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Abstract—Molecular Communication (MC) is an enabling
paradigm for the interconnection of future devices and networks
in the biological environment, with applications ranging from
bio-medicine to environmental monitoring and control. The
engineering of biological circuits, which allows to manipulate
the molecular information processing abilities of biological cells,
is a candidate technology for the realization of MC-enabled
devices. In this paper, inspired by recent studies favoring the
efficiency of analog computation over digital in biological cells,
an analog decoder design is proposed based on biological circuit
components. In particular, this decoder computes the a-posteriori
log-likelihood ratio of parity-check-encoded bits from a binary-
modulated concentration of molecules. The proposed design
implements the required L-value and the box-plus operations
entirely in the biochemical domain by using activation and
repression of gene expression, and reactions of molecular species.
Each component of the circuit is designed and tuned in this
paper by comparing the resulting functionality with that of the
corresponding analytical expression. Despite evident differences
with classical electronics, biochemical simulation data of the
resulting biological circuit demonstrate very close performance in
terms of Mean Squared Error (MSE) and Bit Error Rate (BER),
and validate the proposed approach for the future realization of
MC components.

I. INTRODUCTION

The design and characterization of communication systems
based on the exchange of molecules, directly inspired by
biological processes, is a fast growing field within the com-
munications and computer network engineering communities,
encouraged by the need to interconnect devices with increasing
miniaturization, ubiquity, and biocompatibility [1], [2]. These
novel Molecular Communication (MC) systems further expand
the Internet of Things concept to cover domains, the biological
and nanoscale, where classical communication solutions show
limitations [3]. MC-enabled communications are envisioned
at the basis of the access, control, and collaborative pro-
cessing of devices with various capabilities, such as bio-
sensing, stimulation or actuation of biochemical processes,
or even augmentation of the functionalities of the human
body [4]. Despite the current advancements in the commu-
nication theoretical studies, which also stimulated an ongoing
standardization effort [5], unified and coherent technologies
to engineer and optimize systems, devices, and components
capable of molecular communications are currently missing.

Recent advances in synthetic biology are providing new
tools for the design, realization, and control of biological
processes through the programming of cells’ genetic code [6].
In particular, the theory of biological circuits, based on
networks of DNA genes linked together by activation and
repression mechanisms that regulate their expression into
proteins, provides basic components and processes to design
functionalities and behaviors in cells, mostly bacteria, by fol-
lowing an engineering-based approach [7], [8]. Despite a trend
towards the development of biological circuits with digital-
like logics [9], recent research suggests that functions based
on analog computation are significantly more efficient [10].

The engineering of cell-cell communications is one of the
latest frontiers in synthetic biology [11], where cells can be
abstracted as the transmitters and receivers in molecular com-
munication systems [12]. Recent literature in MC is exploring
the possibility of utilizing biological circuits to realize molec-
ular communication functionalities. In [13] the minimal subset
of biological circuit elements necessary to emit and receive an
analog-modulated MC signal, which propagates between cells
through diffusion, is modeled through chemical reaction rate
equations. General guidelines and modeling strategies to de-
sign an MC transceiver with biological circuits able to receive,
process, and retransmit binary information by utilizing bacteria
are included in [14], based on digital-like biological circuit
functionalities and M-ary molecule concentration modulation
coupled with a hard threshold detection.

Inspired by the aforementioned research on analog com-
putation in engineered cells, in this paper we propose a
design based on biological circuits that implements the analog
decoding of binary information from a modulated molecule
concentration. In particular, based on the seminal work in [15]
on analog decoding of block and convolutional codes with
non-linear electrical networks, we propose to exploit the ana-
log computing functionalities of biological circuits to obtain
as output the a-posteriori log-likelihood ratio (reliability) of
a transmitted encoded bit sequence, given a received binary-
modulated molecule concentration as input. To provide a first
proof-of-concept demonstration of such a design, we make
use of the simplest block code, namely, a parity-check code
with a block length of 3 bits, and we implement the required
L-value and box-plus operations through biological circuit
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Figure 1. Sketch of the proposed MC decoder engineered in a biological cell.

components, designed and tuned according to the desired
output. Biochemical simulation data of the resulting biological
circuit demonstrate very close performance to an electrical
network implementation [15] in terms of Mean Squared Error
(MSE) and Bit Error Rate (BER).

The rest of the paper is organized as follows. In Sec. II we
introduce the biological analog decoding circuit based on the
a-posteriori log-likelihood computation of the first bit of the
code block. In Sec. III we give a brief introduction to biolog-
ical circuits and their main components. In Sec. IV, Sec. V,
and Sec. VI we detail the design of the required L-value,
delay line, and box-plus operations, respectively. In Sec. VII
we finalize the a-posteriori log-likelihood computation from
the contributions of the previous elements, while in Sec. VIII
we present the simulation-based validation. Finally, in Sec. IX
we conclude the paper.

II. ANALOG DECODING FOR MOLECULAR
COMMUNICATION

In this paper, we aim to design a biological circuit able
to compute the a-posteriori log-likelihood ratio L(x̂k) from
a received noisy input signal yi, yi+1, . . . , yi+K modulated
according to block-encoded bits xi, xi+1, . . . , xi+K , where
K is the block size. The sign of this log-likelihood ratio
corresponds to the optimal decision on the transmitted bit,
while its magnitude measures the reliability of this decision.
This is defined as follows [15]:

L(x̂k) = log
P (xk = 1|yi, yi+1, . . . , yi+K)

P (xk = 0|yi, yi+1, . . . , yi+K)
, (1)

In Fig. 1 we show the scenario referenced in this paper,
where a receiver cell containing the biological decoding circuit
detailed in the following provides a concentration of out-
put molecules equal to the a-posteriori log-likelihood ratio
L(x̂k) for the k-th bit of the code block from the mod-
ulated concentration yi, yi+1, . . . , yi+K of input molecules
around the cell at specific time instants. The concentration
of signaling molecules is modulated by a transmitter cell,
i.e., one or more cells containing a biological circuit for
transmission, such as in [13], [14], according to block-encoded
bits xi, xi+1, . . . , xi+K [15], and propagates through the space
via diffusion until reaching the cell containing the biological
decoding circuit. The proof-of-concept design of the biological

decoding circuit presented in this paper is based on the
following assumptions:
• The concentrations of the molecular species, i.e., input,

output molecules, and proteins involved in the biological
circuit, are considered homogeneous at any time instant
inside and around the cell. This approximates the behavior
of the system when we sample these molecule concen-
trations at steady state. Although this does not hold true
for the concentration of the diffusing molecules from the
transmitter to the receiver, we assume a distance between
the transmitter cell and the receiver cell much larger than
the size of the receiver cell itself. Given the Green’s function
of the diffusion equation [16], the longer the distance, and
therefore the propagation time, the more homogeneous the
impulse response is with respect to the space.

• The input molecules of the biological decoding circuit can
be either the same incoming signaling molecules emitted
by the transmitter cell, and able to cross the receiver cell
membrane, therefore resulting in a concentration inside the
cell that is the same as around the cell, or they can be
molecules resulting from a chemical reception process at
the receiver cell [13]. The latter process would be activated
by ligand-receptor binding reception either at the membrane
or inside the cell [13], and result in a concentration of input
molecules of the biological decoder that is proportional to
the concentration of signaling molecules around the cell.

• The modulated concentration yi, yi+1, . . . , yi+K at specific
time instants is affected by Additive White Gaussian Noise
(AWGN). This assumption is justified by the fact that the
noise contribution from the biological circuits, including
those that might be present at the transmitter, can be
modeled according to the steady state approximation of the
Langevin equation (see Appendix A in [17]), resulting in
white Gaussian contributions to each circuit output [18].
Moreover, for a sufficient number of emitted molecules and
for a sufficiently long time interval between the samples, the
diffusion process is independent and has a Gaussian noise
contribution to the input molecule concentration [19].

• Since the molecule concentration cannot assume negative
values, it is modulated at the transmitter by following a
binary unipolar pulse amplitude scheme. We assume that
each input molecule concentration sample yi can assume the
(positive) values a0 or a1 (plus AWGN) depending whether
the corresponding bit xi = 0 or 1, respectively.

• In the rest of the paper, for the purpose of presenting a proof-
of-concept biological analog decoding circuit, we reference
to the simplest block code scenario that supports analog
decoding [15], namely, the Single Parity Check (SPC) code
with block length K = 3. Moreover, given the complexity of
the resulting biological circuit, the preliminary design in this
paper realizes only the computation of the a-posteriori log-
likelihood ratio of the first bit of the block. The contribution
in this paper can be extended to more complex block codes
by stemming from our methodology. In fact, parity check
is the fundamental decoding operation at the basis of more
complex coding schemes, such as low-density parity-check.



L(!"#)

BIOLOGICAL	ANALOG	DECODING	CIRCUIT

$%

L-value
Computation

& $' !' =
=
)# − )+
,- $' −

)# + )+
2

Box-Plus	Operation
&& $-|!- �& $1|!1

= 2)2)3ℎ52)3ℎ
& $-|!-

2

6 2)3ℎ
& $1|!1

2 7

Delay
(K − 1)<=

&($'>#|!'>#)

&($#|!#)

Figure 2. Biological decoding circuit

• All the concentration values expressed in the following are
intended as normalized with respect to the average number
of intracellular signaling molecules, typically equal to 1000
molecules per cell [20]. In the case of an E coli bacterium,
a usual chassis in synthetic biology, this corresponds to a
concentration of 1 µM = 6 · 1020 [molecules/m3].
As a consequence of the aforementioned assumptions, the

formula in (1) to compute the a-posteriori log-likelihood ratio
(L-value) of the first transmitted bit L(x̂1) becomes [15]:

L(x̂1) = L(y1|x1) + (L(y2|x2)� L(y3|x3)) , (2)

where x2 and x3 represent the remaining channel bits of that
same codeword. L(yi|xi), i ∈ {1, 2, 3}, gives the conditioned
L-value, which is the L-value of the received concentration
yi conditioned to the transmitted bit xi, and � indicates the
box-plus operation, which is defined as follows:

L(y2|x2)� L(y3|x3)=2atanh

(
tanh

(
L(y2|x2)

2

)
· tanh

(
L(y3|x3)

2

))
. (3)

The expression of L(yi|xi) is derived by considering the
aforementioned concentration values a0 and a1 corresponding
to bit 0 and 1, respectively. In contrast to [15], where a
binary antipodal pulse amplitude scheme is employed, the
resulting detection threshold is in our case equal to a1+a0

2 .
As a consequence, conditional L-value expression is

L(yi|xi)=log
exp

(
− (yi−a1)2

2σ2

)
exp

(
− (yi−a0)2

2σ2

)=(a1−a0)
σ2

[
yi−

(a1+a0)

2

]
, (4)

where σ2 is the variance of the aforementioned AWGN present
in the received molecule concentration yi.

Hagenauer et al. implemented (2) with analog Very-Large-
Scale Integration (VLSI) circuits, by exploiting the non-
linearities of a modified Gilbert cell [15]. In the following,
we present an implementation of the same expression by using
biological circuit elements. As shown in Fig. 2, our biological
analog decoding circuit is composed of three main elements,
namely, the L-value computation, which implements (4), the
box-plus operation, which realizes the expression in (3), and
a delay line (active only when t = lKTb, where Tb is the
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Figure 3. Gene expression: (a) Activation (↓), (b) Repression (⊥)

bit interval, K is the block size, equal to 3, l = 0, 1, 2, . . .),
which is needed to isolate the result of the first term of the
sum in (2) from the second term, computed at a later time.
In the following, after a brief overview of the main biological
circuit components, we detail our biological circuit design.

III. COMPONENTS OF A BIOLOGICAL CIRCUIT

A biological circuit is a network of genes and chemical
reactions that work together to implement a specific biological
function [7].
A. Gene

A gene is the fundamental unit of information, composed
of an operator region (OR), a promoter region (PR), and a
coding sequence. Most genes are a stretch of DNA that codes
for a protein molecule, a sequence of amino acids, through
the fundamental processes of transcription and translation as
shown in Fig. 3, where the gene is activated/repressed by a
transcription factor protein In.
• Transcription is triggered by the enzyme, a specific type of

protein, RNA polymerase (RNAP) that binds to the promoter
region of the considered gene, starting the production of the
messenger RNA (mRNA) molecule. This latter molecule is
used to carry the genetic information encoded in the coding
sequence of the gene to the ribosome, the protein assembly
machinery. The ability of RNAP to bind to a promoter site
can be either enhanced or lowered by other proteins called
transcription factors (activators/repressors).

• Activators bind to the operator region near the promoter
site up-regulating the transcription of the subsequent coding
sequence by increasing the RNAP molecule binding rate.

• Repressors reduce RNAP binding rate either by changing the
conformation of the RNAP molecule or obstructing the bind-
ing sites of the promoter region, therefore down-regulating
the transcription of the subsequent coding sequence.

• Translation is the final step in protein production. Ribosomes
translate genes starting from mRNA. They are able to
recognize and bind to the mRNA molecule by means of
Ribosome Binding Sites (RBSs), which are special sequences
of nucleotides in the mRNA strand. Once the ribosome binds
to the RBS of an mRNA molecule, it starts synthesizing the
corresponding protein from component amino acids.

• As in [21], an activated gene expression can be modeled
through a Hill function. As a consequence, the rate of output
protein Out is expressed as

d[Out]

dt
= k′ +MAX

(
[In]n

Kn
p + [In]n

)
− kdeg[Out], (5)
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where k′ is the basal rate of production, i.e. gene expression
in the absence of input transcription factors, MAX is a
constant defining the maximum value at the output, Kp is the
input concentration for which the output expression rate is
half of the maximum value, n is the Hill coefficient and the
bracketed term is the Hill function. kdeg is the degradation
rate of the output proteins. In the following, we assume to
have non-constitutive promoters, i.e. k′ = 0, which means
that there is gene expression only when external activating
signals are present [21]. In (5) and hereafter, the square
brackets notation stands for protein concentration. From
[21], repression can be obtained by exchanging the roles
of Kp and In in (5).

B. Mass Action Chemical Reaction

A mass action chemical reaction is a process that converts
a set of one or more input molecules (reactants) into another
set of one or more output molecules (products). Reactions
may proceed in the forward or reverse direction until they go
to completion or reach equilibrium. We assume unbalanced
reactions where the forward reaction rate is much greater than
the backward. The forward rate is proportional to the reactants
concentrations. In this paper we will consider the following:

• Subtraction Operation: We consider two reactants and
one product. The product molecule concentration is the
minimum among the initial reactant concentrations. There-
fore, for the mass conservation law, the concentration of
the remaining reactant ("survivor molecule") is just the
difference between the two initial concentrations.

• Storage Operation: We consider two reactant species,
one is the ligand, the molecule whose concentration value
needs to be stored, and the other is the receptor protein,
synthesized by a specific gene. The two species react by
binding and producing a concentration of complexes propor-
tional to the concentration of ligands if the initial receptor
concentration is set sufficiently high.

IV. BIOLOGICAL L-VALUE COMPUTATION

Figure 4 reports the sequence of biological operations
needed to compute the L-value L(yi|xi) given the received
noisy modulated concentration yi.

$'	/ I

hrpR hrpS

RBS RBS Gcd\e RBS
operon

Gz{ ,}

Amplifier	with	gain	opqor
st

Transcriptional	
input

Fixed	Gain	Amplifier

Transcriptional	
output

Figure 5. Fixed Gain biological amplifier

A. Mass-Action Reaction

The first element in Fig. 4 represents a mass-action reac-
tion [7] for Subtraction Operation between the input molecules
having concentration yi and the molecules of species B. The
molecule species B has a fixed concentration equal to a1+a0

2
which is the quantity to be subtracted from yi to get L(yi|xi)
according to (4). Once the reaction has occurred, the remaining
concentration of any of the two molecule species is equal to
the value

∣∣∣yi − (a1+a0)
2

∣∣∣, with the following two possibilities:

• If the input molecules survive, it means that yi− (a1+a0)
2 > 0

and, therefore, the received noisy concentration yi is above
the threshold. In this case, the "survivor molecule" concen-
tration value should be interpreted as positive.

• If the molecules of species B survive, it means that yi −
(a1+a0)

2 < 0, and the received noisy concentration yi is
below the threshold. In this case, the "survivor molecule"
concentration value should be interpreted as negative.
In order to distinguish between the two cases, and therefore

propagate the sign through the biological circuit, two branches
have been introduced in the block diagram, as shown in Fig. 4.
The upper branch is for the positive concentration and the
lower branch is for the negative concentration.

B. Amplifiers with Gain (a1−a0)
σ2

From (4), to complete the calculation of L(yi|xi), we need
to multiply the difference yi − [B] by the quantity (a1−a0)

σ2 .
For this, we use fixed gain amplifiers with gain (a1−a0)

σ2 .
The amplifier can be realized as proposed in [22], where it
is shown that the transcriptional-output/transcriptional-input
relationship, i.e., the amplifier transfer function, is a linear
amplification whose magnitude depends on the translational
strength of the RBSs sequence in front of a coding sequence
of a protein called hrpS, as in Fig. 5.

At the output of each amplifier we have an operon in
place of a single gene, which is needed for the subsequent
processing. An operon is a group of genes controlled by
the same promoter and expressing proteins at the same con-
centration rate, as shown in Fig. 6. In our design, operons
in both amplifiers shown in Fig. 4 encode for the proteins
{t2, z3, u2, u3}, while they differ for the last two, namely,
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m0, p1 in the upper branch amplifier, and n0, n1 in the lower
branch amplifier. All protein species expressed within the i-th
bit time interval will reach the same concentration, equal to
L(yi|xi). The specific role of each protein will be detailed in
the following.

V. BIOLOGICAL DELAY LINE

By analogy with electrical circuits, a delay line, i.e., the
lower branch with the Delay block in Fig. 2, aids in the
computation of (2), where the conditional L-value of the first
bit of the block L(y1|x1) needs to be isolated and stored for
the subsequent sum operation once the box-plus operation on
the second and third bits is complete.

By using biological circuits, delay lines can be realized
by means of receptors as illustrated in Fig. 7, through the
Storage Operation, described in Sec. III.B, at the first bit
interval, where n1 and p1 generated by the amplifiers are
the ligands, and create very stable complexes, i.e., N1 and
P1, with receptors, keeping their concentration values for 2Tb,
until the box-plus result is ready. For this, we assume that P1

and N1 degrade with very small degradation rate kdeg . This
implements a delay line where the storage function is realized
by the cell itself and the delay is provided by the stability

of the created complexes. On the contrary, the second and the
third bits will be processed by the Box Plus Operation element.

VI. BIOLOGICAL BOX-PLUS OPERATION

A description of the biological circuit blocks and their
operations inside the Box Plus Operation element, whose
biological circuit is reported in Fig. 8, is given in the following.

A. Gene Expression Circuit

To implement the calculation of the expression in (3), it is
necessary to compute the hyperbolic tangent, which is a basic
function for the box-plus operation. For this, by stemming
from the Hill function model in (5), we design a gene having
a promoter regulated by activation. In particular, we optimize
the parameters n and Kp in (5) to provide the relation between
the rate of output protein Out and the input transcription factor
In as close as possible to a hyperbolic tangent. If we optimize
in the mean-squared error (MSE) sense by setting MAX=1
and varying both n and Kp values by 0.1 steps, we find that
the minimum MSE is achieved for n = 2 and Kp = 1 in (5),
expressed as follows:

d[Out]

dt
=

[In]2

1 + [In]2
∼= tanh

(
[In]

2

)
(6)

Since the expression in (5) contains also the term
−kdeg[Out], based on the aforementioned assumption of
steady state in the sampling of the molecule concentration
values in the designed biological circuit, we obtain the fol-
lowing:

d[Out]

dt
=

[In]2

1 + [In]2
− kdeg[Out] = 0 ⇒

⇒ [Out] =
1

kdeg

[In]2

1 + [In]2
∼=

1

kdeg
tanh

(
[In]

2

)
,

which results in [Out] = d[Out]
dt in the case when kdeg = 1.

B. The Logarithmic Function

The expression in (3) includes also the inverse hyperbolic
tangent function, which we realize by stemming from the
following trigonometric identity:

2 atanh(d) = log

(
1 + d

1− d

)
= log(|1+d|)− log(|1−d|). (7)

By applying (7), we rewrite the inverse hyperbolic tangent
in terms of logarithms. This operation is made by the two
log(.) blocks in Fig. 8, where the parameter d in (7) becomes
d = tanh

(
L(y2|x2)

2

)
tanh

(
L(y3|x3)

2

)
, thus resulting in the

same expression as in (3).
While the implementation of the arguments 1+d and 1−d

is detailed in Sec. VI-C, here we focus on the realization of
the logarithmic function. As shown in Fig. 8, since molecule
concentrations cannot assume negative values, two different
biological circuit blocks are used to approximate the logarith-
mic function for either input > 1 or input < 1, detailed next.
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1) Logarithm approximation for input greater than 1:
From (7), since d > 0, which is exactly our case since
concentrations are positive, the argument (1+d) of the first log
is always greater than 1. In Fig. 8, the block that realizes this
operation is the upper log(·) block that takes A0 molecules as
input and gives P molecules as output, where, as detailed in
the following, the concentration [A0] = 1+d. For this, we use
an activated gene as modeled by the Hill function in (5), where
[In] = [A0] and [Out] = [P ]. In order to approximate the
logarithmic function with the Hill function, first, we realize a
horizontal shift of our Hill function by means of a mass action
reaction for Subtraction Operation between the input protein
A0 and the protein M , which is set to a concentration equal to
1. This gives the difference [A0]

out = [A0]
in−1, as explained

in Sec. III. The concentration [A0]
out is then fed into the

log(·) block. Second, after an MSE optimization to match the
designed biological circuit block with the positive logarithmic
function, we identify the following parameter values: n = 1,
Kp = 2 and MAX = 2. In this minimization, we took into
account that 1 < [In] = [A0] = |1 + d| < 2, without consid-
ering the shift, since d = tanh

(
L(y2|x2)

2

)
tanh

(
L(y3|x3)

2

)
. A

comparison between the two functions is shown in Fig. 9,
where we observe that a very good approximation of the
logarithmic function is achieved for input values [In] ∈ [1, 2].

2) Logarithm approximation for input smaller than 1: The
argument (1−d) of the second log in (7) is always smaller than
1. Hence, the second log(·) block in Fig. 8 has to approximate
the absolute value of the negative part of the logarithm. We
realize this through the complementary Hill function of a
repressed gene. An MSE optimization to match the gene
expression with the negative logarithmic function is realized
by setting n = 1, Kp = 0.05 and MAX = | log(10−3)|,
where 10−3 represents the supposed minimum value that the
argument [In] can assume, as shown in Fig. 10. However,
for values close to 1, there is a small but non negligible
error. In order to alleviate this problem we design a control
in the expression of the output protein P (see Fig. 8) with
two, in place of just one, different repressive transcription
factors, MT and MD. This approach results in a bivariate
Hill function [23] that describes the rate of output protein

0 0.2 0.4 0.6 0.8 1

[In]

0

1

2

3

4

5

6

7

[O
u

t]

log([In])

Inverse Hill Function

Figure 10. Comparison between a logarithmic function and a complementary
Hill Function with n = 1, Kp = 0.05 and MAX = | log(10−3)|

uEJ%5v	_owKo5Lo	G^`
^b

xy
(z{) xy

(z| )

Gy

Figure 11. Logarithmic function

0 0.2 0.4 0.6 0.8 1

[M
T
]

0

1

2

3

4

5

6

7

[P
]

Fitted Hill Function

log([M
T
])

Figure 12. Comparison between a logarithmic function and a complementary
bi-variate Hill Function with n1 = n = 1, β1 + β2 = MAX =
| log(10−3)|, k1 = Kp = 0.05, n2 = 20 and k2 = 0.7

production as a function of [MT ] and [MD] as follows:

d[P ]

dt
=H([MT ], [MD]) =

β1 + β2

1 +
(

[MT ]
k1

)n1

+
(

[MD]
k2

)n2
, (8)

where βi, i = 1, 2, are the maximum expressions in absence
of the repressors, while ni and ki are the Hill coefficient and
Hill constant related to the corresponding operator region,
respectively, as sketched in Fig. 11. Although the bivariate
Hill function in (8) is valid for any combination of the
inputs [MT ] and [MD], as explained in Sec. VI-C, in our
biological circuit design these will always have the same value,
resulting in the final behavior of the gene expression [P ]
versus [MT ] = [MD] shown in Fig. 12, where it is compared
to the desired curve of the logarithmic function. The MSE
optimal parameters to achieve this behavior are n1 = n = 1,
β1 + β2 = MAX = | log(10−3)|, k1 = Kp = 0.05, n2 = 20
and k2 = 0.7.



C. Details on the Box-plus Operation

The design in Fig. 8 realized with the components described
above, and leading to the box-plus operation described in (3),
is detailed next. The upper Gene Expression Circuit takes
as input two repressive transcription factors, namely, the
molecules T2, whose concentration value is L(y2|x2), stored at
the second bit interval Tb according to the Storage Operation
process described in Sec. III, and the molecules Z3, whose
concentration value is L(y3|x3), similarly stored at the third
bit interval Tb. T2 and Z3 are the complexes resulting from the
proteins t2 and z3, respectively. Since this gene is an operon
containing the coding sequences of the proteins A0, T0, and
D0, the output concentrations will result from (8) by setting
β1 + β2 = 1, n1 = n2 = ng and k1 = k2 = kg , meaning that
the operator regions for the two transcription factors have the
same characteristics, expressed as

d[A0]

dt
= H([T2], [Z3]) =

1

1 +
(

[T2]
kg

)ng

+
(

[Z3]
kg

)ng
. (9)

By analyzing the expression in (9), we observe that it
resembles the following product:

H̃([T2], [Z3]) =
1

1 +
(

[T2]
kg

)ng
· 1

1 +
(

[Z3]
kg

)ng

=
1

1 +
(

[T2]
kg

)ng

+
(

[Z3]
kg

)ng

+
(

[T2][Z3]
k2g

)ng
, (10)

except for the cross term at the denominator
(

[T2][Z3]
k2g

)ng

. At
the same time, the considerations made for the Hill function
in Section VI-A can be extended to the complementary Hill
function. Again, using the same notation as in (6), for Kp = 1
and n = 2, we obtain

d[Out]

dt
=

1

1 + [In]2
∼= 1− tanh

(
[In]

2

)
. (11)

This means that 1
1+[T2]2

∼= 1−tanh
(

[T2]
2

)
and 1

1+[Z3]2
∼= 1−

tanh
(

[Z3]
2

)
, therefore H̃([T2], [Z3]) ∼= (1− tanh

(
[T2]
2

)
)(1−

tanh
(

[Z3]
2

)
) when kg = 1 and ng = 2. If then we consider

the error between H and H̃ negligible, our gene controlled by
two different repressors gives as output something very similar
to (1− tanh

(
[T2]
2

)
)(1− tanh

(
[Z3]
2

)
).

By expanding the presented product d[A0]
dt =

H([T2], [Z3]) = 1 − tanh
(

[T2]
2

)
− tanh

(
[Z3]
2

)
+

tanh
(

[T2]
2

)
tanh

(
[Z3]
2

)
, we realize that, in steady state, [A0]

contains the desired quantity. In conclusion, for retrieving
tanh

(
[T2]
2

)
tanh

(
[Z3]
2

)
, we just need to subtract the quantity

1− tanh
(

[T2]
2

)
− tanh

(
[Z3]
2

)
to [A0]. To do that, we exploit

the other two Gene Expression Circuits, as shown in Fig.
8, which have both a promoter regulated by an activator.
These circuits take as input the molecules U2 and U3, output

complexes of a Storage Operation on u2 and u3 at the
second and third bit interval, respectively. U2 and U3 have
concentration values L(y2|x2) and L(y3|x3), respectively.
Both these Gene Expression Circuits give as output (operons)
the molecules A0, T0, D0 whose concentrations are related to
the input through the Hill function in (6).

From Section IV-B, [u2] = [t2] and [u3] = [z3], and
consequently [U2] = [T2] and [U3] = [Z3]. The output con-
centrations of the two genes will be [U2]

n

Kn
p +[U2]n

= [T2]
n

Kn
p +[T2]n

∼=

tanh
(

[T2]
2

)
and [U3]

n

Kn
p +[U3]n

= [Z3]
n

Kn
p +[Z3]n

∼= tanh
(

[Z3]
2

)
for

Kp = 1 and n = 2. Since the output species are the same for
all genes, their concentrations sum up leading to

[A0] = [T0] = [D0] = 1− tanh

(
[T2]

2

)
− tanh

(
[Z3]

2

)
+tanh

(
[T2]

2

)
tanh

(
[Z3]

2

)
+tanh

(
[T2]

2

)
+tanh

(
[Z3]

2

)
= 1 + tanh

(
[T2]

2

)
tanh

(
[Z3]

2

)
, (12)

which is exactly the argument of the first log in (7). Note
that the expression on the left hand side should be a temporal
derivative that has the same value of the concentration itself,
according to our steady state assumption.

To obtain the argument of the second log in (7), we use
the molecules T0 and D0, which end up producing two
transcription factors with identical concentrations as input to
the log(.). This results in the better fit of the Hill function to
the logarithmic function detailed in (8) and shown in Fig. 12.
From now on, we focus on protein T0 since D0 goes through
the same processing.

At the output of the Gene Expression Circuits, T0 reacts
with the molecule MT having concentration 2. In this way, at
the end of the reaction we obtain the desired value [MT ] = 2−
(1+tanh

(
[T2]
2

)
tanh

(
[Z3]
2

)
) = 1−tanh

(
[T2]
2

)
tanh

(
[Z3]
2

)
.

In the end, we are going to use A0 as the input to the upper
log(.) block, and MT ,MD as the inputs to the lower log(.)
block.

The two log(.) blocks should have as output the same
molecules P , since from (7) the second log is preceded by
a minus sign that reverses its actual sign (negative because
1− d < 1). Ideally, i.e., by neglecting the approximations, at
the output of the log(.) blocks we have

[P ] = log

(
1 + tanh

(
[T2]

2

)
tanh

(
[Z3]

2

))
− log

(
1− tanh

(
[T2]

2

)
tanh

(
[Z3]

2

))
= 2atanh

(
tanh

(
[T2]

2

)
tanh

(
[Z3]

2

))
= 2atanh

(∣∣∣∣tanh(L(y2|x2)2

)
tanh

(
L(y3|x3)

2

)∣∣∣∣) ,
(13)

which is exactly the magnitude, or absolute value |.|, of the
desired box-plus operation expressed in (3).
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Figure 13. Sign of the box-plus expression.

D. Sign of the Box-plus

The Sign of the Box-plus block in Fig. 8 has the specific
purpose of computing the sign of the box-plus operation
expressed in (3). The sign of the box-plus is negative only
when L(y2|x2) and L(y3|x3) have opposite signs, which
means that both n0 and m0 proteins are expressed. These
proteins bind into the complex Sb, leading to production of
the sign protein S through the Threshold Circuit. The latter
is a simple gene circuit with a very steep response that
gives a high output whenever there is input. If the protein
S is present, it reacts with the log(.) block output protein
P through a ligand-receptor binding, creating a complex that
binds to a Linearized Gene Circuit, detailed next, with n1 as
output (negative protein). If the protein S is not present, the
protein P alone binds to another Linearized Gene Circuit that
expresses the protein p1 (positive protein). In Fig. 8, at the
output of the Linearized Gene Circuits, the complexes N1 and
P1 are shown. They result from a Storage Operation on n1
and p1, respectively, at the third bit interval Tb.

The aforementioned Linearized Gene Circuits, whose bio-
logical schematic is shown in Fig. 13, are obtained through
promoters with a linear response in a given interval [0, δ]. For
this, we need to set MAX � δ, Kp � δ and n = 1, where
MAX , Kp and n are defined in Sec. III. For example, if we
set δ = 10, MAX = 100 and Kp = 92, we obtain a good
approximation, see Fig. 14.
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Figure 14. Comparison between a linear function and a Hill function with
MAX = 100, Kp = 92 and n = 1 for [In] ε [0, 10]

VII. SUM OPERATION TO COMPUTE L(x̂1)

To obtain the complete expression of a-posteriori log-
likelihood ratio (L-value) L(x̂1) in (3), as shown in Fig. 15 we
sum the output of the biological L-value computation from the
first received modulated concentration, i.e., L(y1|x1), which

is stored in the concentration of the Biological Delay Line
complexes containing N1 or P1 as described in Sec. V, with
the result of the box-plus operation after the Sign Inversion
Block, as described in Sec. VI-D, in terms of N1 or P1, whose
concentration is equal to the expression in (3). For this, we
assume that the output molecules N1 or P1 from the Sign
Inversion Block react with the same receptors utilized in the
Biological Delay Line, thus forming N1 or P1 complexes.

&(!#@)Delay
(K − 1)<=

[G#]	JK	 L# = &($#|!#)

Box	Plus	Operation

[G#]	JK	 L# =
&($-|!-)�&($1|!1)

Figure 15. Arithmetical sum to compute the a-posteriori L-value.

In the following, N1 is the negative complex and P1

is the positive complex. We assume that N1 complexes
and P1 complexes react with each other. If L(y1|x1) and
L(y2|x2) � L(y3|x3) are of different species, at the end of
the reaction, we are left with the positive P1 or negative
N1 complex, whose concentration is the a-posteriori L-value
L(x̂1) (Subtraction Operation). On the contrary, in the case
L(y1|x1) and L(y2|x2) � L(y3|x3) are of the same species,
we assume that they will not react, and their concentrations
will sum, leading to the desired result.

VIII. NUMERICAL RESULTS

To test the performance of the proposed biological circuit
design, we implemented the block diagram in Fig. 2 in the
Matlab SimBiology environment, generalized to compute the
L-value for each of the three bits. The value of the bit interval
has been tuned such that all the biological circuits achieve
the steady state condition, approximated by the condition
that all the output concentrations should be above 99% of
their ideal steady state value. The AWGN is generated by
randn and summed to the transmitted channel bits according
to the assumptions in Sec. II to get the received modulated
concentrations yi. The sequence of yi is then passed as input
to our code, which computes an estimate of L(x̂k), k = 1, 2, 3,
after the third bit time interval of each codeword.

To have a comparison between the theoretical performance
achieved by the ideal L-value computation and that given by
our circuit, we run Monte Carlo simulations to measure the
BER versus signal-to-noise ratio Es

N0
= 1

2σ2 . These results,
shown in Fig. 16, are obtained by deciding on the received
bit according to the L-value sign, i.e., Maximum A-Posteriori
detection. The number of transmitted codewords N used to test
the performance is variable and depends on the Es/N0 value.
It has been chosen as a trade-off between computational time
and reliability of the estimate. The number of codewords for
BER calculation varies from N = 100 codewords at Es/N0 =
−20 dB to N = 3 · 106 at Es/N0 = 7 dB.

It is also of interest to analyze the error of our biological
circuit in terms of L-values. We calculated L(x̂k) for 90
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transmitted channel bits, belonging to N = 30 different code-
words, impaired by Gaussian noise with variance σ2, and we
measured the MSE with respect to the L-values provided by
our biological circuit for σ2 ε [10−1, 5], as reported in Fig. 17.
A higher error for smaller noise values can be observed, since
high values of log-likelihood ratios are obtained leading to
tanh(L(yi|xi)) ∼= 1. From (13), this results into very large
output values of the logarithmic function which are not well
approximated by our biological circuit elements. In any case,
even when the MSE for the L-values is large, the performance
of our circuit in terms of BER are very close to those resulting
from an electrical circuit implementation [15].

IX. CONCLUSION

In this paper, inspired by recent studies favoring the effi-
ciency of analog computation over digital in biological cells,
we proposed an analog decoder design for Molecular Commu-
nication (MC) based on the genetic engineering of biological
circuits, realized entirely in the biochemical domain by using
activation and repression of gene expression, and reactions
of molecular species. Biochemical simulation data of the
resulting biological circuit demonstrate very close performance
to an electrical network implementation in terms of BER
and low MSE with respect to the L-values computed with
electrical circuits for channels in conditions of relatively high
noise. This decoder presented in this paper is intended as a

proof-of-concept design methodology for utilizing biological
circuit components to design functionalities in the MC domain,
with potential use in the engineering of future devices for
the Internet of Things in biological environments. For this
reason, the main focus has been devoted to the analysis of
the analog decoder by considering only a single transmitter-
receiver system, leaving a more realistic study with multiple
transmitter and receiver cells to future work.
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[18] G. Tkačik, A. M. Walczak, and W. Bialek, “Optimizing information flow
in small genetic networks,” Phys Rev E Stat Nonlin Soft Matter Phys.,
vol. 80, no. 3 Pt 1, p. 031920, September 2009.

[19] D. Kilinc and O. B. Akan, “Receiver design for molecular communica-
tion,” IEEE Journal On Selected Areas In Communications/Supplement
- Part 2, vol. 31, no. 12, pp. 705–714, December 2013.

[20] B. Alberts, A. Johnson, and et al.. J. Lewis, Molecular Biology of the
Cell. 4th edition. New York: Garland Science, 2002.

[21] J. Ang, E. Harris, B. J. Hussey, R. Kil, and D. R. McMillen, “Tuning
Response Curves for Synthetic Biology,” ACS Synthetic Biology, 2013.

[22] B. Wang, M. Barahona, and M. Buck, “Engineering modular and tunable
genetic amplifiers for scaling transcriptional signals in cascaded gene
networks,” Nucleic Acids Research, 2014.

[23] U. Alon, An Introduction to Systems Biology: Design Principles of
Biological Circuits. Chapman & Hall, 2006.


