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Abstract—The recent proliferation of increasingly capable Therefore, it is necessary to design an effectiveentive
mobile devices has given rise to mobile crowd sensing (MCS) mechanisnthat can achieve the maximum user participation.
systems that outsource the collection of sensory data to aawd Due to the paramount importance of stimulating participati

of participating workers that carry various mobile devices. . . . .
Aware of the paramount importance of effectively incentiviz- many incentive mechanisnis [7+-31] have been proposed by the

ing participa’[ion in such Systemsl the research Community has research Community. HOWeVer, most Of these aforementioned
proposed a wide variety of incentive mechanisms. However, past literature assume that there is only one data requester
differer)t from most of these existing mechanisms Which assie  who also serves as the platform in the MCS system. In
the existence of only one data requester, we consider MCS practice, however, there are usuaitwltiple data requesters

systems with multiple data requesterswhich are actually more competing for human resources. who usually outsource worke
common in practice. Specifically, our incentive mechanismsi peting u u » WhO usually outsou

based ondouble auction and is able to stimulate the participation '€cruiting to third-party platforms (e.g., Amazon Mechai
of both data requesters and workers. In real practice, the Turk [32]) that have already gathered a large number of

incentive mechanism is typically not an isolated module, bu workers. Therefore, in this paper, we focus on such MCS
interacts with the data aggregation mechanisnthat aggregates systems where three parties, including the data requesters

workers’ data. For this reason, we propose CENTURION, a |atf . loud-b d tral I
novel integrated framework for multi-requester MCS systems, a platform (i.e., a cloud-based central server), as well as a

consisting of the aforementioned incentive and data aggregion ~Ccrowd of participating workers co-exist, and aim to devedop
mechanism. CENTURION's incentive mechanism satisfiesuth- new incentive mechanism that can decide which worker serves
fulness individual rationality, computational efficiencyas well as which data requester at what price

guaranteeingnon-negative social welfareand its data aggregation In real practice, the sensory data provided by individual

mechanism generateshighly accurate aggregated results. The - . :
desirable properties of CENTURION are validated through bath ~ Workers are usually quite unreliable due to various factors

theoretical analysis and extensive simulations. (e.g., poor sensor quality, lack of sensor calibration,i-env
ronment noise). Hence, in order to cancel out the possible
l. INTRODUCTION errors from individual workers, it is highly necessary thtzé

Recent years have witnessed the rise of mobile crowd seRkatform utilizes adata aggregation mechanisto properly
ing (MCS), a newly-emerged sensing paradigm that outssur@dgregate their noisy and even conflicting data. In an MCS
the collection of sensory data to a crowd of participatingrss System, the incentive and the data aggregation mechanism
name|y (Crowd) workers, who usua”y carry increasing|y caire Usua”y not isolated from each other. In faCt, the data
pable mobile devices (e.g., smartphones, smartwatchest-snggregation mechanism typically interacts with the inivent
glasses) with a plethora of on-board sensors (e.g., gyp@scdnechanism, and thus, affects its design and performance.
camera, GPS, compass, accelerometer). Currently, a lakigglitively, if the platform aggregates workers’ data inivea
variety of MCS systems [11-6] have been deployed that covspys (e.g., voting and average) that treat all workers’ data
almost every aspect of our lives, including healthcare,rsm&qually, the incentive mechanism does not need to distshgui
transportation, environmental monitoring, and many ather them with respect to their reliability. However, a weighted
To perform the sensing tasks, the participating workefggregation method that puts higher weights on more reli-
typically consume their own resources such as computing alle workers is much more desirable, because it shifts the
communicating energy, and expose themselves to potenfifigregated results towards the data provided by the workers
privacy threats by sharing their personal data. For thismega With higher reliability. Accordingly, the incentive meatiam
participant would not be interested in participating in sems- Should also incorporate workers’ reliability, and selestsrk-
ing tasks, unless she receives a satisfying reward to comp@f$ that are more likely to provide reliable data.
sate her resource consumption and potential privacy breachTherefore, different from most of the aforementioned ex-
isting work [7+31], we propose CENTURI@INa novelin-
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consists of aveighted data aggregation mechani¢hat con- [1l. PRELIMINARIES

siders workers’ diverse reliability in the calculation dfet |, this section. we introduce the system overview, religbil
aggregated results, together with an incentive mechaisin 6| model, auction model, as well as the design objectives
selects workers who potentially will provide more reliable

data. Specifically, CENTURION’s incentive mechanism i&. System Overview
based ordouble auctior[33], which involves auctions among CENTURION is an MCS system framework consisting
not only the workers, but also the data requesters, and & agf 5 cloud-based platform, a set of participating workers,
to incentivize the participation of both data requesterd agenoted as)y — {wy,---,wy}, and a set of requesters,
workers. This paper makes the following contributions. denoted asRk = {ry,---,ry}. Each requester; € R has
» Different from existing work, we propose a novetegrated 3 sensing task; to be executed by the workers. The set of
frameworkfor multi-requesterMCS systems, called CEN- 5 requesters’ ‘tasks is denoted @s = {m1,--- ,7ar}. We
TURION, consisting of a data aggregation and an incentiyge specifically interested in the scenario wh@rés a set of
mechanism. Such an integrated design, which captures fyegifferentbinary classification taskthat require workers to
interactive effects between the two mechanisms, is Mugdtally decide the classes of the events or objects, andtrepo
more complicated and challenging than designing the the platform their local decisions (i.e., the labels oé th
separately. observed events or objects). Such MCS systems, collecting
« CENTURION's double auction-based incentive mechanispinary labels from the crowd, constitute a large portionhef t
is able to incentivize the participation of both data re¢esess currently deployed MCS systems (e.g., congestion detectio
and workers, and bears many desirable properties, ingudigystems that decide whether or not particular road segments
truthfulnessindividual rationality, computational efficiency are congested [2], geotagging campaigns that tag whether
as well asnon-negative social welfare bumps or potholes exist on specific segments of road surface
» The data aggregation mechanism of CENTURION takgg, [3]).
into consideration workers’ reliability, and calculatgighly Each taskr; has a true label; € {—1,+1}, unknown to
accurateaggregated results. the requesters, the platform, and the workers. If a wotker
In the rest of this paper, we first discuss the past literatuigechosen to execute task, she will provide to the platform
that are related to this work in Secti¢d I, and introduce labell; ;. We definel = [I; ;] € {-1,+1, L}V*M as the
the preliminaries in Section ]Il. Then, the design details anatrix containing all workers’ labels, wheig; = | means
CENTURION's data aggregation and incentive mechanism ateat taskr; is not executed by workev;. For every task;, the
described in Sectiop IV. In Secti¢nl V, we conduct extensiyslatform aggregates workers’ labels into an aggregatadtres
simulations to validate the desirable properties of CENTUenoted ad;, so as to cancel out the errors from individual
RION. Finally in Sectioi_ VI, we conclude this paper. workers. The framework of CENTURION is given in Figure
[, and we describe its workflow as follows.

II. RELATED WORK

Aware of the paramount importance of attracting worker | Requesters ?‘ 2 & & |
participation, the research community has recently devel- Dl I i et
oped various incentive mechanisms|[7—31] for MCS systems.
Among them, game-theoretic incentive mechanisms _[7-28],
which utilize either auction| [10-13, 1/8-+28] or other game-
theoretic models [&,/9, 14-17], have gained increasing popu
larity due to their ability to tackle workers’ selfish andag&rgic
behaviors. These mechanisms typically aim to maximize the
platform’s profit [14+-23] or social welfare |[9-413], and mini O N
mize the platform’s paymentl[7| B,124-27] or social cost [28] D Workers a3 B °8 2B - 48

Different from most of the aforementioned past literature @~ "~~~ """~ """"7""TTTTTTTTToTToTTooToC ’
which assume that there exists only one data requester, g 1. Framework of CENTURION (where circled numbers repré the
propose a novel incentive mechanism for MCS systems withler of the events).
multiple data requesterthat compete for human resources. IR Incentive Mechanism. Firstly, in the double auction-based
fact, there do exist several prior work [19, 22, 28] desigrim incentive mechanism, each requester submits to the
centive mechanisms for the multi-requester scenario. ewe platform a sensing request containing the sensing task
they do not provide anjoint designof the data aggregation to be executed (stefD), and a bida;, the amount she is
and the incentive mechanism as in this paper, which iswilling to pay if the task is executed (sté®). Then, the
much more challenging than designing the two mechanismglatform announces the set of sensing teEks the workers
as isolated modules. Moreover, although similar integrate (step®). After receiving the task set, every workey sends
designs that consider the two mechanisms are proposed ito the platform the set of tasks she wants to execute, denoted
some existing work| [25, 26], as previously mentioned, theyasI'; C 7, as well as a bia;, which is her bidding price
assume that only one data requester exists in the MCS systenfor executing them (stef®). Based on received bids, the
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platform determines the set of winning requesisfs the
set of winning workersSyy, as well as the payment;
charged from every winning requester and the payment

is willing to pay for the execution of her task. Each worker
w; 1S interested in executing one subset of the tasks, denoted
asI'; C T, and bids to the platformy;, her bidding price for

fgi _pa|d 0 evtery’vtvmll:mg Workteiwl (Sth:j@)- dNtot;[e tht?]t executing these tasks. Her actual sensing cost for exerutin
0sing requesters’ tasks are not executed, and thus, ey {0 qys in I'; is denoted as;. Both the requesters’ values

not submit any payment. Similarly, losing workers do noatlnd workers' costs are unknown to the platform.
receive any payment, as they do not execute any task. Then, we define a requester’s and worker’s utility, as well
« Data Aggregation Mechanism.Next, the platform collects as the platform’s profit in DefinitioR13] 4, and 5

the labels submitted by the winning workers (st@), - ) . e il
calculates the aggregated results, and sends them to efinition 3 (Requester’s Utility) A requesterr;’s utility is

winning requesters (ste@). efined as
« Finally, the platform charges; from winning requester; . ) vi—pj if r; € Sg 2
(step®), and pays}’ to winning workerw; (step@). U= 0, otherwise 2)
We denote the requesters’ and workers’ bid profileaas o - o _
(a1,--- ,ap) andb = (by,--- ,by), respectively. Moreover, Definition 4 (Worker's Utility). A workerw;’s utility is defined
the requesters’ and workers’ payment profile is denoted @3 w it w e S
p" = (pi, - ,ph,) andp® = (pi’,--- ,pY,), respectively. D 3)
0, otherwise

B. Reliability Level Model L , _ _ .
Before workerw; executes task;, her label about this task geeffilrr:ét:jogSS (Platform's Profit) The profit of the platform is

can be regarded as a random variablg. Then, we define - w
the reliability level of a worker in Definitior{ L. to = Z Py = Z P
Definition 1 (Reliability Level) A workerw;'’s reliability level
9; ; about taskr; is defined as the probability that she provides Based on Definitiofl3.]4, arid 5, we define the social welfare

(4)

Jir;ESR i:w; ESw

a correct label about this task, i.e., of the MCS system in Definitionl 6.
Definition 6 (Social Welfare) The social welfare of the MCS
0i = PriLi; =1;] € [0,1]. (1) system is defined as
Moreover, we dejz\;gtf the workers’ reliability level matriz a Usocial = o + Z ul Z u
0= [oi’j] € [O’ 1] : Qw; EW Jir;€ER
We assume that the platform knows the reliability level
matrix © a priori, and maintains a historical record of it. = Z Y= Z Ci ()

In practice, the platform could obtai® through various Jirj€Sr wwi€Sw

approaches. For example, as, in many scenarios, workets tenClearly, the social welfare is the sum of the platform’s profi
to have similar reliability levels for similar tasks, theafborm and all requesters’ and workers’ utilities.

could assign to workers some tasks with known labels, and LBe Desian Obiecti
workers’ labels about these tasks to estimate their rditiabi — esign Lbjectives

levels for similar tasks as i [34]. In cases where grounthtru !N this paper, we aim to ensure that CENTURION bears the
labels are not availabl®, can still be effectively inferred from following advantageous properties.

workers’ characteristics (e.g., the prices of a workerissses, Since the requesters are strategic and selfish in our model, i
a worker's experience and reputation for similar taskshgisi i Possible that any requestersubmits a bidz; that deviates
the algorithms proposed in [35], or estimated using theltabdrom v; (i.e., her value for task;). Similarly, any workeruw;

previously submitted by workers about similar tasks by tH8ight also submit a bid; that differs frome; (i.e., her cost

methods in[[36] 37]. for executing all tasks il’;). Thus, one of our objectives is
to design aruthful incentive mechanism defined in Definition
C. Auction Model 7

In this paper, we consider the scenario where both reqeesteefinition 7 (Truthfulness) A MELON double auction is
and workers arstrategicandselfishthat aim to maximize their truthful if and only if biddingy; andc; is the dominant strategy
own utilities. Since CENTURION involves auctions amongor each requester; and workerw;, i.e., biddingv; and c;
not only the workers, but also the requesters, we utilize tigaximizes, respectively, the utility of each requesteand
following double auction for_Milti-rEquester mobie crOvd  worker w;, regardless of other requesters’ and workers’ bids.
seNsing (MELON double auctionformally defined in Defi- By definition[4, we aim to ensure that both requesters and
nition[2, as the incentive mechanism. workers bid truthfully to the platform. Apart from truthfugss,
Definition 2 (MELON Double Auction) In a double auction another desirable property that we aim to achievadsvidual
for multi-requester mobile crowd sensing (MELON doubleationality defined in DefinitioriB.
auction), each requester; obtains a valuev;, if her task Definition 8 (Individual Rationality) A MELON double auc-
7; is executed, and bids to the platforam, the amount she tion is individual rational if and only if no requesters or



workers receive negative utilities, i.e., we havg> 0, and  Algorithm 1: Data Aggregation Mechanism
u’ > 0, for every requester; and workerw;, respectively. Input: 8, 1, T, Sr, Sw:

Individual rationality is a crucial property to stimulateet Output: {ijm €Sr};
participation of both requesters and workers, becauseitres 1 foreach j s.t.r; € Sg do
that the charge to a requester is no larger than her value, amdL = Zi:wiESW,TjEFi (20:.5 — 1) i j;
a worker’s sensing cost is also totally compensated. As men- . {lA'|T' € Srl;
tioned in Sectior 1lI-A, CENTURION aggregates workers! IT = ORI
labels to ensure that the aggregated results have satisfach winner by the incentive mechanism. The aggregated result
accuracy, which is mathematically defined in Definitidn 9. lAj for each winning requester;’s task 7; is calculated (line
Definition 9 (8;-Accuracy) A task; is executed with3;- [IH2) using Equation{6) with the weight
accuracy if and only ifPriL; # I;] < 3;, where3; € (0,1),
and Ej denotes the random variable representing the aggre-

gated result for task;. By Equation[[Y), we have tha; ;, i.e., workerw;’s weight

By Definition [3, 3;-accuracy ensures that the aggregatqgr taskr;, increases wittt; ;, which conforms to our intuition
result equals to the true label with high probability. Ndtett  that the higher the probability that workef provides a correct
for every taskr;, 3; is a parameter chosen by the platform, andhe| about task;, the more her label; ; should be counted
a smallerj; implies a stronger requirement for the accuracyn the calculation of the aggregated result about this task.

In short, our objectives are to ensure that the proposgg provide the formal analysis about the data aggregation
CENTURION framework provides satisfactaagcuracy guar- mechanism in Section IV-A2.

antee for the aggregated results of all executed tasks, a%i Analysis
incentivizes the participation of both requesters and exsk
in a truthful andindividual rational manner.

)\i,j = 291-73- — 1, V’I’j S SR, w; € Sw, Tj S Fi. (7)

In Theoren(1l, we prove that the aggregated results calcu-
lated by Algorithml has desirable accuracy guarantee.

IV. DESIGNDETAILS Theorem 1. For each executed task;, the data aggregation
In this section, we present the design details of the ingentimechanism give_n_ in Algorithid 1 minimizes th(_a upper bound of
and data aggregation mechanism of CENTURION. the error probability of the aggregated result, i.@1L; # 1]

(wherer is the random variable representing the aggregated

A. Data Aggregation Mechanism result for taskr; mentioned in DefinitioR9), and satisfies that

1) Proposed Mechanism 99 12
Although the data aggregation mechanism follows the in'Pr[Ej £1,] < exp (_ 2iwesyw,mer: (20ig —1) ) ®)

centive mechanism in CENTURION's workflow, we introduce 2

it first, as it affects the design of the incentive mechanism. , ,
In order to capture the effect of workers’ diverse reliapili ~700f- We denoteX; ; as the random variable for worker;'s

on the calculation of the aggregated results, CENTURIOW€igNted label about task;, i.e., X;; = Ai;l; with proba-

adopts the followingweighted aggregation method@hat is, bility 91'33" and.X; ; = —A;;1; with probability1 —¢; ;. Then,

the aggregated result for every executed task is calculated W& defineX; = DivuneSw,mer; Xijr and tus,E[X;] =

E[Xi ;] = 2 iwiesw,rer, litii(20i5 — 1),

as iw; ESw, T €D
~ . The error probability of the aggregated result can be calcu-
I; = sign Yo gl ), (6) lated as AL, # I;] = PHX; < 0|l; = 1]PHl; = 1]+ P{X; >
i:w; €ESw,T; €L

0]l; = —1]Pri; = —1], and based on the Chernoff-Hoeffding
where); ; > 0 is workerw;’s weight on taskr;. Furthermore, bound, we have
the function sigiw) equals to+1, if > 0, and—1 otherwise. PIX, < 0|l; = 1] = PHE[X;] — X; > E[X,]|l; = 1]
Intuitively, higher weights should be assigned to workers S(ELX |1, = 1])?
who are more likely to submit correct labels, which makes the < exp <— e T 2)
aggregated results closer to the labels provided by more rel Yiwiesy myer; (Ai)
able workers. In fact, many state-of-the-art literaturé, [37] (Zi;wiggwﬁepi Ai,j(205,5 — 1))2
utilize such weighted aggregation method to aggregate work - <_ >
ers’ data. As the weight; ;'s highly affect the accuracy of the )
aggregated results, we propose, in the following Algorifim  Then, we define the vectdy; = [X; ;] for every executed
the data aggregation mechanism of CENTURION. task 7;, which contains every\; ; such thatw; < S, and
Algorithm [ takes as inputs the reliability level matr 7; € I'i- Therefore, minimizing the upper bound of[Rf <
the workers’ label matrid, the profile of workers’ interested 0l; = 1] is equivalent to finding the vectar; that maximizes
task sets, denoted &= (T';,- - -, I'y), the winning requester the functionf(A;) defined as
setSg, and the winning worker sefyy. Note that a largé; ; 5
indicates that a workew; has a high reliability level for task (X iwiesmw,myer; i (2055 — 1))

7;, and any workerw; with 0; ; < 0.5 will not be selected as f) = D iiwi Sy ,ryel, A7

2
2 Zi:wiESW,Tj el )\ZJ




Based on the Cauchy-Schwarz inequality, we have Corollary[d gives us a sufficient condition, represented by
Inequality [11), that the set of winning workefsy, selected

(S e er XS es oo (200, —1)?) Py the incentive mechanism (proposed in SediionV-B) stioul
fay) < ~EEEIWITE L A A satisfy so as to achiev@;-accuracy for each executed task
Zi:wiesw,rj €Ty /\i,j . .
_ Z (20 1)? B. Incentive Mechanism
- 4,7 T ’

Now, we introduce the design details of CENTURION’s
incentive mechanism, including its mathematical formialat
the hardness proof of the formulated integer program, the
Y iwseSyporyer; (2005 — 1)2> © proposed mechanism, as well as the corresponding analysis.

irw; ESyy,T; €T

and equality is achieved if and only N; ; o 26; ; — 1. Thus,

2 1) Mathematical Formulation
o ] As mentioned in Sectioh TIAC, CENTURION's incentive
Similarly, from the Chernoff-Hoeffding bound, we have  mechanism is based on the MELON double auction defined
Aij (20,5 —1))? in Definition[d. In this paper, we aim to design a MELON
)- double auction thatmaximizes the social welfgrewhile
guaranteeingsatisfactory data aggregation accuracyhe

PrX; <0[i; =1] <exp <—

(zi:wi€$W,Tj€Fi

PIX; > 0[l; = —1] < exp <—
2Ei:wiesw,7—j ery A?,j

_ The upper bound of PX; > 0|i; = —1] is also minimized formal mathematical formulation of its winner selection
if and only if A; ; o 26; ; — 1 based on the Cauchy-Schwargroblem is provided in the followin/ELON double auction
inequality, and we have social welfare maximization (MELON-SWM) problem.

i, er, (2055 — 1)
PX; > 0]l; = —1] < exp <_ LiswieSw 7, ZFI( g~ ) (10) MELON-SWM Problem:
1y — biz 13
From Inequality [(B) and[(10), we have that whap; = maxj;j;Ta]y] M;W ! 13)

20, ; — 1, the upper bound of PE; # [;] is minimized, and 1
s.t. Z (201',]‘ — 1)2562‘ >2ln (—)yj, vVr; €T (14)

~ LTI . . 291 ] 1 2 diws T . Bj
Pr[Lj 7& l]] S exp _ Zz.wT,ESW,TJEI‘Z( »J ) : fw; EW, T €D
2 Ti,Yj € {0, 1}7 Yw; € W, Tj € T (15)
which exactly proves Theorei 1. O Constants.The MELON-SWM problem takes as inputs the

task setT, the worker seWV, the requesters’ and workers’ bid
By Theorenll, we have that the data aggregation mechgofile a andb, the profile of workers’ interested task sdts
nism proposed in Algorithri]1 upper bounds the error probghe workers’ reliability level matrix@, and thep vector.
bility Pr[L; # ;] by exp ( — %Zi:wiesw,rjeri(29i,j —-1)?), Variables. On one hand, the MELON-SWM problem has a

which in fact is the minimum upper bound of this probabilityvector of M binary variables, denoted as= (y1, - - - , yar).
Next, we derive Corollarf]1, which is directly utilized inou Any y; = 1 indicates that task; will be executed, and thus,
design of the incentive mechanism in Section IV-B. requester-; is a winning requester (i.er; € Sg), whereas
Corollary 1. For every executed task, the data aggregation y; = 0 meansr; ¢ Sg. On the other hand, the problem
mechanism proposed in AlgoritHrh 1 satisfies that if has another vector ofV binary variables, denoted as =

1 (z1,---,xn), wherez; = 1 indicates that workernv; is a

Z (20;; —1)* > 2In ([3—)’ (11) Wwinning worker (i.e.w; € Sy), andz; = 0 meansw; ¢ Sy.
J

iw; €Sy, €Ty Objective function. The objective function satisfies that
Zj_:T'GT ajyj_Zi:wiGW blxl = Zj:rj cSr _a’.j_Zi:wiGS.W. l_)i’
which is exactly the social welfare defined in Definitibh 6
based on the requesters’ and workers’ bids.

Constraints. For each taskr;, Constraint [(I4) naturally

Proof. By setting the upper bound of FEI £ 1;] given in holds, ify; = 0. Wheny; = 1, it is equivalent to Inequality

thenPrL; # I;] < B;, i.e., B;-accuracy is satisfied for this
task 7;, where ; € (0,1) is a platform chosen parameter.
Moreover, we defin@ as the vector(S1,-- -, Sm).

Theorentll to be no greater than ¢ (0, 1), we have (1) given in Corollaryll, which specifies the condition that
g e (0.1) the set of selected winning worket$,, should satisfy in
Zi:wieswﬂepi (205 —1)° <5 order to guaranteg;-accuracy for taskr;. To simplify the

expi = 2 < Bi, presentation, we introduce the following notations, namel

o _ ¢ij = (205 — 1% a = [ai5] € [0,1]"M, Q; = 2In(5-),
which is equivalent to andQ = [Q,] € [0, +o0)M*!, Thus, Constraini{14) can be

simplified as
> (@20;,-1)?>2n (Bi) (12) P
i:w; €ESw,T; €L J Z Qi,5%q > ijja VTJ‘ eT. (16)
Hence, together with Theordm 1, we have that Inequality (12) Hwi €W, €L

indicates that F{Ej # 1] < B;. O Besides, we say a task is coveredby a solution, ify; = 1.



o The 2nd subsek; containsm tasksr,--- ,7,,. Eachr, €
FE5 belongs to all sets corresponding®p andCy1, i.e., 7%
belongs to all set$I'(Cy, a)|a € A} U{T(Cry1, )| €
A1} with the subscripts being moduta. The Q,, value
of each suchr, is set a2, and its valuey;, is set asyY’.

« The 3rd subsef’; contains a task(Cj) for each clause
Ck, and7(Cy) belongs to sel'(Cy, «) for eacha € Ay.

2) Hardness Proof
We prove the NP-hardness of the MELON-SWM problem
by performing a polynomial-time reduction from the 3SAT(5)
problem which is formally defined in Definitidn 1LO.
Definition 10 (3SAT(5) Problem) In a 3SAT(5) problem, we
are given a se® = {z1,--- , z,} of n Boolean variables, and
a collectionCy, - - - , C,, of m clauses. Each clause is an OR . )
of exactly three literals, and every literal is either a \aiie The Q; value of the taskr; corresponding tar(Cy) is set

of O or its negation. Moreover, every variable participates in as 1, and its value; is -set aS_Z'
exactly 5 clauses. Therefore; = 2. Given some constant ® The 4th subsek’, contains a single task’, whoseQ; value

0 < e < 1, a 3SAT(5) instancey is a Yes-Instance if is set adl and valuey; is set asX. The taskr* only belongs
there is an assignment to the variables @f satisfying all

to setl’y.
clauses, whereas it is a No-Instance (with respeck)oif This finishes the description of the reduction. Clearlyegiv
every assignment to the variables satisfies at nibst ¢)m

a 3SAT(5) instancep, we can construct an instance of the

clauses. An algorithmd distinguishes between the Yes- anlY{ELON-SWM problem in time polynomial im. O
No-instances of the problem, if, given a Yes-Instancetitms  \We now analyze the optimal social welfare for an instance
a “YES” answer, and given a No-Instance it returns a “NO”of the MELON-SWM problem that corresponds to a 3SAT(5)
answer. instancep, wheny is a Yes- or No-Instance. Note that the

Regarding the hardness of the 3SAT(5) problem, we intrésllowing analysis uses the same reduction as in Thegiem 2.
duce without proof the following well-known Lemrfia 1, whichTheorem 3. If the 3SAT(5) instance is a Yes-Instance, then
is a consequence of the PCP theorem [38]. there is a solution to the resulting instance of the MELON-
Lemma 1. There is some constari < ¢ < 1, such SWM problem whose social welfare . If ¢ is a No-
that distinguishing between the Yes- and No-instanceseof tnstance, then any solution has social welfare at ntost

3SAT(5) problem, defined with respectetds NP-complete. Proof. Let ¢ be a Yes-Instance, andlbe an assignment to the
Next, we introduce Theorefd 2 afd 3 that will be ut'“zeQI/ariables satisfying all clauses. We construct a solufioio
to prove the NP-hardness of the MELON-SWM problem. the MELON-SWM problem. Firstly, we adfl, to S'. Next,

The.orem 2. Any 3SAT(5) instance is polynomial-time rezy. oach clause,, we add toS’ the unique sel(Cy, ),
ducible to an instance of the MELON-SWM problem. wherea is the assignment consistent with Then|S’| = m,

Proof. The reduction goes as follows. Assume there is &nd the total cost of all sets {3+ Z +3)m. We now analyze

3SAT(5) instancey on n variables andn clauses. We define the number of tasks covered B, and their values. Clearly,

3 parametersX = &% (0 < ¢ < 1), Y = mnX, and 7* is covered byS’, and it contrlbut_es?( to the solution valge.

Z = mnY. The exact values df andZ are not important. We ¢ For each claus€’, € ¢, the unique task (Cy) € Es is

just need to ensurg > Y > X. We construct an instance of covered. Thus, all tasks ifi; are covered, and overall they

the MELON-SWM problem corresponding te, by defining ~ contribute valuenZ to the solution.

the task sef’, and the profile of workers’ interested task sets Consider some;, € E,. S’ contains one set corresponding

T. to C, andCy1, respectively. Since;, belongs to both these
Out of the 8 possible assignments to the variables of soméets, and it€);; is 2, it is covered. Thus, all tasks i, are

clauseC; € ¢, exactly one does not satisfy,.. Let A, be covered, and they contribute valueY to the solution.

the set of the remaining 7 assignments. We define a seteo€onsider some variablg, € O, and lety, € {T', F'} be the

tasksI'(Cy, «) for each clause”;, and assignment € Ay, assignment ta;, underA. If Cy, is any clause containing,

let T' = [[(Cy, )] for each clause&”), € ¢ and assignment andI'(Cy,«) is the set that belongs 1§, thena gives the

a € Ay, set theg; ; value of each workew; and taskr; € T'; assignmenty;, to z,. Thus, for all five clauses containing

asg;; = 1, and set her bid als =3+ Y + Z. We also create  z, the corresponding sets chosen&bcontain7(z, vx),

a dummy workerwg, with ¢ = 1, by = 0, andT'y being and this task is covered. So the total number of taskg;of

her interested task set. We start with all 5¢C%, «)'s being ~ covered byS’ is n. Each such task contributes value 5, and

empty, gradually define the tasks, and specify which sets the the total value contributed by the tasksih is 5n = 3m.

belong to. The task séf consists of 4 subsets. Therefore, the overall social welfare of this solutionXis+
« The 1st subsef; contains a task-(z;,~) for each vari- mZ +mY +3m — (Z+Y +3)m = X.
able z; € O and assignmenty € {T,F} to this vari- Assume now thatp is a No-Instance, and le$’ be any

able. 7(z;,v) belongs to each sef(Cy,a), such thatz; solution with positive social welfare. We can assume that
participates inCj, and the assignment to the vari- I'o € &', and taskr* is covered byS’. We then introduce
ables of Cj, gives assignmenty to z;. The Q; value the following observations, whose proofs are provided i th
of the taskr; corresponding tor(z;,v) is set as5 — appendices.

the number of the clauses containiggand the value; of Observation 1. For every clause”, of ¢, at most one of the
this task is set as. sets{['(Cy, o)|a € Ax} belongs toS’, and |S'| = m.



Observation 2. For every variablez;, € O, at most one of ratio, and propose the following MELON double auction that
the two tasks(zx, T) and 7(zx, F) is covered byS'. aims to ensur@on-negative social welfarénstead. Its winner

We say that a variable, € O is bad if neitherr(z;,T) selection algorithm is given in the following Algorithin 2.
nor 7(zy, F') is covered byS"; otherwise it is good. We next “Ajgorithm 2: MELON Double Auction Winner Selection
show that only a small number of the variables are bad. nout- 7 ROV L. ab -

. . put: 7, R, W, T, a, b, q, Q;
Observation 3. There are at mosty; bad variables. output: Sg, Sw, C;

Then, we construct the following assignment to the varimble // Initialization

of O. If variable z;, € O is good, then there is a unique valuel Sr < 0, Sw < 0;

v € {T, F}, such that task-(z, ) is covered byS’. We 2/C/<_F||:Cr:1(d7_ar fqefg)l.bl e cover

then assigny; the valueyy. If 2, is bad, we assign it any value 3 foreach j st.7; € 7 do

arbitrarily. We now claim that the above assignment satisfiet | ¢; « {wilw; € C,7; € Tu};

more than(1 — e)m clauses. We say that a clause is bad if it /; wgjn | oop

contains a bad variable, and it is good otherwise. Sincesthes while max;.,,er (aj — S iwsec b;) >0 do
are at most; bad variables, and each \_/ariable participateg | ;* + arg max;.,,er (a; — ii:wieo );
in 5 clauses, the number of bad clauses is at st 32, 7 | <. sSp U {rje}: !
So there are more thafl — ¢)m good clauses. Lef; bea 8 | R+ R\ {rj};

good clause, antl(C;, «) be the set corresponding € that 9 | Sw < SwUC;+;

belongs toS’. Thena is an assignment to the variables of? | foreachj s.t.ri € R do

C; that satisfies”;, and each variable participating @ was L R A

assigned a value consistent with So clause’; is satisfied. 12 return Sz, Syy;

To conclude, we have assumed thatis a No-Instance, - -
and showed that, if the MELON-SWM problem has a solution Algorithm [2 takes as inputs the task st the requester
with non-negative social welfare, there is an assignmetiigo S€t R, the worker sedV, t,he profile of Yvo_rkers’ interested
variables ofy satisfying more thar{l — e)m of its clauses, @k setsl’, the requesters’ and workers’ bid proféeandb,
which is impossible for a No-Instance. Thereforeifis a the a matrix, as well as theQ vector. Firstly, it initializes
No-Instance, every solution has social welfare at nfostc]  the winning requester and worker set fagline [). Then, it

calculates deasible coverdenoted byC, containing the set

Next, we describe Theorei 4 that states Mfe-hardness of workers that make Constraifi {16) feasible for each task
andinapproximabilityof the MELON-SWM problem. 7; given that eachy; = 1, by calling another algorithnFC
Theorem 4. The MELON-SWM problem is NP-hard, and fowhich takes the task séf, the profile of workers’ interested
any factor¢, there is no efficienp-approximation algorithm task setd, the q matrix, and theQ vector as inputs (ling]2).
to the MELON-SWM problem. Algorithm FC can be easily implemented in time polynomial

Proof. Based on Theorerl 2, there exists a reduction fro'nnl M and N. For example,FC could greedily select each

any 3SAT(5) problem instance to an instanceZ(y) of the worker w; into the feasible cover in a decreasing order of

MELON-SWM problem. From Theoreid 3, we have that thi!® Valued_;,, e, ¢, until all constraints are satisfied. The

optimal solution taZ(p) also gives a solution te. That is, if computatlonaf complexity of SUchC is O(N). We assume

the optimal social welfare of(y) is positive, theny is a Yes- thatFC adopts such a greedy approach in the rest of this paper.

. o . Note that the specific choice & is not important, as long as
Instance; otherwisey is a No-Instance. Together with Lemma : : Lo
returns a feasible cover in polynomial time. Next, for leac

: |
[?oigﬂgg :Egt lt\th;-T\;IJIrEnIE)CI)eIEﬁgW:/I cgrct)gfeﬁ]sérl\(g_r? a:(r)db lem, V}}gskfj, Algorithm[2 chooses from the feasible cover the set

In fact, Theoreni®2 anfll3 give an inapproximability resu f workersC; whose interested task sets contain this task (line

about the MELON-SWM, as well. Suppose there is an effici ). . . .
factor¢ approximation algorithmA4 for the MELON-SWM Based onC, the main loop (line15-11) of the algorlthm.
problem. We can use it to distinguish Yes- and No-instanc%gleas the set qf winning requesters and_ workers that give
of the 3SAT(5) problem om >> ¢ variables. Ify is a Yes- hon-negative social W_elfare. It executes ur_ﬁdxj"”ieR (aj._
Instance, then the algorithm has to return a solution withi:wi€C; bi)’ the maximum marginal social welfaref in-

positve socal welre Io7(). and ¢ 1s 3 Noinstance, L1004 et edveser snd e s o v bl
then any solution has social welfare at most 0. So algorithr% Pe Y g req ) Y
egative (line[b). In each iteration of the main loop, the

A distinguishes the Yes- and the No-instances of 3SAT( Igorithm finds first the index;* of the requester;- that

contradicting Lemmal1. provides themaximum marginal social welfar@ine [G). Next,
3) Proposed Mechanism it includes r;- into the winning requester sefz (line [7),
Theoreni ¥ not only shows the NP-hardness of the MELONMemovesr;- from the requester sé® (line [8), and includes
SWM problem, but also indicates that there is no efficiertl workers inC;- into the winning worker se&y, (line [9).
algorithm with a guaranteed approximation ratio for it. ire The last step of the main loop is to remove all workerg jn
fore, we relax the requirement of provable approximatidinom C; for each task; (line[10). Finally, Algorithni2 returns




the winning requester and worker s8¢ andSyy (line[12). Cj, such thatw; belongs toC;, and r; belongs toSy, the
Next, we present the pricing algorithm of the MELONRIgorithm calculates the maximum big . for worker w;
double auction in Algorithri]3. to be selected as a winner at this point (lind[12-18). The
- - — calculation firstly sorts requesters in the decreasing rorde
Algorithm 3: MELON Double Auction Pricing of their marginal social welfare, i.ea; — > .., cc b (line
gﬁgutszzp)fuv ' a b, q Q, Sr, Sw; M3), and finds the indexf of the first the requester in

/7 Initialization this order such thatv; does not belong t&}; (line [14). If
1p” « 0, p¥ « O; ry IS a winning requester i}, then b; ;, should satisfy
4/ Prki] cing for Widnni ng requesters ap — (the% b + bix) = ay — thec} b, which is

g Ore?tj:n jAIZﬁri%rié%n%\{rj} and W; equivalent tob; x = ai — the% b — (ay - th,eC} bn);

4 Sk +winning requester set when liné 3 stops; otherwise,b; , should satisfya;, — (the% b + bi,k) =0,

5 foreafhk‘ S.t.r § Sy do _ which is equivalent tob; , = ay — the% by. Then, the

6 L pj « min {pj, Zwiecg bi+ak =3 ey bi}; maximum value among thesg,,’'s are chosen as the payment

7 | if C; =0 then p? (line [I8E18). Finally, AlgorithnB returns the requesters’

8 | pj « min{p},0}; and workers’ payment profilp” andp® (line[19).

/7 Prici R 4) Analysis of the Proposed Mechanism
ricing for wi nning workers . . . .

9 foreachi s.t.w; € Sy do In this section, we prove several desirable properties of
10 run Algorithm2 onR and W \ {w;}; our MELON double auction, described in Algorithmh 2 and
11 | Sk «winning requester set when lifig]10 stops; [B. Firstly, we show its truthfulness in Theoréin 5.

12 | foreachk s.t.w; € Cj andry € Sy do , Theorem 5. The proposed MELON double auction is truthful.
13 sort requesters according to the decreasing order of

aj — Zi:wiec} bi; Proof. We prove the truthfulness of the MELON double auc-
14 [ «+index of the first requester with; ¢ C}; tion by showing that it satisfies the propertiesnadnotonicity
15 if ry € Sk then andcritical payment
16 Py " « Monotonicity. The algorithmFC called by Algorithm[2

max {pi’, ek =32, cc; bh_(af_zwhec; bn) }i is independent of the requesters’ and workers’ bids, and

1 else N winners are selected based on a decreasing order of the value
18 | Pt e max{pl,ar =32, cep bn}; aj = Y imec, bi- Thus, if a requester; wins by bidding

aj, she will also win the auction by bidding amy; > a;.
Similarly, if a workerw; wins by biddingb;, she will win
Apart from the same inputs to Algorithid 2, Algorithih 3 the auction, as well, if her bid takes any vakfe< b;.
also takes as inputs the winning requester and worker se€ritical payment. Algorithm[3 in fact pays every winning
Sz and Sy, outputted by Algorithmi 2. Firstly, Algorithri]3 ~ requester and worker the infimum and supremum of her bid,
initializes the requesters’ and workers’ payment profilea®  respectively, that can make her a winner.
vectors (line[]l). Then, it calculates the paymefitcharged ~ As proved in [39], these two properties make an auction
from each winning requester (liné[2-8). For eézqhe Sr, truthful, i.e., each requester maximizes her utility by bid-
Algorithm[2 is executed on the worker 8t and requester set ding v;, and each workew; maximizes her utility by bidding
R except requester; (line[3). Next, it setsS}, as the winning Ci- Therefore, the MELON double auction is truthful. O
requester set when lirid 3 stops (line 4). For eagke S,
Algorithm [3 finds the minimum bid; ;, for requester-; to
replacer) as the winner. To achieve thig, ; should satisfy
ajk — ZwiGC; b; = aj, — Zwiec; b;, which is equivalent to
ajp = cor b +ap — ¢/ b;. Note thatCy,--- ,C),
dgﬁote%zlggt&, o ljcz\;\}vﬁeerclkthe specific re(;ueste;g I:é Proof. By Definition[3 and, losers of the MELON double
selected int@%. If C/ is not empty, the minimum value amon uction receive zero utilities. From Theorgin 5, every wigni
thesea, ,’s is chosen as the payment (line[5iB); otherwise, requesterr; bids v;, and every winning worketv; bids ¢;

it is further compared with (line [8), since requester; to the platform. Moreover, they are paid, respectively, the
could win, in this case, as long as her bid is non—negat'ive.inﬁmum and supremum of the bid for them to win the auction.

. . .~ . Therefore, it is guaranteed that all requesters and workers

Next, AIgo_rlth denvgs _the pay'f”epf to each WINNING o cajve non-negative utilities, and thus the proposed MELO
worker w; (line [Q{I8). Similar to line[B, Algorithni]2 is double auction is individual rational. 0
executed on the requester st and worker setV except
worker w; (line [I0), andSy, is set as the winning requester In Theoreniy, we prove that the proposed MELON double
set when lind_10 stops (life111). In the rest of the algorithrauction has a polynomial-time computational complexity.
we also use&’q, --- ,Cj, to denote the set§;,--- ,Cy; when Theorem 7. The computational complexity of the proposed
the specific requester; is selected intaSy. For each set MELON double auction i€)(M3N + M?N?).

19 return p", p¥;

Next, we show that the proposed MELON double auction
satisfies individual rationality in Theorelnh 6.
Theorem 6. The proposed MELON double auction is individ-
ual rational.



Proof. As mentioned in Sectidn IV-A1, the algorithFC (line  which we call AIR double auction. The rest of its winner
) in Algorithm[2 takes a greedy approach, and has a coselection, as well as the entire pricing algorithm is the essam
putational complexity ofD(N). Line[34 of Algorithm[2 that as those of our MELON double auction. It is easily provable
find the set<’,--- ,Cys terminate at most afteM N steps. that the AIR double auction is also truthful and individual
Next, the main loop (lin€l6-11) terminates aftef iterations rational.

in worst case. Within each iteration, finding the index of the Furthermore, we compare our weighted data aggregation
requester that provides the maximum marginal social welfamechanism with a mean aggregation mechanism, which out-
(line[8) takesO (M) time, and updating the sef§,--- ,Cys puts +1 as the aggregated result for a task if the mean of
takesO(M N) time. Therefore, the computational complexityorkers’ labels about this task is non-negative, and ostput
of the main loop isO(M N), and thus, that of Algorithrhl2 —1, otherwise. Another baseline aggregation mechanism that
is O(M?N) overall. After Algorithm[2, our MELON double we consider is the median aggregation that takes the median
auction executes its pricing algorithm described by Aljon  of workers’ labels about a task as its aggregated result.

[3, where the loop for requester pricing (lind11-8) termisate _ . .

in worst case aftef\/ iterations. Clearly, the computationalB- Simulation Settings

complexity of each iteration of the loop is dominated by thkSeTtingl [ v ] | : ci ] | [9m‘] | : Bi ] [ [ 7] ] [ : N ] [ M ]
H H H H r 10, 20 5,15 0,1 0.05,0.1 15,20 90, 150 60

execution of Algorithn{P in liné3. Therefore, the requester— I S I . I o I o I ot I il I o I

pricing (line[1E8) in Algorithm[B takes)(M3N) time. Fol- TABLE |

lowing a similar method of analysis, we can conclude that the SIMULATION SETTINGS

worker pricing in Algorithni8 take®(M?2N?) time. Hence,
the computation complexity of Algorithd 3, as well as that of The parameter settings in our simulation are given in Table
the overall MELON double auction 9(M3N+M2N2). O [ Specifically, parameters;, c;, 0; ;, 5;, and|T';| are sampled
_ ) uniformly at random from the intervals given in Taljle I. The
Finally, we show in Theorerf]8 that our MELON doublgyqrier ;s true interested task set containsI#| tasks that

auction guarantees non-negative social_ welfare, as djuir .o randomly selected from the task Setin setting I, we fix
Theorem 8. The MELON double auction guarantees nonthe number of requesters @and vary the number of workers
negative social welfare. from 90 to 150, whereas we fix the number of workers @&

Proof. Clearly, in the winner selection algorithm described b§nd vary the number of requesters framto 80 in setting II.

Algorithm [2, a requesterj.and the Workers_ irc; coqld .be C. Simulation Results

selected as winners, only if the corresponding marginabsoc

welfare a; — 37, cc. bi is non-negative (Iin€l5). Thus, as .

the overall social welfare given by Algorithinh 2 is the sum o o O S , o Sw-Greery
the aforementioned marginal social welfare of every iterat g sy —— tswore .
where new winners are selected, the MELON double aucti= ™
guarantees non-negative social welfare. O s
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V. PERFORMANCEEVALUATION

|n th|5 SeCtion, we introduce the base“ne methods’ Simu 94 98 1021061’\1‘%11381};15%?%&0134133142146150 24 28 32 36 40@:@;3{21_:;(20 64 68 72 76 80

tions settings, as well as simulation results of the peréoroe
evaluation about our proposed CENTURION framework. ,
0. .

A. Baseline Methods ;jﬁw 044%

In our evaluation of the incentive mechanism, the firs °®ipsyfiesas i iy ien oazﬂw

Fig. 2. Social welfare (setting ) Fig. 3. Social welfare (setting II)

baseline auction is the dginal Scial Welfare greedy (MSW- ¥ g oz
Greedy) double auction. As in Algorithid 2, it also initiadz oo 0z  edn
. . . —<— Mean —<+— Mean
the winner sets a#, executes the algorithf&C to obtain a  °* e Weighed Aggregai 1 = Weighed Agyegaton
0!

feasible coverC, and chooses frong the setC; containing

. 0.0%5 3555533335555 5F3FTFIFETTEEFEI 004 F IR EFFE S TSI EETFFTTTTTETTEw
each workernw; such thatr; € I'; for each taskr;. Different O e of Workere 4138142146150 2428 32 36 40 Cmber of Taake. Ot 8 T2 IO %0
from the MELON double auction, it sorts requesters in a g 4. MAE (setting 1) Fig. 5. MAE (setting Il)

decreasing order of their marginal social welfare, i.ee th In Figure[2 and13, we compare the social welfare generated
valuea; — ;... ec, bi for each requester;. Then, it selects by our MELON double auction with those of the two baseline
the requester; and the set of workers iif; as winners auctions. These two figures show that our MELON double
until the marginal social welfare becomes negative. Itsipg auction generates social welfare far more than the MSW-
algorithm is the same as that of the MELON double auctioreedy and AIR double auction under both setting | and II.
Clearly, the MSW-Greedy double auction is truthful and We evaluate CENTURION’s accuracy guarantee in setting
individual rational. Another baseline auction is the onatthl and Il with a minor change of the parametgy, i.e., §;
initiA lizes the feadlle coverC as the entire woker set)V, for each taskr; is fixed as0.05 to simplify presentation. We
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6. Error probability (setting 1) Fig. 7. Error probability (setting I1)

compare the mean absolute error (MAE) for all tasks, whidf?!
is defined as MAE= ;> [l; —I;|, of our weighted

aggregation mechanism proposed in Algorithim 1 with thoses]
of the mean d median aggregation. The simulation for each
combination of worker and requester number is repeated for
50000 times, and we plot the means and standard deviatidél
of the MAEs in Figurd 4 an@]5. From these two figures, Wes]
observe that the MAE of our weighted aggregation mechanism
is far less than those of the mean and median aggregation.

Then, we show our simulation results about[|lij3r— 1],

[16]

referred to as task;’s error probability (EP). After50000
repetitions of the simulation for any given combination Of17]
worker and requester number, empirical values of the EPs

are calculated, and the means and standard deviations of the

empirical EPs are plotted in Figuré 6 ddd 7. These two figures
show that the empirical EPs are less than the required up
bound 3; and far less than those of the mean and medigjy;
aggregation.

[20]
VI. CONCLUSION

In this paper, we propose CENTURION, a novel integrated

framework for multi-requester MCS systems, consisting

a double auction-based incentive mechanism that stinalate

the participation of both requesters and workers, and a dgta]
aggregation mechanism that aggregates workers data.-Its in
centive mechanism bears many desirable properties imgjudi

truthfulness, individual rationality, computational eféincy, as

(23]

well as non-negative social welfare, and its data aggregati
mechanism generates highly accurate aggregated results. [24]

(1]

(2]

(3]

(4]
(5]

(6]

(7]

REFERENCES [25]

P. Mohan, V. N. Padmanabhan, and R. Ramjee, “Nericell:
Rich monitoring of road and traffic conditions using mobile
smartphones,” ir6enSys2008. [26]
A. Thiagarajan, L. Ravindranath, K. LaCurts, S. Madden,
H. Balakrishnan, S. Toledo, and J. Eriksson, “Vtrack: Accu-
rate, energy-aware road traffic delay estimation using taobi[27]
phones,” inSenSys2009.

J. Eriksson, L. Girod, B. Hull, R. Newton, S. Madden, and
B. Hari, “The pothole patrol: using a mobile sensor network28]
for road surface monitoring,” itMobiSys 2008.

“Myheartmap,” http://www.med.upenn.edu/myheartrhap

S. Hu, L. Su, H. Liu, H. Wang, and T. F. Abdelzaher[29]
“Smartroad: Smartphone-based crowd sensing for traffie reg
ulator detection and identification,” IROSN 2015.

Y. Cheng, X. Li, Z. Li, S. Jiang, Y. Li, J. Jia, and X. Jiang,[30]
“Aircloud: A cloud-based air-quality monitoring systemrfo
everyone,” inSenSys2014.

K. Han, H. Huang, and J. Luo, “Posted pricing for robusf31]
crowdsensing,” inMobiHoc 2016.

H. Xie, J. Lui, J. W. Jiang, and W. Chen, “Incentive mecisam
and protocol design for crowdsourcing systems,”Aitherton,
2014.

M. H. Cheung, R. Southwell, F. Hou, and J. Huang, “Disitéx
time-sensitive task selection in mobile crowdsensing Miobi-
Hoc, 2015.

L. Gao, F. Hou, and J. Huang, “Providing long-term pzpa-
tion incentive in participatory sensing,” iINFOCOM, 2015.

H. Jin, L. Su, D. Chen, K. Nahrstedt, and J. Xu, “Quality
of information aware incentive mechanisms for mobile crowd
sensing systems,” iMobiHoc 2015.

Y. Wen, J. Shi, Q. Zhang, X. Tian, Z. Huang, H. Yu, Y. Cheng
and X. Shen, “Quality-driven auction based incentive mecha
nism for mobile crowd sensing,” ifVT, 2014.

D. Zhao, X.-Y. Li, and H. Ma, “How to crowdsource tasksttr-
fully without sacrificing utility: Online incentive mech&ams
with budget constraint,” iIlINFOCOM, 2014.

Y. Chen, B. Li, and Q. Zhang, “Incentivizing crowdsoing
systems with network effects,” INFOCOM, 2016.

S. He, D.-H. Shin, J. Zhang, and J. Chen, “Toward optimal
allocation of location dependent tasks in crowdsensing,” i
INFOCOM, 2014.

T. Luo, S. S. Kanhere, H.-P. Tan, F. Wu, and H. Wu, “Crowd-
sourcing with tullock contests: A new perspective,” IMNFO-
COM, 2015.

L. Duan, T. Kubo, K. Sugiyama, J. Huang, T. Hasegawa,
and J. Walrand, “Incentive mechanisms for smartphone col-
laboration in data acquisition and distributed computirig,
INFOCOM, 2012.

Q. Zhang, Y. Wen, X. Tian, , X. Gan, and X. Wang, “Inceit&/
crowd labeling under budget constraint,” INFOCOM, 2015.

X. Zhang, G. Xue, R. Yu, D. Yang, and J. Tang, “Truthful
incentive mechanisms for crowdsourcing,”IMFOCOM, 2015.

D. Yang, G. Xue, X. Fang, and J. Tang, “Crowdsourcing to
smartphones: Incentive mechanism design for mobile phone
sensing,” inMobicom 2012.

1] X. Zhang, Z. Yang, Z. Zhou, H. Cai, L. Chen, and X. Li,

“Free market of crowdsourcing: Incentive mechanism design
for mobile sensing,” iNTPDS 2014.

H. Zhang, B. Liu, H. Susanto, G. Xue, and T. Sun, “Incesti
mechanism for proximity-based mobile crowd service systém
in INFOCOM, 2016.

Y. Wei, Y. Zhu, H. Zhu, Q. Zhang, and G. Xue, “Truthful
online double auctions for dynamic mobile crowdsourcirig,”
INFOCOM, 2015.

I. Koutsopoulos, “Optimal incentive-driven design mirticipa-
tory sensing systems,” iNFOCOM, 2013.

H. Jin, L. Su, H. Xiao, and K. Nahrstedt, “Inception: e
tivizing privacy-preserving data aggregation for mobileved
sensing systems,” iMobiHoc, 2016.

H. Jin, L. Su, B. Ding, K. Nahrstedt, and N. Borisov, “En-
abling privacy-preserving incentives for mobile crowd siag
systems,” inlICDCS 2016.

J. Wang, J. Tang, D. Yang, E. Wang, and G. Xue, “Qualityiae
and fine-grained incentive mechanisms for mobile crowdsens
ing,” in ICDCS 2016.

Z. Feng, Y. Zhu, Q. Zhang, L. Ni, and A. Vasilakos, “Trac:
Truthful auction for location-aware collaborative sesiin
mobile crowdsourcing,” iFTNFOCOM, 2014.

M. Karaliopoulos, I. Koutsopoulos, and M. Titsias, f&i learn
then earn: Optimizing mobile crowdsensing campaigns tinou
data-driven user profiling,” itMobiHog 2016.

L. Pu, X. Chen, J. Xu, and X. Fu, “Crowdlet: Optimal worke
recruitment for self-organized mobile crowdsourcing, INFO-
COM, 2016.

D. Peng, F. Wu, and G. Chen, “Pay as how well you do:
A quality based incentive mechanism for crowdsensing,” in


http://www.med.upenn.edu/myheartmap/

MobiHog 2015. task of £, contributesX. The total value of all tasks covered

gg{ ?msz&nAr?echaAnigal t.urk.f’thtzlost:/IWW&N-mtflwrk-cortn//[icj | is then at mostX + 3m — §5 + Zm + Y'm, while the total

. P. McAfee, “A dominant strategy double auctiodgurnal ; i
of economic Theorwol. 56, no. 2, pp. 434-450, 1992. .Coif of ?JI se(t)s IM(Z: g—i_t?’) Therefore, the social Weh‘Dare
[34] D. Oleson, A. Sorokin, G. P. Laughlin, V. Hester, J. Lada IS 4 =55 <V, acontradicuon.

L. Biewald, “Programmatic gold: Targeted and scalable igual
assurance in crowdsourcing,” HCOMP, 2011.

[35] H. Li, B. Zhao, and A. Fuxman, “The wisdom of minority:
Discovering and targeting the right group of workers fovede
sourcing,” inWWW 2014.

[36] Q. Li, Y. Li, J. Gao, B. Zhao, W. Fan, and J. Han, “Resotlyin
conflicts in heterogeneous data by truth discovery and sourc
reliability estimation,” inSIGMOD, 2014.

[37] C. Meng, W. Jiang, Y. Li, J. Gao, L. Su, H. Ding, and Y. Chen
“Truth discovery on crowd sensing of correlated entitigs,”
SenSys2015.

[38] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy,
“Proof verification and the hardness of approximation prob-
lems,” in Journal of the ACM1998.

[39] L. Blumrosen and N. Nisan, “Combinatorial auctionglgo-
rithmic Game Theory2007.

APPENDIXA
PrROOF OFOBSERVATION[

Proof. Let R be the set of all claus&s;,, such thatS’ contains
any set of the fornT'(Cy, «), and assume thaR| = ¢. Then
the number of tasks af'; covered byS’ is exactlyt, and they
contribute value Z to the social welfare. All remaining tasks
may contribute at mosg value to the social welfare. Since
the cost of every set I8’ is at leastZ, in order for the final
social welfare to be non-negativi§’| = ¢ must hold, and so
S’ contains at most one set corresponding to every clause.

Next, we prove thalS’| = m. Lett be the number of tasks
of E; covered by the solution. From previous discussions,
|S’| = t. Assume for contradiction thdsS’| < m. Then the
number of task ofys covered byS’ is at mostt—1. Therefore,
the total value of all tasks covered by the solution is upper
bounded byX +¢Z+(t—1)Y +10n = X +tZ+tY +6m—Y,
while the total cost of all sets i§’ is (Z+Y +3)t. Therefore,
the total profit is at mosX + 6m — Y — 3t < 0. O

APPENDIXB
PROOF OFOBSERVATION[Z

Proof. Assume for contradiction that for somg € O, both
7(z,T) and7(zx, F') are covered bys’. Recall that there are
exactly five clauses containing the variabje Both tasks only
belong to sets corresponding to these five clauses, and each
such set contains exactly one of the two tasks. Sinc&he
value of each such task I§ and for each claus€, exactly

one of its corresponding set belongsdq it is impossible that

both 7(z2,T) andr(zx, F') are covered hys’. O

APPENDIXC
PROOF OFOBSERVATION[3

Proof. Assume otherwise. Thef' covers at mosfl — 155 )n

tasks ofE;, each of which contributes 5 to the solution value,
so the tasks of; contribute at mosbn (1 — 55) = 3m —
55 value overall. From the above discussion, the task&:of

contributeYm, those of E5 contribute Zm, and the single
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