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Abstract—We consider the Threshold Activation Problem
(TAP): given social network GG and positive threshold 7, find a
minimum-size seed set A that can trigger expected activation of at
least 7'. We introduce the first scalable, parallelizable algorithm
with performance guarantee for TAP suitable for datasets with
millions of nodes and edges; we exploit the bicriteria nature
of solutions to TAP to allow the user to control the running
time versus accuracy of our algorithm through a parameter
a € (0,1): given > 0, with probability 1 — n our algorithm
returns a solution A with expected activation greater than
T — 2aT, and the size of the solution A is within factor
14 4aT +1og(T) of the optimal size. The algorithm runs in time
O (™ ?log (n/n) (n + m)| A[), where n, m, refer to the number
of nodes, edges in the network. The performance guarantee holds
for the general triggering model of internal influence and also
incorporates external influence, provided a certain condition is
met on the cost-effectivity of seed selection.

I. INTRODUCTION

With the growth of online social networks, viral marketing
where influence spreads through a social network has become
a central research topic. Users of a social network can activate
their friends by influencing them to adopt certain behaviors
or products. In this context, the influence maximization (IM)
problem has been studied extensively [[1]—[3]: given a budget,
the IM problem is to find a seed set, or set of initially
activated users, within the budget that maximizes the expected
influence. Much recent work [3], [4]], [9], [[10] has developed
scalable algorithms for IM that are capable of running on
social networks with millions of nodes while retaining the
provable guarantees on the quality of solution; namely, that
the algorithm for IM will produce a solution with expected
influence within 1 — 1/e of the optimal activation.

However, a company with a specific target in mind may
adopt a more flexible approach to its budget: instead of
having a fixed budget k£ for the seed set, it is natural to
minimize the size of the seed set while activating a desired
threshold 7" of users within the network. For example, suppose
a company desires a certain level of exposure on social media;
such exposure could boost the sales of any of its products.
Alternatively, suppose a profit goal 7' for a product must
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be met with the least expense possible. Thus, we consider
the following threshold activation problem (TAP): given a
threshold 7', minimize the size of the set of seed users in order
to activate at least 7" users of the network in expectation.

Goyal et al. [11]] provided bicriteria performance guarantees
for a greedy approach to TAP based upon Monte Carlo
sampling at each iteration to select the best seed node, an
algorithm reminiscent of the greedy algorithm for IM in
Kempe et al. [1]; this approach is inefficient and impractical
for large networks. Although TAP is related to IM, scalable
solutions that already exist for IM are unsuitable for TAP: the
TIM [[10] and IMM [9] algorithms require knowledge of the
size k of the seed set ahead of time; the SKIM algorithm [3]]
for average reachability has been shown to be effective for IM
in specialized settings, but it is unclear how to apply SKIM to
more general situations or to TAP while retaining performance
guarantees.

Moreover, empirical studies have shown that in the viral
marketing context, it is insufficient to consider internal prop-
agation alone; external activation, i.e. activations that cannot
be explained by the network structure, play a large role in
influence propagation events [12]-[15], and recent works on
scalable algorithms for IM [3]], [9], [10] have neglected the
consequences of external influence. For internal diffusion,
two basic models have been widely adopted, the independent
cascade and linear threshold models; Kempe et al. [1] showed
these two models are special cases of the triggering model,
a powerful, general model that has desirable properties in a
viral marketing context.

Motivated by the above observations, the main contributions
of this work are:

o We establish a new connection between the triggering
model and a concept of generalized reachability that al-
lows a natural combination of external influence with the
triggering model. We show any instance of the triggering
model combined with any model of external influence is
monotone and submodular.

o We show how to use the generalized reachability frame-
work to efficiently estimate the expected influence of
the triggering model combined with external influence,
leveraging scalable estimators of average reachability by
Cohen et al. [3]], [16], [[17]. This efficient estimation
results in a parallelizable algorithm (STAB) for TAP
with performance guarantee in terms of user-adjustable



trade-offs between efficiency and accuracy. The desired
accuracy is input as parameter « € (0,1) which de-
termines running time as O (a2 log(n/n)(n + m)|A]),
where n, m are number of nodes, edges in the network,
and A is the seed set returned by STAB. With probability
1 — 7, the expected activation is guaranteed to be with
2aT of threshold T, and the size of the seed set A is
guaranteed to be within factor 1 + 4aT + log(T) of
the optimal size. If the cost-effectivity of seed selection
falls below 1, this performance bound may not hold; we
provide a looser bound for this case.

o Through a comprehensive set of experiments, we demon-
strate that on large networks, STAB not only returns a
better solution to TAP, but it runs faster than existing
algorithms for TAP and algorithms for IM adapted to
solve TAP, often by factors of more than 103 even
for the state-of-the-art IMM algorithm [9]]. In addition,
we investigate the effect of varying levels of external
influence on the solution of STAB.

The rest of this paper is organized as follows: in Section
we introduce models of influence, including the triggering
model and our concept of generalized reachability. We prove
these two concepts are equivalent. In Section we formally
define TAP and first prove bicriteria guarantees in a general
setting. Next, we employ the generalized reachability concept
to show how combination of triggering model and external
influence can be estimated efficiently, and we present and
analyze STAB, our scalable bicriteria algorithm. In Section
we analyze STAB experimentally and compare with prior
work. We discuss related work in Section [V]

II. MODELS OF INFLUENCE

A social network can be modeled as a directed graph
G = (V,E), where V is the set of users and directed edges
(u,v) € E denote social connections, such as friendships,
between the users u, v. In this work, we study the propagation
of influence through a social network; for example, say a user
on the Twitter network posts a message to her account; this
message may be reposted by the friends of this user, and
as such it propagates across the social network. In order to
study such events from a theoretical standpoint, we require
the concept of a model of influence propagation.

Intuitively, the idea of a model of influence propagation
in a network is a way by which nodes can be activated
given a set of seed nodes. In this work, we use o to denote
a model of influence propagation. Such a model is usually
probabilistic, and the notation ¢ (.S) will denote the expected
number of activations under the model o given seed set
S C V. Kempe et al. [1] studied a variety of models in
their seminal work on influence propagation on a graph,
including the Independent Cascade (IC) and Linear Threshold
(LT) models. For completeness, we briefly describe these two
models. An instance of influence propagation on a graph G
follows the IC model if a weight can be assigned to each
edge such that the propagation probabilities can be computed
as follows: once a node w first becomes active, it is given
a single chance to activate each currently inactive neighbor
v with probability proportional to the weight of the edge

(u,v). In the LT model each network user u has an associated
threshold 6(u) chosen uniformly from [0, 1] which determines
how much influence (the sum of the weights of incoming
edges) is required to activate u. u becomes active if the total
influence from its activated neighbors exceeds the threshold
0(u).

These well-studied models are both examples of the Trig-
gering Model, also introduced in [1]: Each node v € G
independently chooses a random “triggering set” T}, according
to some probability distribution over subsets of its neighbors.
A seed set S is activated at time ¢ = 0; a node v becomes
active at time ¢ if any node in 7T, is active at time ¢ — 1.

Two important properties that it is desirable for a model o
of influence propagation to satisfy are firstly the submodularity
property of the expected activation function: for any sets
S, T CV,o(SUT)+0(SNT) < a(S)+0(T), and secondly
the monotonicity property: if S C T C V, o(S) < o(T).
These properties together allow a greedy approach to have
a performance ratio for the influence maximization problem
(IM): given k, find a seed set A of size k such that the
expected activation of A is maximized. Kempe et al. [I]]
showed that the triggering model is both submodular and
monotonic. Both properties are also important in proving
performance guarantees for TAP, the problem studied in this
work and defined in Section

It is #P-hard to compute the exact influence of a single seed
node under even the restricted version of IC where each edge
is assigned the probability 0.5 [18]]. Therefore, it is necessary
to estimate the value of o(S) by sampling the probability
distribution determined by o. Sampling efficiently such that
the estimated value 6(S) satisfies |6(S) — o(S)| < e for
all seed sets is a difficult problem; we discuss this problem
when o is a combination of the triggering model and external
influence in Section Because of the errors associated
with estimating the value o (S), we introduce slightly general-
ized versions of the above two properties. First, let us define
A,o(A) =0 (AU {z})—o(A), for any model o, and subset
A C V. The following property is equivalent to o satisfying
submodularity and monotonicity together.

Property 1 (Submodularity and monotonicity). For all A C
B,and z € V, Ayo(A) > Ayo(B).

Let us define a o to be c-approximately monotonic and
submodular if the following property is satisfied instead:

Property 2 (s-submodularity and monotonicity). Let € > 0.
Forall ACB,and z € V, ¢ + Ayo(A4) > Ayo(B).

A. Triggering model from the perspective of generalized
reachability

Next we define a class of influence propagation models that
naturally generalize the notion of reachability in a directed
graph: that is, these models generalize the simple model that
a node is activated by a seed set S if it is reachable from the
seed set by edges in the graph. Somewhat surprisingly, the
triggering model is equivalent to this notion of generalized
reachability.



Suppose instead of a single directed graph GG, we have a set
of directed graphs {(G; = (V, E;),p;)}._, on the same vertex
set V, and associated probabilities such that Z§=1 p; = L.
Then define an influence propagation model o in the following
way: when a seed set .S is activated, graph G; is chosen with
probability p,;. Then, influence is allowed to propagate from
seed set S in GG; according to the directed edges of G;. Let
0;(S) be defined as the number of vertices reachable from S
in GG;. Then the expected activation of a seed set S is given
by o(5) = Zizlpiai(S). We will term a model o of this
form a model of generalized reachability, since it generalizes
the notion of simple reachability on a directed graph. We have
the following important proposition:

Proposition 1. Generalized reachability is equivalent to the
Triggering Model.

Proof: Suppose we have an instance o of the triggering
model. For each node v, triggering set 7, is chosen indepen-
dently with probability p(T,). If all nodes choose a triggering
set, then define graph Hr for this choice by adding directed
edges (u,v) for each u € T,. Assign graph Hp probability
[I,»(T,) and we have instance of generalized reachability
with the same expected activation.

Conversely, suppose o is an instance of generalized reach-
ability. For v € V, let T}, be any subset of nodes excluding v
itself. Assign p(T),) to be the sum of the probabilities of the
graphs in which the in-neighbors of v are exactly the set T.,.
Then we have an instance of the triggering model. ]

B. External influence

In this section, we outline our model of external influence
Oext 1N a social network. We wish to capture the idea that
users in the network may be activated by a source external
to the network; that is, these activations do not occur through
friendships or connections within the social network. The most
general model of external influence is simply an arbitrary
probability distribution on the set of subsets of nodes. That
is, for any S C V, there is a probability pg that S is activated
from an external source. In this work, we adopt this model and
denote such a model of external influence by ... In order
to consider both external and internal influence in our social
networks, we next define the concept of combining models of
influence together.

Definition 1 (Combination of o1, 05). Let o1 and o9 be two
models of influence propagation. We define the combination
o of these two models in the following way: At any timestep
t, if set A, C V is activated new nodes may be activated from
A, according to either oy or o9; that is, if in the next timestep
o1 activates A}, and o3 activates A7, then Ay = A} U
A?_|. We denote the combination model as o1 & o5 and write
o1 @ o2(A) for the expected number of activations resulting
from seeding A under this model.

In this work, we are most interested in combining external
activation with the triggering model. That is, if 0., is @ model
of external influence as defined above, and o4 is an instance
of the triggering model, then we consider o4 ® Text.

1) Submodularity of oyrig @ Oeqt: In this subsection, we
establish the submodularity and monotonicity of ® = o554 ®
Oeyt. First, we require the following proposition.

Proposition 2. Let ¢ be a submodular, monotone-increasing
model of influence propagation. Define o 4(T) to be the ex-
pected influence of seeding set 7" when A is already activated;
thatis 04 (T") = o (AUT). Then, for any A, o4 is submodular
and monotone increasing.

Proof: Let T1,T, C V. We prove submodularity only,
monotonicity is similar.

oA(T1 UTs) +04(Th NT3)
=c(TMUT,UA)+o(ThNT2UA)
=o((MUA)U(TrUA)+o((ThUA) N (T2 U A))
<o(AUTy)+0(AUTS)
=o04(T1) + 0a(T3).

[

Theorem 1. Let 04,4 be any instance of the Triggering Model,
and oyt be any instance of external influence. Then, ® =
Otrig © Ocgt IS submodular and monotonic.

Proof: For any A C V, let ps be the probability that
A is activated via 0, the external influence. Then, ®(S) =
Y Acy PAGtig(AUS). By Prop. Otrig,A(S) = Oprig(AUS)
for fixed A is monotone and submodular. Since a non-negative
combination of submodular and monotonic set functions is
also submodular and monotonic, the result follows. |

III. THRESHOLD ACTIVATION PROBLEM

The framework has been established to define the problem
we consider in this work. We suppose a company wants to
minimize the number of seed users while expecting a certain
level of activation in the social network. Formally, we have

Problem 1 (Threshold activation problem (TAP)). Let G =
(V, E) be a social network, n = |V|. Given influence propa-
gation model o and threshold T such that 0 <T < n, find a
subset A CV such that |A| is minimized with o(A) > T.

First, we consider performance guarantees for a greedy
approach to TAP with only the assumption that the influence
propagation ¢ is e-submodular. We do not discuss how to
sample o for these results. Subsequently, we specialize to the
case when ¢ is the the estimated value of the combination of
the triggering model and external influence, which is approxi-
mately submodular up to the error of estimation, and we show
how to efficiently estimate to a desired accuracy in Sections
[IT-B2] and [IIT-B3b] We detail the algorithm STAB in Section
I1I-B1} a scalable algorithm with performance guarantees for
TAP utilizing this estimation and analysis.

A. Results when o is e-submodular

We analyze the greedy algorithm to solve TAP, which adds
a node that maximizes the marginal gain at each iteration to its
chosen seed set A until o(A) > T, at which point it terminates.
One might imagine in analogy to the set cover problem that
there would be a logn-approximation ratio for the greedy



algorithm for TAP — however, this result only holds for integral
submodular functions [11]. We next give a bicriteria result for
the greedy algorithm that incorporates the error € inherent in
e-approximate submodularity into its bounds. In this context,
a bicriteria guarantee means that the algorithm is allowed to
violate the constraints of the problem by a specified amount,
and also to approximate the solution to the problem. In the
viral marketing context, this means that we may not activate
the intended threshold 7' of users, but we will guarantee to
activate a number close to 1". Furthermore, we will not achieve
a solution of minimum size, but there is a guarantee on how
large the solution returned could be.

Theorem 2. Consider the TAP problem for o when o is ¢-
approximately submodular. Then the greedy algorithm that
terminates when the marginal gain is less than 1 returns
a solution A of size within factor 1 + ¢ + log (%) of
the optimal solution size, OPT, and the solution A satisfies
o(A)>T—(14¢)-OPT.

Proof: Let A; = {ay, ..., a;} be the greedy solution after
i iterations, and let A, be the final solution returned by the
greedy algorithm. Let o = OPT be the size of an optimal
solution C = {¢y,...,c,} satisfying o(C) > T. Then

T —o(4;) <o(4;UC0) —a(4;)

ZACJ.O'(AZ' U {Cl,. . ;Cj—l})
j=1

M-

—

Ac;0(Ai) + oe (by Property [2)

IN
2

[o(Aip1) —o(A:) +e]. ¢))

Therefore, T — o(A;41) — € < (1 — 1) (T — 0(A;)). Then
= 1\
T—o(A)<T(1-= 1- -
() ()

1\’
ST(l—) + €o.
0

From here, there exists an ¢ such that the following differences
satisfy

2)

T —o(Ait1)

o(1+¢), and
o(l +e¢),

> 3)
< “)
Thus, by inequalities and (3), 0 < Texp(=!), and
1 < olog (%) By inequality || and the assumption on
the termination of the algorithm, the greedy algorithm adds
at most o(1 4+ €) more elements, so g < i+ o(1 +¢) <
o(1+e+log(L)). Finally, if the algorithm terminates be-
fore 0(Ay) > T, then the marginal gain is less than 1. Hence,
by (1), o(4) > T — (1 +¢)o. [ |

Notice that the above argument requires only that o is a
e-submodular set function; in particular, it did not use the fact
that o represents expected influence propagation on a social
network.

1) Approximation ratios: Next, we consider ways in which
the bicriteria guarantees of Theorem [2| can be improved. In
viral marketing, we may suppose a company seeks to choose
a threshold 7" such that the marginal gain to reach T is always
at least 1; seeding nodes with a marginal gain of less than 1
would be cost-ineffective. In other words, it would cost more
to seed a node than the benefit obtained from seeding it. There
is little point in activating 7" users if the marginal gain drops
too low; intuitively, the company has already activated as many
as it cost-effectively can.

We term this assumption the cost-effectivity assumption
(CEA): In an instance of TAP, if B C V such that o(B) < T,
there always exists a node u such that A,o(B) > 1. Under
CEA, the greedy algorithm in Theorem [2] would be an approx-
imation algorithm; that is, it would ensure o(A) > T, with the
same bound on solution size as stated in the theorem. To see
this fact, notice that once inequality above is satisfied, the
algorithm must add at most o(1 + ¢) more elements before
o(A) > T, by CEA.

More generally, each node v &€ V has an associated
reticence 1, € [0,1]; r, is the probability that v will remain
inactive even if all of the neighbors of v are activated. Then
we have the following theorem, whose proof is analogous to
Theorem 21

Theorem 3. Let o be c-approximately submodular and let
r* = minyey ry. Suppose r* > 0. Then the greedy algorithm
for TAP is an approximation algorithm which returns solution
A within factor £ + log (%) of optimal size.

r*

B. Scalable bicriteria algorithm for c;nt @ Oext

In this subsection, we detail the scalable bicriteria Algorithm
[I] for TAP when the propagation is given by an instance of
the triggering model in the presence of external influence;
that is, when o = 0y @ 0cqt- We describe our scalable
algorithm STAB first and then discuss the necessary sampling
and estimation techniques in the subsequent sections.

1) Description of algorithm: As input, the algorithm takes
a graph G = (V, E) representing a social network, an exter-
nal influence model o, internal influence model 0,4, an
instance of the triggering model, and the desired threshold of
activated users 7'. In addition, the user specifies the fractional
error «, on which the running time of the algorithm and
the accuracy of the solution depend. Using «, in line 1 the
algorithm first determines ¢, the number of graph samples it
requires according to Section [[II-B2]

Next in the for loop on line 2, the algorithm constructs
a collection of oracles which will be used to estimate the
average reachability in the sampled graphs H;, which is used
to approximate the expected influence. Each graph H; is
needed only while updating the oracle collection in iteration
i; once this step is completed, H; may be safely discarded.
Since the samples are independent, this process is completely
parallelizable.

Once the set of oracles has been constructed, a greedy
algorithm is performed in attempt to satisfy the threshold 7'
of expected activation with a minimum-sized seed set. The
estimation in line 11 may be done in one of two ways: using



estimator C'1 or C2; both are described in detail in Section
The estimator chosen has a strong effect on both the
running time and performance of the algorithm: given the same
oracles, C'l can be computed in time O(k), and in practice
is much faster to compute than C'2. However, the quality of
C1 degrades with the size of seed set. On the other hand,
C?2 takes time O(k|B|log|B]) time to compute, where B is
the seed set for which the average reachability is estimated;
our experimental results show that the quality of C2 is vastly
superior to C1 for larger seed set sizes |B|; however its
running time increases.

This algorithm achieves the following guarantees on perfor-
mance:

Theorem 4. Suppose we have an instance of TAP with ¢ =
Otrig ® Ot and that T' has been chosen such that CEA holds.

Then, if n > 0, by choosing 6 = n/n>, the solution
returned by Alg. [I] satisfies the following two conditions, with
probability at least 1 — n:

1) o(A)>T —2aT

2) If A* is an optimal solution satisfying o(A*) > T,

i < 1+4aT + log(T).

If Assumption CEA is violated, the algorithm can detect this
violation by terminating when the marginal gain drops below
1. In this case, bound 1 above becomes o(A) > T — (1 +
g)|A*|.

Using estimator C1 for average reachability in line 11
yields running time O (log(n/n)(n + m)|A\/a2). If estimator
C2 is used, a factor of |Allog|A| is multiplied by this bound.

Proof: Let A* be a seed set of minimum size satisfying
o(A*) > T. Then, as discussed in Section if 6 = n/n?,
then with probability at least 1 — 7, A* satisfies 6(A*) >
T — T by the choice of £ in Alg. [I} and the analysis in
Section Hence |A*| > |B*|, where B* is a set of
minimum size satisfying 6(B*) > T — oT.

Notice 6 is 4aT-approximately submodular on the sets
considered by the greedy algorithm with probability at least
1 —17. By Section in this case, the solution A returned
by Alg.[I]satisfies |A| < (1+4aT +log T)|B*| < (1+4aT +
log T)|A*|. Furthermore, o(A) > 6(A) —a > T — 2aT,
if CEA holds, otherwise the alternate bound follows from
Theorem 21

Next, we consider the running time of Alg. [T} Let m be
the number of edges that have a nonzero probability to exist
in one of the reachability instances (m is at most the number
of edges in input graph G). Lines 2 and 3 clearly take time
¢(n+m). By Cohen et al. [3]], line 4 takes time O(k¢m). The
while loop on line 9 executes exactly |A| times, and the for
loop on line 10 requires time O(kn) if estimator C'1 is used,
and time O(k|A|log |A|n) if estimator C2 by Section [[II-B3b]
By the choices of k£ and ¢ on line 1, we have the total running

s E?ﬁ%gﬁ%ﬁsoftglﬁ% ® 0ert(A): Let 014 be a model »
internal influence propagation, which in this section will be
an instance of the triggering model. Let o.,; be the model of
external influence activation, and let o = 0,59 @ ¢yt be the
combination of the two as defined above. We use the following
version of Hoeffding’s inequality (7" will be the threshold that

Algorithm 1: Scalable TAP Algorithm with Bicriteria
guarantees (STAB)

Data: G7 Otrig, Oext, T, a, 1)

Result: Seed set A
1 Choose ¢ >1log(2/8)/a?, k > (2 + ¢)logn(aT)~2 as
discussed in Section [[II-B2f
fori=11t0 ¢ do
Sample graph G; from orig;
Sample external seed set Af” for oeye;
Construct H; = G; — 0;(A$*?), and store the value of
|oi (AS™)], as described in Section
6 Update the oracle collection {X,, : u € V'} for 7
according to H; as in Section

I~

wm s W N

7 end

8 A=0,0=3"_ |oi(A=h)| /¢,

9 while 6(A) < T — aT do

10 for u € V do

1 Estimate A, = {7(AU {u}) — 7(A)} using one
of the estimators C'1 or C'2 as described in
Sections [[1I-B3bj, [I1I-B3d

12 end

13 A= AU{u*}, where u* maximizes A,;

14 Compute 6(A) = 7(A) + O by Lemma

15 end

is input to Alg. [I).

Theorem 5 (Hoeffding’s inequality). Let Xy,..., Xy be in-
dependent random variables in [0,T]. Let X be the empirical
mean of these variables, X = %Zle X;. Then for any t

Pr (|X - E[X]| 2 1) < 2exp (%5 ) .

T2

Since 04;y is an instance of the triggering model, by
Theorem [1} there exists a set {(G;,p;) : j € J} such that
for any seed set A, ouig(A) = ;2 ;pj0;(A), where o
is simply the size of the set of nodes reachable from A in
G;. Thus, if A is fixed, then by taking independent samples
of graphs from the probability distribution on {G,}, we get
independent samples of o;(A).

In the general model of external influence presented above,
every seed set B C V has a probability pp of being activated
by the external influence. By sampling from this distribution
on subsets of nodes, and independently sampling as above
from o4, 0(A) could be computed exactly in the following
way: 0(A) = Y pcy 2 e Pippoj(AU B). In most cases,
this sum cannot be computed in polynomial time, and certainly
it has ©(2") summands. Accordingly, we estimate its value
by independently sampling ¢ externally activated sets {A7_,}
from o.,;; we also independently sample ¢ reachability graphs
G according to oyyj, and estimate by averaging the size of
the reachability from a seed set A in this context: o(A4) =~
6(A)=1 521 oj (AU A$*") . To estimate o (A) in this way
within error o/T" with probability at least 1—¢ from Hoeffding’s
inequality we require £ > % such samples.

Now, in our analysis of the greedy algorithm in Theorem 2]
only at most n3 sets were considered. All that is required for



the analysis to be correct as it that those sets were estimated
within the error oT'; if § < n/n3, where 1 < 1, then by the
union bound, with probability at least 1 — 7, the analysis for
Theorem [2 holds. In practice, we were able to get good results
with much higher values of J, see Section

3) Estimation of 6: In the previous section, we describe an
approach to estimate o(A), based upon independent samples
{G;} of graphs from the triggering model, and independent
samples of externally activated nodes { A¢“*}. Next, we need
to compute the value of the estimator 6(A). One method
would be to compute it directly using breadth-first search
from the sets AU A$™ in each graph G;. This method would
unfortunately add a factor of Q(n + m) to the running time,
which would result in a running time of Alg. [1jof Q(n?), too
large for our purposes. Thus, we would like to take advantage
of estimators formulated by Cohen et al. [3|] for the average
reachability of a seed set over a set of graphs. However,
because the external seed sets AS”* for each graph G; vary
with 4, we must first convert the problem into an average
reachability format.

a) Conversion to an average reachability problem:
Suppose we have sampled as above ¢ pairs of sample graphs
and external seeds: {(G1, A$™), ..., (G, A5*")} To compute
5(A) = %Zle oi(A U A5*Y) efficiently, we first convert
this sum to a generalized reachability problem: we construct
graph H; from G; by removing all nodes (and incident edges)
reachable from A¢**: H; = G,; — 0;(A*"). The average
reachability of a set A in the graphs {H,}, which we term
T(A), is

L
7(4) = % >_7il4), )

where 7;(A) is the size of the set reachable from A in H;. The
estimators formulated by Cohen et al. are suitable to estimate
the value of 7, and the following two lemmas show how we
can compute 6(A) from 7(A).

Lemma 1. The size of the reachable set from A in H; can
be computed from reachability o; in G; as follows: T;,(A) =
O'Z(A U Ag:‘:rt) - O’Z'(Afxt).

Proof: Suppose, in G;, x is reachable from A, but not
from A¢”'. This is true iff there exists a path from A to x in
G, avoiding o;(A$™"), which is equivalent to the path existing
in in H;. [ |

The next lemma shows explicitly how to get 6(A) from
T(A):

Lemma 2. 7(A) =6(A) — %25:1 o;(Asat).

Proof: This statement follows directly from Lemma|I]and

the definitions of 7, &. [ |

In Alg. [1 for each i, o;(A¢**) is computed in the con-

struction of H;; its size can be stored as instructed on line 5,

and used in the computation of O for line 14 in the greedy
algorithm’s stopping criterion.

b) Estimation of T(A), method C1: In this subsection,

we utilize methods developed by Cohen et al. [3]] to estimate

efficiently the average reachability problem 7(A) defined in

(E]). For convenience, we refer to this method of estimation in
the rest of the paper as method C'1.

Each pair (v,7) € V x {1,...,¢}, consisting of a node v
in graph H;, is assigned an independent, random rank value
ri? uniformly chosen on the interval [0, 1]. The reachability
sketch for a set A is defined as follows: let k£ be an integer,
and consider X 4 = bottom-k ({m(f)|(v,z') € Tl(A)}) , where
bottom-k(S) means to take the £ smallest values of the set
S, and REZ) is the set of nodes reachable from A in graph
H;. The threshold rank of a set A C V is then defined to be
YA = max X 4, if |XA| = k, and ya4 =1 if ‘XA‘ < k. The
estimator for 7(A) is then 7(A) = (k—1)/(fva)

If k = (2+c¢)(¢) "2 logn, the probability that this estimator
has error greater than e is at most 1/n¢ [3]. The bounds on k
needed for the proof of Theorem [ are determined by taking
e=aT.

c) Computation of X 4: First, we compute X, for all
u € V using Algorithm 2 of [3]] in time O(kfm), where m
is the maximum number of edges in any H;. This collection
{X, : u € V} is referred to as oracles.

Next, we discuss how to compute, for an arbitrary node
u, XAu{u} given that X4 has already been computed. This
computation will take time O(k) and is necessary for the
bicriteria algorithm: given that X, and X 4 are both sorted,
we compute X 4,,} by merging these two sets together until
the size of the new set reaches k values.

d) Estimation of T(A), method C2: Alternatively to
estimator C'1, we can estimate 7(A) from the oracles
{X, : u € V} in the following way. Let 7, be the
threshold rank as defined above for X,. Then 7(A4) =
%EzEUvGA Xo\{7e) maxueA\zelxu\{m} ~-. For convenience,
we refer to the estimator in the rest of the paper as estimator
C?2; it was originally introduced in [[17].

IV. EXPERIMENTAL EVALUATION

In this section, we demonstrate the scalability of STAB as
compared with the current state-of-the-art IMM algorithm [9]]
and with the greedy algorithm for TAP in Goyal et al. [11].
The methodology is described in Section comparison to
existing IM algorithms is in Section and investigation of
the effect of external influence on the performance of STAB
is in Section All experiments were run on an Intel(R)
Core(TM) i7-3770K CPU @ 4.0GHz CPU with 32 GB RAM.

A. Datasets and framework

We evaluated the following algorithms in our experiments.

1) CELF: the greedy algorithm by naive sampling of
Kempe et al. [1] can be modified to find a solution to TAP, as
shown in Goyal et al. [[11]. The modified algorithm performs
Monte Carlo sampling at each step to select the node with the
highest marginal gain into the seed set until the threshold T is
satisfied. The Cost-Effective Lazy Forward (CELF) approach
by Leskovec et al. [19] improves the running time of this
algorithm by reducing the number of evaluations required.



2) IMM: The IMM algorithm [9] is the current state-of-
the-art algorithm to solve the IM problem, where the number
of seeds k is input. Since TAP asks to minimize the number
of seeds, this algorithm cannot be applied directly. For the
purpose of comparison to our methods, we adapt the algorithm
by performing a binary search on k in the interval [1, T, where
T is the threshold given in TAP. At each stage of the search,
IMM utilizes the value of k£ in question until the minimum
k as estimated by IMM is found. Since binary search can
identify the minimum in at most log7 iterations, we chose
this approach over starting at £ = 1 and incrementing by one
until the minimum is found, which in the worst case would
require 1" iterations.

3) STAB: the STAB algorithm (Alg.[T) using estimators C'1
and C2, referred to as STAB-C1, STAB-C2 respectively. Since
these are greedy algorithms with an approximately submodular
function, we also use the CELF approach to reduce the number
of evaluations performed by STAB-C2; for STAB-CI1, we
found this optimization unnecessary.

Network topologies: We generated networks according to
the Erdos-Renyi (ER) and Barabasi-Albert (BA) models. For
ER random graphs, we used varying number of nodes n; the
independent probability that an edge exists is set as p = 2/n.
The BA model was used to generate scale-free synthesized
graphs; the exponent in the power law degree distribution was
set at —3 for all BA graphs.

The following topologies of real networks collected by
the Stanford Network Analysis Project [20] were utilized: 1)
Facebook, a section of the Facebook network, with n = 4039,
m = 88234; 2) Nethept, high energy physics collaboration
network, n = 15,229, m = 62,752; 3) Slashdot, social
network with n = 77,360, m = 828,161; 4) Youtube,
from the Youtube online social network, n = 1,134,890,
m = 2,987,624; and 5) Wikitalk, the Wikipedia talk (com-
munication) network, n = 2,394, 385, m = 5,021, 419.

a=0.1 a=0.2 a=0.3 | ipmax
ER 1000 1.0 0.4 0.2 1
BA 15000 6.4 1.6 0.9 0.1
Nethept 954 230 102 1
Slashdot 25 6.4 33 0.01
Youtube 385 91 41 0.01
Wikitalk 1704 274 122 0.01
TABLE I

ORACLE COMPUTATION TIME (SEC)

Models of internal and external influence: In all experi-
ments, we used the independent cascade model for internal
influence propagation: each edge e in the graph is assigned
a uniform probability ip, € [0, ipmas]. For synthesized net-
works, we usually set ip,,.. = 1; for real networks, we
observed that if ip,,q; = 1, then in most cases a single
node can activate a large fraction of the network (often more
than 33%). However, a large number of empirical studies have
confirmed that most activation events occur within a few hops
of a seed node [12]]-[14]]; these works indicate that ip,,q, = 1
is not a realistic parameter value for the IC model. Therefore,
we also ran experiments using lower values for ip,,qz-

For external influence, we adopted in all experiments the

model that each node u is activated externally independently
with uniformly chosen probability ep, € [0, epaz]. The set-
ting of epyq. 1S discussed in the context of each experiment.
Unless otherwise stated, we set 6 = 0.01, which we found
sufficient to return a solution within the guarantee provided in
Theorem [ in most cases with estimator C'1, and in all cases
with estimator C2.

B. Performance comparison and demonstration of scalability

In this section, we compare the performance of STAB-C1
and STAB-C2 to CELF and IMM as described above; we
experimented on the datasets listed in Table |l where the total
CPU time required to compute the oracles is shown. The
oracle computation is parallelizable, and in our experiments
we used 7 threads of computation. The oracles for each value
of o were computed once and stored, and thereafter when
running STAB the oracles were simply read from a file. The
running times we report for the various versions of STAB
do not include the oracle computation time unless otherwise
specified. Also in Table E] are the values of ip;, . used for each
dataset in this set of experiments. Since IMM and CELF do
not consider external influence, the experiments in this section
had no external influence; that is, ep,,q, = 0 for all datasets.
To evaluate the seed set returned by the algorithms we used
the average activation from 10000 independent Monte Carlo
samples.

We show typical results in Fig. [I] on the following four
datasets: ER 1000 (n = 1000), Nethept, Youtube, and Wik-
italk. The first row of Fig. |I| shows the expected activation,
normalized by the threshold value 7', of the seed set returned
by each algorithm plotted against 7. Thus, a value of 1
indicates the algorithm successfully achieved the threshold of
activation. The second row of the figure shows the running
time in minutes of each algorithm against 7', and the third row
shows the size of the seed set returned by each algorithm.

For the ER 1000 network results are shown in the first
column of Fig. |1} this dataset was the only one on which CELF
finished under the time limit of 60 minutes. We see that IMM
is consistently returning a larger seed set than STAB and CELF
and overshooting the threshold value in activation by as much
as a factor of 2.5. Thus, it has poor performance of minimizing
the size k of the seed set for TAP. This behavior appears to
be a result of IMM underestimating the influence of its seed
set internally. As expected, CELF performs very well in terms
of the size of the seed set and meeting the threshold 7', but
is running on a timescale larger than the other algorithms by
factor of at least 100 and as large as 10%. Notice that STAB-
C2 with a = 0.1 has virtually identical activation and size of
seed set to CELF, while running at a much faster speed; as
expected, the quality of solution of STAB deteriorates as « is
raised, but the running time decreases drastically. In addition,
notice that none of the versions of STAB seed too many nodes
and overshoot the threshold as IMM does; instead, STAB
errs on the side of seeding too few nodes and only partially
achieving the threshold 7' of activation. Finally, it is evident
that STAB-C1 runs faster than STAB-C2 and has a similar
amount of activation when the seed set required is relatively
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small. However, the larger the seed set required, the farther
is STAB-C1 from achieving the threshold 7" while STAB-C2
does not suffer from this drawback.

The results from Nethept are shown in the second column
of Fig. |I|; with n = 15,229, CELF was unable to run within
the time limit, and IMM was able to complete its binary
search only for 7' < 7000; for the higher threshold values,
IMM exceeded the 32 GB memory usage limit imposed in
our setup. On this network, STAB-C2 again exhibits the best
performance. Despite an initial decrease in activation relative
to 7' shown in Fig. [I(b)] the trend reverses around 7" = 8000
and seed set size 100 and the algorithm gets closer to achieving
the threshold. This behavior is explained by lower coefficient
of variation of estimator C2 as analyzed in [17]; the CV
can be lower than estimator C'1 by up to a factor of \/m,
where A is the seed set. In stark contrast, STAB-C1 was
unable to proceed past 7' = 8000 even for a = 0.1 because
the estimator C'1 appears to lose accuracy as the number of
seeds increases. By this mechanism, STAB-C1 had achieved
its maximum estimation of influence of any set and thereby
could not increase it before reaching an estimated activation
of T, for T' > 8000.

Next, the Youtube network is shown in the third column
of Fig.[l} As in the ER network, IMM is underestimating the
influence of its seed set and thereby picking too many seeds
and overshooting the threshold, as shown in Fig. IMM
picks nearly twice as many seed nodes as STAB-C1, a = 0.1,
as shown in Fig. [I(K)] In Fig. [I(g)] the scalability of STAB is
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demonstrated as the most precise version, STAB-C2 with oo =
0.1, runs faster than IMM by as much as a factor of 50. On
our largest dataset, the Wikitalk network, IMM again exceeded
32 GB memory after 7' = 6000; notice that the running time
of STAB in all cases is under 2 minutes and STAB-C2 with
o = 0.3 maintained activation greater than 0.67" while running
in less than 5 seconds, as shown in Fig. [[(h)] With inclusion
of the parallelizable and reusable oracle computation time of
122 seconds from Table |I} the total time taken by STAB-C2
is less than 3 minutes. The total running time for o = 0.1 of
STAB-C2 including the oracles at 7" = 10000 is less than 30
minutes.

Choice of a: The above discussion demonstrates that o =
0.1 provides the close activation to the threshold 7' while
maintaining high scalability. If faster running time is desired,
« may be increased, which results in a loss of accuracy shown
clearly in Fig. for € {0.1,0.2,0.3}. On the other hand,
if activation closer to 7' is required, smaller values of a may
be used at higher computational cost.

C. External influence

In this section, we analyze the performance of STAB when
external influence is present in the network; that is, when
ePmaz > 0. For this section, we considered a BA network
with 100,000 nodes, with a threshold of 17" = 1000, and the
Facebook network with 7' = 1500. Results on other topologies
were qualitatively similar. For all experiments in this section,
we set a = 0.1.



125 125

s%éf‘% “""‘\1—0\,__'_ si‘%
1 I 1 ]
0.75 \% 0.75 >§:M
05 05 A
0.25 0.25 \
0¥ g0t 0 0.005 0/ 0.01 03 004 005

0.02 0.
External prob.

(b) Facebook

.003
External prob.

(a) BA 100,000

Fig. 2. The effect of external influence on activation and size of seed set of
STAB-C2.

In 2(a)] we plot the expected activation (Act) of the seed
set returned by STAB-C2 normalized by the threshold 7, as
€Pmaz varies from O to 0.006. As in the previous section, the
expected activation of the returned seed set A is estimated by
independent Monte Carlo sampling. We also plot the expected
fraction of 1" activated by the external influence, along with
the size of the seed set returned by STAB-C2, normalized by
its maximum value. As the effect of external influence in the
network increases, the algorithm requires fewer seed nodes
to ensure the expected activation is within the specified error
tolerance to threshold 7.

In 2(b)] we show an analogous plot for the Facebook
network; interestingly, the size of the seed set chosen by
STAB-C2 nearly doubles as ep;,q, increase from 0 to 0.01,
before beginning to decrease to 0. This increase differs from
what we expected; it is counterintuitive that the algorithm
would require more seeds to reach the threshold as external
influence increases. One possible explanation for this effect
is that the external influence both decreases and distributes
the marginal gain more evenly among seed nodes, so that
the greedy algorithm has a more difficult time identifying the
best seed nodes, especially in the presence of the error of
estimation.

V. RELATED WORK

Kempe et al. introduced the triggering model in a seminal
work on the IM problem [1]], where they exhibited a Monte
Carlo greedy sampling algorithm that achieves 1 —1/e perfor-
mance ratio for IM; this algorithm, although it runs in polyno-
mial time, is very inefficient and cannot scale well. Since the
maximum coverage problem prohibits performance guarantee
better than 1 — 1/e + o(1) under standard assumptions, the
ratio for IM likely cannot be improved, but much work has
improved the scalability of the algorithm while retaining the
guarantee. Leskovec et al. [|19]] introduced the CELF method to
exploit submodularity and improve the running time. Reverse
Influence Sampling (RIS) was introduced in [4] to further
improve the greedy performance; algorithms using RIS include
(40, 191, 110}, [21], [22]]; the current state-of-the-art are the
SSA [21]] and the IMM algorithm [9] to which we compare
in this paper. Cohen et al. 3] introduced a methodology for a
highly scalable IM algorithm SKIM; in this work, we extend
this methodology to solve the TAP problem with the triggering
model and external influence.

As compared with IM, much less effort has been devoted
to scalable solutions to TAP while maintaining performance

guarantees; Goyal et al. [[11] studied the TAP problem with
monotonic and submodular models of influence propagation;
their bicriteria guarantees differ from ours, and provide no
method of efficient sampling required for scalability. Chen et
al. [23]] considered external influence in a viral marketing con-
text. However, their model of external influence is much less
general than ours. Furthermore, they restrict external influence
to only pass through seed consumers and have no discussion
of sampling, scalability, or the TAP problem. Nguyen et al.
[24], [25] studied methods to restrain propagation in social
networks.

VI. CONCLUSION

We establish equivalency between the triggering model
and generalized reachability, which allows incorporation of
external influence into our efficient sampling techniques. We
gave precise trade-off between accuracy and running time with
a bound on the number of samples required to solve TAP.
Our algorithm is highly scalable and outperforms adaptations
to TAP of the current state-of-the-art algorithm for the IM
problem.
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