such
that users with low values do not subscribe to the ISP, even
if it has abundant network capacity. If the ISP expands its
capacity, its market share should be increased; if the ISP’s
network capacity is sufficient, i.e., more than C‘, it is optimal to
bunch up the high-end users in the best service class with ¢ =
0. Furthermore, when the users’ valuations lean towards high
values, the ISP needs to sacrifice part of the low-end market
share and dedicate its capacity to premium service classes for
high-end users so as to maximize its profits.

V. DYNAMICS OF OPTIMAL SERVICE DIFFERENTIATION

In this section, we study the dynamics of an ISP’s optimal
service differentiation and the corresponding user behavior. We
first choose the parameters of the system. In particular, we use
the exponential form e~? to construct the user’s satisfaction
discount on congestion level. As we normalize the domain of
congestion ¢ to be [0, 1], we adopt a normalized form v(q) =
% which satisfies v(0) = 1 and v(1) = 0. We further
model the implied capacity by the quadratic convex function
w(q) = (1—q)?, under which the marginal demand of capacity
is increasing as the required service quality becomes better,
i.e., as q decreases. Under these settings, the virtual capacity
function satisfies ~(0) < +occ and h(1) = 0.

A. Impacts of Network Capacity Constraint

We study the dynamics of the ISP’s optimal service differ-
entiation with respect to network capacity constraint, i.e., the
maximum capacity C in the fixed capacity scenario and the
cost function S(-) in the variable capacity scenario.

u[o.1] u[0,1]
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= Cy =0.0595]" = 0.0742 \\ N~ ~ = Oy =0.059%
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Fig. 1. Optimal pricing under different maximum capacity

We first investigate the former one. Fig [I] plots the ISP’s
optimal service differentiation (on the left) and the correspond-
ing user’s choice function (on the right) when user type 6
follows the uniform distribution U[0,1]. Each curve in the
figures represents a different Cy; and J* is the corresponding
optimal profits. We observe that when the maximum capacity
C) increases, 1) both the ISP’s optimal pricing curve and
the user choice curve shift downwards, 2) only users with
valuation 6 € [0.5, 1] choose the services, 3) when capacity is
sufficient, high-end users are bunched onto the service class
q = 0, and 4) the ISP’s profit rises. The second observation is a
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demonstration of Corollary [3|that when /(1) = 0, the marginal
user of type 0 is independent of C'j;. Besides, the observed
bunching phenomenon is an illustration of Corollary @ We
summarize the other observations in the following corollaries.

Corollary 5: Under a fixed user distribution F(-), denote
the ISP’s optimal range of service qualities under the maxi-
mum capacity C'yy1 and Cyro as Q7 and Qo, respectively. If
Cur1 < Chra, then Q1 C QQE]

Corollary E]indicates that when the ISP’s maximum capacity
is larger, its optimal service differentiation offers more pre-
mium classes. We also observe that the ISP should decrease
the prices to maximize its profit under this scenario.

Corollary 6: Under a fixed user distribution F'(-), an ISP’s
optimal profit J* increases with its maximum network capac-
ity Cps over (0,C) and have the following asymptotic limit:

lim J* = 6o[1 — F(6)]. (19)
Cyp—C

Corollary [6] states that if an ISP’s capacity is not abundant,
i, Cyy < C, it can gain more profits under the optimal
service differentiation when its maximum capacity expands.

Next we study the variable capacity scenario. We focus on
the impacts of cost function S(-) on the optimal consumption
W*(1) of capacity and the profits J. To this end, we choose a
family of cost functions parameterized by a single parameter
t: S(c) £ 0,Yc € [0,0.1] and S(c) £ t(c — 0.1)%,Vc €
(0.1,400). Our settings model the scenario where the ISP’s
existing capacity equals C' = 0.1 and only need to pay for
costs of the additional capacity. In general, a larger ¢ measures
higher costs for expanding capacity.

Figure [2| plots the optimal consumption W*(1) of capacity
(on the left) and the optimal profits J* (on the right) versus
the parameter ¢ varying along the x-axis. We observe that both
W*(1) and J* decrease with ¢, which indicates that when the
cost of expanding capacity is cheaper, it is optimal for the
ISP to purchase more capacity so as to gain more profits. In
particular, when ¢ — 400, the ISP will not invest in any extra
capacity and the optimal consumption level is W*(1) = 0.1.

Summary of implications: In the fixed capacity scenario,
when the ISP increases network capacity, its optimal service
differentiation scheme will a) enlarge the range of service
congestions by offering more premium services, and b) charge
each service class a lower price. In this scenario, the ISP is
able to allocate more capacity for the premium services and

7We also observe that the optimal prices satisfy p2(q) < p1(q) for all
q € Q1N Q2\{1}. However, this observation has not been rigorously proved.

attract high-end users to use them so as to increase profits.
In the variable capacity scenario, when the cost of capacity is
cheaper, the ISP has incentives to purchase more capacity to
obtain higher profits.

B. Impacts of User Distribution

In this subsection, we study the dynamics of the ISP’s opti-
mal service differentiation with respect to the user distribution.
In particular, we consider a family of distribution functions
F(0) = 0> for 6 € [0,1]. If o = 1, the users’ values follow
the uniform distribution U0, 1]; otherwise, the users are either
leaning towards higher (o > 1) or lower (« < 1) values.

Fig [3] plots the ISP’s optimal pricing curves (left) and the
corresponding user choice curves (right) under various user
distributions and fixed maximum capacity Cp; = 0.1. We
observe that when user valuation shifts towards the higher end,
1) the ISP’s optimal pricing curve and the corresponding user
choice curve both shift upwards, 2) the ISP offers a narrower
range of low congestion services and fewer users choose the
network service, 3) the bunching effect vanishes when « is
large, and 4) the ISP’s profit rises. The second observation
is a demonstration of Corollary E], i.e., when « increases, the
marginal user value 6 increases. The third observation is due
to the fact that the threshold C' £ [1 — F(6)]w(0) increases
with the parameter .

Summary of implications: When there are more high-value
users in the market, the ISP’s optimal service differentiation
will focus on these high-value users by offering a narrower
range of premium service classes and charging higher prices,
thus extracting more profits from these high-value users.

C. Comparison with the Optimal Single-Class Service

We evaluate whether an ISP has the incentive to implement
service differentiation so as to obtain higher profits. To this
end, we use the optimal pricing strategy of a single-class
serviceﬁ (p*,q*) as our benchmark and compare the ISP’s
profits and the total user surplus under our optimal service
differentiation with that under the benchmark. We conduct
simulations under the various user distributions. Since the
general trends are almost the same, we adopt the uniform
distribution U0, 1] as the representative setting.

Figure |4| plots the ISP’s profits J* (on the left) and the total
user surplus s = fol V(6)dé (on the right) versus the maxi-
mum capacity C'y; under the two strategies. We observe that

8The optimal single-class pricing strategy (p*,q*) can be solved by
restricting || = 1 in the optimization problem .
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when the capacity is scarce, the ISP has stronger incentives
to differentiate services so as to gain more profits. However,
as the capacity keeps growing, the increase in profits becomes
marginal. This observation is consistent with Corollary [6] and
Theorem which state that when C; approaches C, the ISP’s
profit converges to the upper bound which is reached without
the capacity constraints. Figure |1|also illustrates this: the curve
with Cp; = 0.3345 shows that when capacity expands, the
majority of users are bunched up in the best service class
g = 0 and the profit gained by service classes ¢ € (0,1] is
small compared to that of the service class ¢ = 0.

The trend of total user surplus s is similar, except for that
the increase is also marginal when capacity is scarce. To see
this more clearly, we plot the user surplus s versus the user
type 8 when Cj; = 0.11 (on the left) and C'y; = 0.22 (on the
right) in Figure [5] We observe that under the ISP’s optimal
service differentiation, more users subscribe to the services.
However, when the capacity is insufficient, mid-tier uers are
sacrificed to subsidize the high-end and low-end users.

Summary of implications: The ISP has strong incentives
to implement service differentiation if its network capacity is
scarce and under this scenario, regulators should encourage
such practices because more users will have access to the
services and the total user surplus is higher.

VI. CONCLUSION

In this work, we study an ISP’s optimal service differen-
tiation strategy subject to its network capacity constraints in
a congested network market. In particular, we consider two
typical scenarios: the fixed capacity and variable capacity sce-
narios. By incorporating the dual approach in optimal taxation
theory [14], we establish an optimal control framework to
analyze the ISP’s profit-maximizing problem. We derive the
analytical solution to the ISP’s optimal service differentiation
and characterize its structures. Our results show that the ISP’s
optimal service differentiation scheme offers service classes
with sufficiently high qualities and prices such that users with

low value will not use the services, even when the network
capacity is abundant. When the ISP expands its capacity, its
market share will be increased by offering more premium
service classes and reducing prices. Furthermore, when there
exist more high-value users, the ISP should focus on them
by offering a narrower range of premium service classes and
charging higher prices. Our results also show that the ISP has
strong incentives to implement service differentiation when its
capacity is scarce and suggest that regulators should encourage
such practices as they increase the total user surplus.
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APPENDIX

A. Technical Proofs

Proof of Lemma E} If 1 >6, >..2> 0 we define
|\ intervals as follows:

I, 20,1, VieN.
Note that for i = 1,2, ..., |N| =1,
hel, — >0, = Li—Pi+l
v(gi) — v(gi41)

< 0v(qi) —pi > Ov(gi+1) — Pit1
<= 0 prefers class 7 to class i+ 1

and for ¢ = [N|, 0 €
Therefore, we have

<= 0 subscribes to the ISP.

0cl0;,0, 1] — 0cyn.NnL;NL_1N..NI,

which means 6 prefers class i to i +1,i+1to i+ 2, ..., N
to opting-out, and ¢ to ¢ — 1, ..., 2 to 1. Hence we have

@1(p7q) = [9i79i71]7 1= 172a ceey |N|

|

Proof of Lemma 2} Suppose g(-) is not nonincreasing in

6, then there exist two user types 61 and 65 such that 6; > 65
and q(01) > q(62). Let g1 = q(61), ¢2 = q(62), p1 = p(q1)
and ps = p(g2). Since the pricing function p(-) is strictly
decreasing, we have p; < ps. By the definition of user’s choice
function ¢(-), we have the following two incentive inequalities:

61v(q1) — p1 > 61v(g2) — p2,
O2v(g2) — p2 > 62v(q1) — p1.

And they are equivalent to:

P2 —p1
0 < —F—,
! v(q2) —v(q1)
P2 —p1
0y > ———— .
* = v(g2) — v(a)
which contradicts with that 61 > 0. [ |



Proof of Lemma [5} Since the utility function (I)) has
the strict and smooth single crossing differences properties
[13], we can apply the constraint simplification theorem (see
Theorem 4.3 in [13])) to derive this lemma. [ |

Proof of Lemma ' Since u(p,q;0 = 0) = —p < 0 and
u(0,1;0 = 0) = 0 (choosing the dummy service class), we
have V*(0)=0. [ |

Proof of Lemma [3} Define the set of users that choose
service class ¢ as

P(q) £ q(0) = q}.

We perform summation in a user-wise fashion instead of the
class-wise one:

/ fde)(>dq—/( F(0)w(q)d0)dg
@(q) @(q)

/ F(0)w(q(6))d6)dq
®(q)
- / w(q(6))£(6)d0

0

{#0O:

|

Proof of Lemma [6} The envelop theorem [12] together
with Lemma [3] have established the one-one correspondence
between the any service differentiation strategy and the cor-
responding user choice function ¢(-) together with an indirect
utility level V' (0). From Lemma[4 we have set V' (0) = 0. From
we obtain W’ (0) = w(q())f(#) and the total capacity
consumption is W (1) by Lemma [5| The first order derivative
of V(-) is given by the envelop theorem. The ISP’s profits is

/ p<q>< f<e>d9> dg = / p(g(6))(6)d0
Q ®(q) 0

1
- / 10u(a(6)) — V(0)]£(6)d0

Then Lemma [6] is a summarization of the above results. N
Proof of Theorem[I} In Section IV-C, we have introduced
the three steps of tackling the optimal control problem (14). In
particular, we have proved that the candidate optimal control
g(+) for the relaxed optimal control problem is the point-wise
maxima of
1—-F(0)

(0, q é(@— >vq—,u-wq.
(6,9) o)) @ el
The shadow price p satisfies the slackness condition:
p-[W(1) = Cul =0

If W(1) — Cpr < 0, then we have = 0, g(-) is the point-
wise maxima of

w =0,

¥(0,q) = G(0)-v(q)

Under Assumption [2| G(0) is negative on the interval [0, 6y)
and positive on the interval (g, 1]. Since v(-) is decreasing
in g, it naturally follows that ¢(-) = 1 for all 8 € [0,6,) and
g(-) = 0 for all § € [0y, 1]. Then we have the second part
of Theorem [I] Moreover, we have obtained the abundance

capacity C 2 [1 — F
consumption level.

If W(1) — Cpr = 0, the slackness condition gives p > 0.
Then ¢(-) is the point-wise maxima of

(0, q) = G(0) - v(g) — p-w(g)-

When 6 € [0,600), G(#) < 0 and ¥(0,q) is decreasing in g.
Therefore g(-) = 1 for all § € [0,6p). When 6 > 6, we
calculate the partial derivative with respect to ¢ to find the
maxima.
0v(0,9)
dq

(00)]w(0), the corresponding capacity

= G(0)v'(q) —p-w'(q) = —p-v'(q)[h(q) — G(0)/u]

Since —p - v'(g) > 0, the sign of 2(0.9) g determined by

h(q) — G(8)/p. Then under Assumption [3| we have

=1t 0 € [0,0)
e/, o€
where the marginal user is § = G~(u - h(1)).

By far we have completed the first step, i.e. to solve the
candidate optimal control g(-) for the relaxed optimal control
problem. Next we prove that g(-) is indeed the optimal control
of the relaxed optimal control problem. This is guaranteed by
the Arrow sufficiency theorem [5] due to that the Hamiltonian
is concave in V. As for the third step, it is easy to show that
¢(+) is nonincreasing under Assumption [3| Hence we have
q*() = q(-) and the proof of Theorem [1|is completed.

Proof of Theorem 2} For the variable capacity scenario,
the transversality conditions become

d\y OH

=~ v =10

d, _ oH

o 8W _
A1) =0, A1) =-5"(W(1)).

Therefore, the costate variable associated with W(-) is a
constant Ay(0) = —S'(W(1)). In parallel with Theorem 1, the
marginal cost S’(W (1)) at the optimal capacity consumption
level W (1) here plays the same role as the shadow price u in
the fixed capacity scenario. Assuming S(-) is nondecreasing
and convex, the three steps in the proof of Theorem [I] can be
readily applied in this scenario and we omit the details here.

|
Proof of Corollary[Il Note that the indirect utility level
is V*(0) = 0, then Corollary [I]is straightforward from Lemma
Bl ]
Proof of Corollary ' By Theorem |1} If Cy; < C, then
the user choice function ¢*(-) and the shadow price p are
uniquely determined by the following set of equations.
a) The user choice function:



b)
6= G (- h(1));

¢) The capacity equation:

/0 w(g*(0))£(9)d0 = Cy.

When F(-) is fixed, Cjs is a function of p. Suppose the
shadow prices under two maximum capacities C; and Cy are
w1 and po respectively and 0 < g3 < po. From the capacity
equations, we have

cr= [ waienser= |

01

1

w(q1(0))f(6)do

Cy = /O w(g3(6))£(6)d6 = / w(g3(6))(6)d6

62

From Theorem I we have 6; <= 5. Moreover, if h(0) =
+o00, then q1(9) < q2(9) for all 0 € [,,1]; if h(0) < +oo,
letting 0, = min{G~!(uz - h(1)),1}, then g1 () < go(6) for
all 6 € [0y, 0,). Therefore, we obtain C; > Cy. Furthermore,
we have lim,_,oC = C . By far we have established the one-

one correspondence between Cjy and p and thus indirectly

proving Corollary [2] [ |
Proof of Corollary [3}  Given Theorem [I] and Corollary
[ this result is stralghtforward u

Proof of Corollary W  Actually C is such that the
corresponding shadow price i = G(1)/h(0) = 1/h(0). When
Cy = C, user with the highest value & = 1 chooses the
best service with congestion ¢ = 0. The rest of the proof is
straightforward. ]

Proof of Corollary Bl The range of congestion levels

Q" = [¢*(1),¢*(6)] = [h~"(1/m),1). From Corollary [
have proved the first part of the corollary that if Cpsq < C M2,

then Ql C QQ. ||
Proof of Corollary [6} The ISP’s optimal profits is

1
5 = [ l6a®) - v @) 56)a6.
0
Integrating by parts, we have

1 1
/ V*(0) £(6)do = / V*(0)dF(6)
0 0

— [VO)F©)] |5 - / F(0)dv*(0)
/ F(o ))do

/0 [1— F(0)]u(q" (6))6.
Hence we have
1
J* = / G(6)u(q"(6))(6)ds.

By Corollary [2, we have that J* increases with Cjy < C
and the asymptotic limit is reached when Cj; = C. ]

B. Extension to Pay-As-You-Go Pricing

We briefly demonstrate how our analysis can be extended to
handle pay-as-you-go pricing scheme. We now interpret v(q)
as users’ volume of transmitted packets under congestion level
g. The user with value 6 has utility v(¢q)(6—p) when joining the
class with congestion ¢ and price p. If we define the indirect
utility and user choice as follows. The indirect utility of user
type 6 is given by

V(0) £ max v(q)(0 — p)

qeQ

The user type 6 must subscribe to a service class in the set
X(8) £ argmaxv(q)(6 — p)
qeQ
i.e., the choice of user 0 is given by ¢(f) € X (0).

Then we have V'(0) = wv(q(0)), and p(q(9)) =
V(0)/v(q). The ISP’s profits is

0 —

1 1
/Op(q(9))v(Q(9))f(9)d9:/o [Bv(q(0)) = V(0)]£(8)db.

In the fixed capacity situation, the optimal control problem
is

On
maxnmze J = / [Bv(q(8)) —V(0)]f(6)do

subject to V'(0) =v(q(0)), V(0)=0
W'(0) = w(a(9))v(a(0) f(0), W(0)=0
q(-) nonincreasing, 0<¢q(0) <1

Comparing the above optimal control problem with (T4), we
see that in the pay-as-you-go scheme, w(-)v(-) plays the same
role as w(-) in the flat-rate scheme. Therefore our analysis can
be extended to handle the pay-as-you-go scheme with easy
modifications.
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