arXiv:1702.01160v2 [cs.CR] 7 Feb 2017

LeakSemantic: Identifying Abnormal Sensitive
Network Transmissions in Mobile Applications

Hao Fu, Zizhan Zhen@ Somdutta Bose Matt Bishop, Prasant Mohapatta
*Department of Computer Science, University of Califoridayis, USA.

TDepartment of Computer Science, Tulane University, Newe@n$, USA.

{haof u, sombose, bishop,

Abstract—Mobile applications (apps) often transmit sensitive
data through network with various intentions. Some transms-
sions are needed to fulfill the app’s functionalities. Howesr,
transmissions with malicious receivers may lead to privacy
leakage and tend to behave stealthily to evade detection. €h
problem is twofold: how does one unveil sensitive transmigsns
in mobile apps, and given a sensitive transmission, how doesne
determine if it is legitimate?

In this paper, we propose LeakSemantic, a framework that can
automatically locate abnormal sensitive network transmisions
from mobile apps. LeakSemantic consists of a hybrid program
analysis component and a machine learning component. Our pr
gram analysis component combines static analysis and dynam
analysis to precisely identify sensitive transmissions. @npared
to existing taint analysis approaches, LeakSemantic achies
better accuracy with fewer false positives and is able to clact
runtime data such as network traffic for each transmission. Bised
on features derived from the runtime data, machine learning
classifiers are built to further differentiate between the kegal and
illegal disclosures. Experiments show that LeakSemanticchieves
91% accuracy on 2279 sensitive connections from 1404 apps.

I. INTRODUCTION

pnohapat r a}@cdavi s. edu, zzheng3@ ul ane. edu

API and runtime, which involves millions of lines of code.
Moreover, they focus on detecting sensitive transmissiomg

and are often not able to distinguish between normal and
abnormal sensitive transmissions.

To address these limitations, we propasakSemantic a
novel approach that combines program analysis and machine
learning to identify abnormal sensitive network transiioiss
more accurately through a better understanding of network
semantics. LeakSemantic adopts a hybrid static-dynanak an
ysis approach to uncover sensitive transmissions (botmalor
and abnormal). The hybrid approach not only produces better
results than a purely static or dynamic analysis approash, b
is also able to generate network traffic data in a proactive
way, which provides a better characterization of network
behavior than widely-used static program analysis based ap
proaches [3./4, 10, 14]. For example, the hostname of the ma-
licious server in the?JAPPS malware family is encrypted as
“ax3nkl 4ngel e2guoo9f 1hc3ohnt and the real address
(xm . meego91. conj is only revealed at runtime. Without
running the code, static analysis methods fail to decrypt th

The exponential growth of mobile devices has raised signifialicious hostname, which is an important feature for de-

icant security concerns. Due to the large amount of seasititecting abnormal network transmissions. Instead, the miyna
data saved on these devices and the coarse-grained pemmisaxecution used by LeakSemantic enables tracking runtime
management in mobile systems, they are vulnerable to @rionformation including decrypted hostnames. The trafficadat
privacy and malicious infringing behaviors, which is ofteryenerated are then fed to the machine learning component to
hard to detect by mobile users themselves. One reason is thatd classifiers for detecting abnormal transmissionsteNo
malicious apps have begun taking steps to avoid detectionthgt our program analysis component can potentially gather
introducinglogic bombs[23]. For instance, an app can hidemore features than just network traffic, which can be useful
malicious transmissions by receiving certain commands frato differentiate between normal and abnormal flows. We focus
remote servers. Even if a sensitive network transmissionda network traffic in this work so that the learning model thus
known, an end user often has trouble telling if it is necgssabuilt can be applied even when the app code is not available,
since the legitimacy of a sensitive transmission dependtsone.g., when it is integrated into a network-based intrusion
purpose. Therefore, it is critical to uncover securityssive detection system. Thus, LeakSemantic can be used in various
behaviors and understand tirtention of them to detect the settings. When deployed locally, it allows app market ofmesa
abnormal ones. to identify privacy leakage in an app before releasing it t

In this paper, we focus on detecting abnormal sensitivearket. Moreover, network administrators can benefit froen t
network transmissions in Android apps. These transmissiatletection model constructed by LeakSemantic to protecsuse
either leak user private data to malicious servers, or cblldrom unintended transmissions.
sensitive information for purposes such as advertisenikats A major challenge of program analysis for mobile apps
do not contribute to fulfill the functionalities of the untiéng is how to achieve both accuracy and precision. Static pro-
apps. Despite the fast-growing literature on mobile deviggam analysis examines the program dependencies in mobile
security and privacy, existing approaches are insufficient apps without actually executing them. Because of its static
identifying abnormal sensitive network behaviors. In jgart nature, it cannot handle reflective calls whose target abass
lar, their ability is limited by the complexity of the Andbi method name is concatenated at runtime, and loading code

http://arxiv.org/abs/1702.01160v2

dynamically is becoming more comman [13]. Static analysBection[\f. We discuss the limitations in Section VI and the
also introduces false alarms as an over-estimated methodrdlated work in Sectiof VII. Finally, Sectidn V]Il conclusle
contrast, dynamic analysis chases the runtime behaviortbé paper.

apps and is applicable even when reflection is present. &nlik
static analysis that explores all code paths includingaisitele
ones, dynamic analysis only proceeds to feasible paths and
therefore introduces lower false positive rate. Moreover,
can obtain data that are not available in the static setting,
such as network traffic data using encrypted URLs. However,
by focusing only on the runtime behaviors, dynamic analysis
suffers from insufficient coverage and hence false negative
Recent research efforts aim to combine static and dynamic
program analysis to ameliorate the above problems|[18, 21,
22]. We continue this line of research and propose a novel
design of hybrid program analysis. LeakSemantic adopiis-lig
weight static analysis to flag potential vulnerabilitiesda
creates an environment to dynamically confirm the suspscion

Hybrid Program Analysis

Moblie Apps C:::ZLttI;:)ens) Traffic Flows
Detection P h i
Model

Transmission Classification

Fig. 1: System Architecture

Features

Il. OVERVIEW

Our static analysis provides precise modeling of the call Figyre[] depicts the architecture of LeakSemantic. From the

relationships inside an app component, which is cruciatifer gatasets of authentic apps and malwares, our system psceed
integrated dynamic analysis component. We introduce a Ngyne following steps:

execution trace generation technique that enables Leak$em
tic to uncover malicious behaviors on which previous stsdie
would fail. As we will show in Sectiof ITI-B, it is insufficien
to simply identify code paths leading to targeted APIs. Tis th
end, LeakSemantic dynamically spreads the code coverape an
computes the appropriate traces to trigger stealthy belsavi

It also takes into account various sources of unknown viegab
with an effective handling of unknowns, which further redsic
the number of false negatives.

To summarize, this paper presents the following contribu-

tions:

« We propose a novel hybrid static-dynamic program anal-
ysis technique to locate sensitive network transmissions
in mobile applications. Our approach not only enables
better accuracy and precision, but also helps derive more
detailed features, e.qg., traffic URLs, that are important fo
network behavior analysis. .

« We present the design and implementation of Leak-
Semantic, a detection system that combines program
analysis and machine learning to identify networking
related abnormal behavioral patterns. Instead of classi-
fying a whole app as malicious or not as most previous
work does, our approach is able to distinguish malicious
behavior from normal behavior within an app. We also
show that network-level detection can benefit from the
information provided by program analysis.

« Hybrid Program Analysis: The phase of hybrid program

analysis precisely identifies and characterizes the lgakin
connections in the target app. We first perform static
analysis to retrieve the call graphs of the corresponding
app. To better model the lifecycles of app components
and runtime events, we creatieintry Mai n() for each
component. The invocations of sensitive APIs (sources)
that collect private data with their entry points are identi
fied through traversal of the graphs. We then construct
execution traces and run the program from the set of
traces. The information flow analysis is performed during
the execution. If a connection point (sink) is reached,
we record the dynamic data of the communication. To
achieve better coverage, we have designed methods to
generate execution traces and handle unknowns encoun-
tered during runtime.

Transmission Classification: Having extracted traffic
information about the sensitive connections, we then
derive a set of features that can be used by the anomaly
detection system. Concretely, we concentrate on building
machine learning classifiers using lexical features ddrive
from URLs. Our novel design enables us to build models
for both host-based and network-based detection.

IIl. L EAKSEMANTIC

To model the runtime behavior of apps while achieving good

« We evaluate the effectiveness of LeakSemantic using twoverage, we use a hybrid program analysis that combines
micro-benchmark suites and 1404 real-world apps. Osftatic analysis and dynamic analysis. In Android, a medium-
hybrid program analysis produces better results than agiged app can contain dozens of components and thousands of
of the three state-of-the-art taint analysis tools used inethods. Dynamic traversal of all possible paths is expensi
evaluations. Experiments further show that LeakSemantiad infeasible in practice. Our approach leverages liggityiat
is fast and cheap, allowing it to identify true threats imsidstatic analysis to locate invocations of sensitive APIs el
the real apps with high accuracy. corresponding components. The output of static analydis wi

The rest of the paper is organized as follows. We highlighelp guide dynamic analysis. Machine learning models are

our system overview in Sectidnl Il. The technical details atben constructed with the flows derived by dynamic analysis.
included in Sectiori Tll. After presenting the system implek is crucial that LeakSemantic can generate sensitive flows
mentation in Section IV, we show the evaluation results mith decrypted URLs. Finding 1 in Sectién V states that the

detection ratio decreases obviously if the training datasdo

not cover sufficient characteristics of the malicious flows. Listing 1: An example component
class Acvitityl extends Activity {

1

2 String url =""
@ 3 String imei = ""

4

String tnmp = "";

6 void onCreate() {
/+ initiate the activity =/

\ 9 url = "gongful88. cont;
11
12 void ondick() {

13 tnp = <get phone
manager >. get Devi cel d(); // source

Fig. 2: The call graph ofAct i vi t y1 modeled by the corresponding iw !

dumryMai n() . The solid lines indicate call relationships among the, voi d onLowMenory() {

callbacks and the dashed lines specify one possible erectrice 1, url = url.concat (inei);

on the call graph. 18 URLConnection conn = new

URL(url).openConnection(); // sink

19 imei =tnp; // tainted

A. Static Analysis ” }

Static analysis is responsible for constructing the caipgr _, voi d onDestroy() {
of the target app, which guides the upcoming dynamic analy- /* finish the activity */

sis. Unlike (desktop) programs written @that contain a main #
function as the entry point of the execution, Android apgplic ZC
tions do not contain a single main method. Instead, they are
composed of multiple components, where edati vity

or Servi ce component is alava class and has its own ,
lifecycle and event listeners. The lifecycle models traoss
such as creation, pause, resume, and termination, betw
the states of a component. Event listeners allow applicati
to respond to various types of runtime events such as
interactions or receiving SMS. The lifecycle and evengligtrs
are constructed from the corresponding callback methods
every callback can be treated as an entry point because t
are implicitly called by the Android framework.

To construct call graphs of applications, previous wor
typically creates one or more dummy main routines that
shared by multiple components. For example, FlowDrpid [
creates a single dummy main for the entire application a
all components share that main. AppAudit![22] introduces a
shared dummy main for all components of the same categtﬁy
(Activity or Service). However, analyses starting from™"
a shared dummy main may include components that do nofThe dynamic analysis component of LeakSemantic consists
contribute to leakage. Moreover, a shared dummy main blwwan executor with a taint analysis module and a simulation
the connections between event listeners and componentflthe Android runtime. The executor is our own version
is possible that an event listener may be linked to the wrowf the Dalvik virtual machine. It is able to directly unpack
component so that the latter can directly invoke the forméndroid package files and execute the bytecode instructions
during the analysis, even though this would not happen We feed a set of traces to the executor. The execution traces
a real setting. Instead of constructing a shared dummy maéme derived not only from the results of the static analysis,
we let each component have its own dummy main to eliminabet also from the execution procedure itself. The novelgtesi
the confusion and alleviate the overhead of dynamic armlystnables capturing the misbehavior missed by state-o&the-
Each component thus has a call graph (an example is giegproaches, which we will discuss in detail later. During
in the FigurdR). The event listeners suchoasCl i ck() and the execution, whenever a sensitive source API is invoked,
onLowMenor y() embedded with the component are regighe taint analysis module starts to track the propagation of
tered afteronCr eat e().onCl i ck() is a Ul callback that sensitive values associated with the source APIl. When one
is invoked once the corresponding buttons are clicked, @dser or more sensitive values reach a network connection API call
onLowMenor y() is called once the available memory of th€a sink) such asURL/ openConnecti on() in line 18 in
device is lower than a threshold value. Listing [, which implies that the transmission $ensitive

A source is an invocation of an API provided by the
ndroid framework to retrieve the sensitive informatioorfr
the underlying device. We use the list from Susil[17] to
te the sources. An example source is the invocation of
O% t Devi cel () atline 13 shown in Listing]1. The program
inspired byEvent Or deri ngl in DroidBench [1]. For
each source, the corresponding entry point of the compo-
nt in the call graph is extracted with applying a graph
ersal algorithm on the call graph. For instance, theyent
ointond i ck() of the componenfcti vityl in List-
g [is located through breadth-first search beginning with
@t Devi cel () onthe call graph. The entries with relevant
Il graphs serve as the starting points of dynamic analysis
e will explain this in detail in the next subsection.

Dynamic Analysis

the corresponding runtime information such as the network
traffic data is recorded. We adopt general taint policiesluse
in previous work|[5| 22] to specify the propagation procedur *
For example, one rule set is tainted as long as one of thez
operands in the instructionz* = y binop z” is tainted. To .
improve the accuracy of the data flow analysis, we have furthe
developed libraries to emulate the fundamental behavibrs 0
the Android runtime. The implementation details are desati .
in Sectior1V. In the following, we discuss how LeakSemantic
constructs execution traces and how it handles unknowresalq:]
during the analysis. -

1) Execution Trace Generationle leverage the outcomes::s
of the static analysis phase to derive a setbakic execu-

Listing 2: A logic bomb

String mRun = get SearchTask(); // commands
voi d doSearchTask() {
if (nRun null') {
report State(1)
if (mRun !'= null) {
runPackage(mPkgNane)
} else {

/'l |eak

} else {

}

tion traces, where each trace is a sequence of specific ARiceonCreate() — onCick() — onLowiMenory()
calls beginning with a lifecycle callback and ending withs created. Similarly, LeakSemantics construm€r eat e()
an APT call where a source is triggered. For instance, fes onCl i ck() — onLowMenory() — onLowivenory()
the entry pointonCl i ck() in Activityl, LeakSemantic once finishing runningpnCreate() — ondick() —

builds an execution tracenCr eat e() — ond i ck() that

onLowMenory(). We can set a threshold on the number

informs the executor to invokenCl i ck() after calling of execution traces to save analysis time in practice.
onCreat e(). The execution trace is generated by apply- 2) Sources of Unknownsburing the execution, the dy-

ing depth-first search to find a path froomCreate() to

namic analysis may encounter unknown variables that have

ond i ck() in the call graph (FigurEl2). The default valuesio explicit assigned value to the executor. As mentioneed ear

of global variables are normally initialized at the lifetgc lier,

running fromonCr eat e() alleviates the issue through

callbacks such asnCr eat e() andonSt art () . We choose initializing the component as completely as possible.

to execute from these callbacks to reduce unknown variablesIn addition to the above mentioned unknowns, we observe
which in turn reduces unknown branches that need to Hwtthere are many cases where the accurate value of aleariab
explored and improves the efficiency of dynamic analysiis dependent on the runtime context, which can be categbrize
Properly modeling the unknowns is challenging in generel a@as follows:

will be discussed in more detail in the following subsection «
In addition to reducing unknowns, our approach also enables
LeakSemantic to generate more complete URLs, which ise
important for building accurate classifiers (see Sedti&C)!

As we can see in Listing] 1, the connection in line 18 can only «
be correctly triggered ifur | is properly assigned with the
hostname in line 9. .

The de factohybrid analysis approaches such as AppAudit,

User input: input from end users during the interactions
with the user interface;

Device status: the real time status, such as WiFi on/off
and the power level, of the underlying device;

Natural environment: e.g., current temperature, coordi-
nate and time;

Incoming information: the content of the SMS and the
network responses received while using the app.

Harvester [[18] and IntelliDroid| [21] only use code path$alicious apps may hide their behavior by leveraging some
with certain code locations (e.g., a sink) and terminate tlo¢ the factors mentioned above to create malicious code
analysis once one such location is reached. However, reaciat is only triggered under certain circumstances. For in-
bility alone does not necessarily imply the exposure of trugance RCSAndr oi d waits for incoming SMS messages and
malicious behavior. Reconsider the code snippet shown dhecks whether these messages contain specific commands and
Listing[1l. A direct invocation obnLowivenor y() does not then decides whether to transmit the user data [6], and the
lead to a leakage since the argument of the sink in lim& oi dDr eammalware family triggers its malicious payload

18 may have an empty nei .

Given thatt np is tainted only at night [23]. As another example, consider the code

in onC i ck(), the correct order to trigger a real leakagghown in Listing 2, which comes from a malware sample of
is to invoke onLowierory() twice. The corresponding the Dr oi dKunf ul family. In line 1 the program contacts a

execution sequence can be representedreg® eat e() —
onC i ck() — onLowienory() — onLowienory().

remote control server and retrieves the commandsrifon.
report St ate() is responsible for collecting user private

To correctly generate the set of execution traces thatdrigglata and it is only triggered when the malicious server espli
the actual leakages (or other types of abnormal behaviosjth certain characters. In other words, the dynamic cdntex
we parse the code of the executable callbacks to determizises the executor to generate different outcomes even for
whether they contain statements that read the correspgpndine same input trace. To detect such malicious behavigs, it i
newly tainted variables. A new execution trace is then cothkerefore important to treat those variables whose valaeg v
structed by expanding the existing trace with relevant- catbver the context as unknowns.

backs. For instance, after executing the tran€r eat e() —

3) Handling of UnknownsTo represent the set of variables

ond i ck(), onLowvenor y() is identified since it reads with unknown values, we maintain a symbolic statethat
the value from the tainted variablenp. A new execution maps variables to symbolic expressions, and a symbolic path

constraintPC, which is a quantifier-free first-order formulasimply set thresholds on analysis time or the number of
over symbolic expressions. Bothand PC' are updated during visited instructions. However, these approaches may lead t
the course of execution. an incorrect value of after the loop, which should be equal
A conditional statement such ad inside the target pro- to the actual length ok. Importantly, the value of is used
gram may contain unknown values in its conditions. Unknowe determine whether to trigger the leakage in line 7.
branches during the execution interrupt the executioresine Instead, we execute the block under the loop only once and
executor does not know which direction to explore. Insteadark all the variables that accept new values within thekloc
of always following one path, which increases false negativAfter exploration of the block, the tagged variables will be
significantly, LeakSemantic adopts a depth-first searceraeh modeled symbolically for the rest of the execution. By tiregt
while taking the symbolic path constraints of unknown vari- as a symbolid nt eger with constraint > 3 A4 < 10, the
ables into account to reduce the search space. sensitive transmission in line 8 will be successfully restth
More specifically, whenever an unknown branch is encoude also introduce some heuristics to further mitigate theas
tered, LeakSemantic creates a snapshot to store the stat@fgfath explosion, which will be discussed in Section IV.
the executor and pushes the snapshot onto a SaakStack
The snapshot consists of a copy of the current running cont
including the program counter and the values in the stack andJsing the traffic flows generated by the dynamic analysis
the heap, which enables the executor to restore the environmponent, we formulate the detection of abnormal semsitiv
ment after the unknown branch is processed and continue tresmissions as a classification problem. LeakSemantic
analysis where it was left off. The executor then exploreheauses a supervised learning approach to train classifiets tha
direction under the branch one by one, while usBmapStack can be used by host-based or network-based intrusion
to save and restore the environment. detection systems. Specifically, we focus olexical
Consider again the code shown in Listldg 2. The executid@atures derived from the set of URLs in the traffic
starts with an empty symbolic state and a symbolic patfaces. Lexical features often contain useful patterns to
constrainttrue. As a result,c = mRun — mRung, where distinguish between suspicious and benign traces. URLs
mRung is an initially unconstrained symbolic value. At evenpguch as gad. j u6666. com Get Ad?& o=(.+*) and
unknown conditional statemeift (¢) thenS1elseS2, PC is api . openweat her map. or g/ f or ecast ?& on=(.),
updated toPC A o(e) for the thenbranch andPC A —o(e) in whichl o or | on is an abbreviation of “longitude”, have
for the else branch. For instance, at the unknown conditiothe user's location data embedded. The wo@#d Ad and
in line 3, a snapshot of the executor is saved. The executdrr ecast further provide hints about the purposes of
first updates thePC to mRuny # null and explores the the transmissions: the former URL is sent as a request for
else branch of the condition. Once the execution terminateagvertisement while the latter is composed to retrieve the
it restores the status from the snapshot and proceedscesresponding weather forecast. An effective detectoulsho
the then branch of the condition in line 3 with°PC up- be able to report the ad request as suspicious and release the
dated tomRuno = null. The branch consists of a methodperational weather trace.
report State() that stealthily exposes user’s private data, We utilize the simple yet powerful “bag-of-words”
and another unknown condition (line 5). The procedure tvodel [15] that is frequently used in spam detection to @eriv
handle the second unknown condition is similar to the firgt onfeatures inside URLs. LeakSemantic divides a URL into to-
In this case, however, thiienbranch has the path constrainkens by treating certain characters as separators. Eaafctlis
mRuny = null A mRung # null leading to an infeasible token is then viewed as a separate feature and every data
path. Therefore, the executor ignores thenbranch and only flow collected is then converted to a vector of binary values.
explores theelsebranch. Direct application of “bag-of-words” may produce a verygar
Code containing loops or recursion may result in an infinif@ature space, which results in a heavy computational ésst.
number of paths to be explored if the termination conditimn f Stated in [19], one can limit the size of the feature set by
the loop or recursion is symbolic. Consider the code snipp@moving tokens that seldom appear in the flows.
shown below:

8(Transmission Classification

IV. IMPLEMENTATION

String[] x = getH tpResponse();

; int i =o In this section, we provide further details about the imple-
3 while (!x[i].equals("")) { mentation of LeakSemantic. LeakSemantic is mostly written
‘ i+ in Java and consists of around 18,600 source lines of code.
. ! LeakSemantic extends a part of FlowDroid for call graph
7 if (i >38& i < 10) { generation. We implemented our own executor with taint
8 transmt(longitude, latitude); analysis support to perform the dynamic analysis mentigmed

’ } SectionTII-B. The executor leverag@ATDr oi d to extract

Since we do not know exactly how the server will respond iBytecode and then interprets each bytecode instruction one

line 1, the content and the length of string arsaghould be by one. During the execution, the sensitive data propagatio
treated as unknown, leading to an infinite number of code

paths. To address this problem, previous studies [18, 22}https:/github.com/mingyuan-xia/PATDroid

is tracked by the taint analysis plugin. Android applicaio « AppAudit is a hybrid taint analysis approach similar to
invoke the APIs provided by the Android SDK to interact LeakSemantic. It also uses static analysis to mark poten-
with the underlying operating system during runtime. How- tial leaking methods, and then prune candidate methods
ever, the official Android SDK is missing critical parts of through dynamic analysis. But the way it generates call
the Android runtime, which are filled with “stubs” used for graphs and models the unknown variables is different
compilation. The execution and taint analysis cannot mFdce from LeakSemantic.

correctly without precisely modeling of the Android runém We executed LeakSemantic on a computer with an Intel
We therefore manually pad the incomplete Android SDiCore CPU E8500 @ 3.16GHz and 2GB of heap memory
and emulate the core functionalities offered by Androidr Oyor the JVM. Since Andrubis has fixed analysis time and
simulation of the Android system is similar to the Andl’Oi(AppAudit does not provide installation package to run lbgal
Device Implementation (ADI) used in DroidSafe [9]. But theijt js hard to compare the running times of the set of tools
implementation is purely for static analysis and does nalesc directly. However, we observe that LeakSemantic exhibits
well to support our dynamic analysis. good performance on the apps with short analysis time.
LeakSemantic is currently using th#aCoFd to repre- ~ we evaluated the detection accuracy of the above tools using
sent and update the path constraints. To alleviate the pail following two micro-benchmark sets. LeakSemantic spen
explosion caused by unknown branches, we heuristicalip 4s on average for each app and FlowDroid took an average
limit the number of unknown variables. We use the APYf 13.2s per app:
androi d. net . Net wor kI nf o/ i sConnect ed() to il- 1) DroidBench:DroidBenc is an open-source benchmark
lustrate the ided.sConnect ed() reveals the real time con-suite that contains a set of hand-crafted apps that exploit
nection capability of the device, so that the return valdfleces various characteristics of the programming language t@bsyp
the device status. This should be treated as unknown inythegtatic taint analysis. It contains 118 apps in total, amohigiv
as mentioned in Sectidn IIliB. However, the transmissiom cave excluded 10 apps with leakage types unsupported by both
be triggered only if the device is connected to the Interngindrubis and AppAudit, such as leaking user input passwords
We therefore force the API call to always returoe instead. Table[] summarizes the detection results over DroidBench.
We also simulate some commonly used third-party line observe that LeakSemantic achieves the best qualitygmon
braries to reduce performance overhead. For instang@ge four taint analysis tools. Precise call graphs and thieibe
com squar eup. pi casso is a widely used open-sourcehandling of unknowns enable LeakSemantic to generate zero
package to support downloading and presenting imagese Sifflse alarms. Among the three baselines, Andrubis performs
no misbehavior in it has been detected, we do not check théest and successfully report most leakages. This is because
subroutines called by the package during execution. ldsteghe dataset is originally designed to test static analysist
we replace methods inside the official packages with our ovéid difficulties for static analysis are typically not haat f
methods during the execution. dynamic analysis. FlowDroid is able to locate more than 75%
V. EVALUATION of Ie_al_<s. But its over—ap_pr_oximation also leads to the worst
recision. Also, FlowDroid is unable to generate runtimeada

We_ hf:lvehqonduqted a comprehﬁnsweleva_\luatlon %Leak fich as traffic flow, and therefore cannot be directly used to
mantic. In this section, we report the evaluation results@r 1, ;4 5 traffic-based transmission classification model.

fiqdings. Our evaluat_ion contains two steps. First, we l@ger Since both AppAudit and LeakSemantic adopt hybrid pro-
mmro-benchmayk suites to evaIuaFe the leakage deteatmn a ram analysis, we conducted a more detailed comparison be-
racy of our hybnd program analysis module. Second, W€ aPYeen them. LeakSemantic achieves better detection agcura
LeakSe_manfuc fo real-world apps _and constr_uct cIassﬁcerszr several reasons. First, AppAudit terminates its exeout
ieteBct |Ilﬁg|t|rr|1(atse _exposu(;es folr_ dlﬁ?rsnt settlngs.l . once a sink is touched. As we discussed in Sedfonlili-B,
- Benchmark Suites and Quality of Program Analysis reachability alone does not necessarily imply a sensitive
We compared LeakSemantic with the following state-of-th@ransmission. Second, AppAudit does not consider somestype
art taint analysis tools: of unknowns and always exploits one direction of an un-
o Andrubis [18] is a dynamic analysis sandbox basechown branch, which introduces false negatives. Moreover,
on TaintDroid. It generates nearly 8,000 pseudo-randdreakSemantic provides a more complete implementation of
streams of external events and monitors the behavior @fnamic analysis to support various mechanisms used in
the target app for 240 secofids Android. In particular, LeakSemantic is able to locate ¢ven
» FlowDroid is a flow-, field-, and object sensitive statithandlers registered in the layout configurations and track
program analysis framework. The original FlowDroidthe communications among multiple components. AppAudit
cannot track information flows across separate cordees not support any of these Android features. Last, as we
ponents. We integrated FlowDroid with Epicc [12] tomentioned in SectionIlI-A, the inaccurate model of callgra
partially support inter-component communications. used by AppAudit increases its false positives.

2https://jacop.osolpro.com/ 4The up-to-date stable release is DroidBench 2.0 (httjithuilg.com/secure-

3The official Andrubis service is no longer available. We aflsd Taint- software-engineering/DroidBench/tree/master). Weaegd all the sinks with
Droid on a real device and composed scripts to create anoament similar network transmissions since Andrubis and AppAudit do neattcertain sinks
to Andrubis. as sensitive in some apps.

TABLE [: Detection results on DroidBench

Tools Missed Flows Accuracy FP Precision

Andrubis 15 84.2% 0 100%
FlowDroid 22 76.8% 10 56.6% g
AppAudit 56 41.1% 2 91.3% E
LeakSemantic 2 97.9% 0 100% H

FP = False Positives

TABLE II: Accuracy on BombBench

0
LeakSemantic Websense Fortinet Dr.Web BitDefender

Tools Missed Flows Accuracy Fig. 3: Detected malicious sensitive transmissions.
Andrubis 21 4.5% with an identical URL. We merged these transmissions with
FlowDroid 14 36.4% . . s

AppAudit 12 45.5% the same URL into a single one within the target app.
LeakSemantic 1 95.5% We first collected malicious sensitive transmission from th

Android Malware Genome project, which contains 744 leaking
LeakSemantic (and all the three baselines) misses two flop@/wares|[26]. LeakSemantic extracted 1223 maliciousisens
that involve inter-application communications, whichuizgs tive transmissions and collected the corresponding trafie
modeling the behaviors across multiple apps. None of tfiESt observe that these malicious transmissions cannoobe ¢
existing taint analysis tools can detect this kind of catns rectly identified by existing commercial anti-virus soarts,
attack. Another unresolved challenge of LeakSemantois which motivates the need for a new detection approach. To

trol flow dependent taintslso a well acknowledged drawbackhis end, we uploaded the URLs of these transmissions to
in most taint analysis tool$ [22]. Vi rusTot al [§, a popular website that scans submitted URLs

2) BombBench: BombBenchH is another open-sourceWith latest 68 anti-virus engines. Surprisingly, 64 out & 6
benchmark that contains 22 apps to test taint analysis.tog§9ines did not report any alarms regarding the transmissio
Each app takes advantage of a kindlogic or time bomb Figure[3 prgsent_s_ the det_ect|on results py_ the rest 4 engines
inspired by previous studies [18./23] 25] to conceal a seasit Vebsence identified relatively more maI|C|ous URLs (436,
flow. We show the results in Tab[8 II. LeakSemantic identifigd 32-7%), but the number found is still far from 50% of all
most leaks among all the four tools. We can see the shdRlicious connections. _
decrease of accuracy in Andrubis, which indicates thaeeurr We then ran LeakSemantic on 660 apps crawled from
random-events based testing toolkit is not powerful endoghth€ categories that have legal sharing functionalitiespp a
cover complicated program logic. Its limitation is fundanted marketd. Among them, LeakSemantic recognized 1056 sen-

and cannot be simply settled with extension of analysis timgiivé transmissions. The average analysis time for eagh ap
For example,Devl nf 02 triggers its payload only under S 135.3s, including the 744 malwares and the 660 authentic
certain system language. Because, unlike LeakSemantig, tRPPS- For each flow collected, we examined the destination

do not count as unknown the variables obtaining valu9st name. If the host name belongs to an advertisement
from Local e/ get Di spl ayNanme(), both Andrubis and ©F analytics server, we marked the flow as illegal. We then

AppAudit fail to capture the disclosure flow. We notice thagnecked the plain text content delivered through the flovet s
FlowDroid also could not successfully mark this case, whidihether the response sent by the server is related to the sent
may be caused by inaccurate modeling of system functiohSer data or not. There are cases in which the communication
LeakSemantic missed one flow because of a variable implicifétween the phone and the server are encrypted. We leveraged

assigned by a user-driven event. Although we model varsabl@Strumentation and reverse engineering to block thosesflow
who read the values from the Ul-related API calls such &¥é reran the modified app to see how blocking influences the

Edi t Text / get Text () as unknowns, currently we do not2PP- The flow was labeled as Iegal _/vhen the app's functignalit
directly view the variables modified by the callbacks such &3 affected. Out of 1056 transmissions, 791 did not affeet th
ond i ck() as unknowns even they are correlated with us@PP's functionality, so we labeled them as illegitimate eTh
interactions. We do this for performance concerns sinceeth@ther 265 operational sensitive transmissions were deliec
might be plenty of variables influenced by the callbacks i refom 183 apps.

apps. Excessive amount of unknowns leads to the exponentiaf/e used the labeled 2279 transmissions as training and test-
size of code paths needed to be explored. ing data with ten-fold cross-validation [11], which is arefard

approach for evaluating machine learning solutions. We ap-
B. Real Apps and Transmission Classification plied Decision Treeas the learning classifier for LeakSemantic

We then applied LeakSemantic to build a traffic classific ince it i_s common_ly U.SEd in _traffic cIassification_[J.G, 19].
tion model using real apps. From the traffic generated by o P lmenéloned heartllﬁr md Sect|otﬁ I,kIBeak?je(;n?nn:_: can t)e
hybrid analysis tool, it is possible that multiple code pzatad eployed as a host-based or hetwork-based detection system
to the same connection, which results in separate tran§msss sy /www.virustotal.com/

“Google Play (https://play.google.com/store/apps) anidiiBapp Market
Shttps://github.com/bombbench/BombBench (http://shouji.baidu.com)

TABLE III: Host-based Classification Results Finding 2: LeakSemantic identified more than 1223 mali-
Class TP Rate FP Rate Precision F-measure Cious transmissions in the malware dataset. However, idcou
not properly generate traffic flows for a few transmissions

lllegal 0.938 0.063 0.974 0.956

Legal 0937 0.062 0.856 0.895 such as those from ther oi dKunf u4 malware family. We
manually inspected the code and found that the hostnames
TABLE IV: Network-based Classification Results of the transmissions are not embedded either in the code or

— in the resource files of the apps. Instead, the transmissions
Class TP Rate FP Rate Precision F-measure gynamically retrieve the hostnames from a remote servér wit

llegal 0.915 0.095 0.916 0.915 the help of the command and control modules.
Legal 0.905 0.085 0.904 0.904 Finding 3: From the crawled apps, we noticed that 3 connec-
TP = True Positive, FP = False Positive tions indirectly leak the private data. Instead of sending t

) ~user data directly to a tracing server, they first grab the'sise
We conducted two experiments that reflected the effects®n@oordinates and query a legitimate popular location server

configured in a single host system, it automatically finds thgsscription to a suspicious server. Such behavior sugtfests

disclosure points and then picks the illegal instancesthase npeed to track the influence of a connection even when the first

the flows generated. The classifier at host-level involvdg onzonnection contacts a legitimate server.

the flows of sensitive transmissions; the detection model Bihding 4: LeakSemantic found no sensitive HTTPS connec-

network-level should be able to filter out the innocent flowgons in the malwares. However, 27 illegitimate HTTPS trans

that do not carry any sensitive data. missions were identified in the authentic apps and they wre a
1) Host-based DetectionTablefIll shows that LeakSeman-pilt by third-party ads/analytics libraries. Althoughnsiive

tic has high precision and F-measure in identifying illeggiTTps connections are not popular at the current time, we

transmissiorfs After manually inspecting the misidentifiedtoresee the necessity of inspecting HTTPS connections with

instances, we found that their URLs were very similar tge techniques such &SLspl i tf in the future.

the. benign addresses. Also, they put the sensitive data if—’"iﬂding 5: We found that more than 60% of the 183 apps
their body rather than the URL, which makes the URL-basgfa; have legitimate sharing connections also contaigalle

detection more difficult to correctly label them. We notetthg,ssmissions inside for ad or analytics purposes. We also
LeakSemantic is able to collect more information than URLg,yng a weather application that only transmits users’tioca

We plan to consider more features to further reduce the falggia 1o ad servers. It is highly probable that the users afethe
negatives in the future. apps will grant the app the permission to access sensitive

2) Network-based DetectiorBased on the sensitive transyegoyrces without knowing their private data will be caitet
missions we collected, we added the non-sensitive traﬁmﬂostealthily by unintended servers.

to the legitimate class. This reflects the real environmént o
the network-based detection. Tablg IV summarizes our tesul VI. LIMITATIONS

As we can see, the prediction incurs a slight loss in accuracyoyr approach has the following limitations:
compared to the results of the host-based detection. This is

. I « If an adversary knows our approach, he could obfuscate
expected as the addition of non-sensitive flows makes the the flows to match our criteria. We envision that more

Iearnmg task more ghallengmg. . features need to be considered in the future.
During the experiments, we also observed the following « The technique most closely related to our dynamic anal-

interesting phenomena: sis is concolic testing[8], which also leverages both
Finding 1: Among the 1223 malicious leaking transmissions y A a9 :
concrete and symbolic values to proceed its execution.

extracted from the malware dataset, we found that 69.7% . . . LT
- . : Our approach inherits its path explosion limitation; the
of the transmissions used encryption to hide the hostnames. _. . o
size of code paths is exponential in the number of un-

Malware leverages encryption to evade traditional sigmatu
i . . ; known branches. We currently remove most unnecessary
based detection approaches. As mentioned earlier, emmnypt . o . .
unknowns with our specific preprocessing and we will

also hinders pure static analysis from explicitly detegtihe . i
! . S . look into more advanced relevant techniques soon.
target behaviors. Without enough dynamic information, the

intrusion detection systems failed to locate many maligiou VIl. RELATED WORK

transmissions. To illustrate how important the decryptign . L . ..
we conducted an experiment that trained a model basechnam'C and static taint analysis track sensitive data flows

solely on unencrypted instances and tested the model on hdrograms. TaintDroidLl5] modifies the Dalvik virtual ma-

instances with encrypted hostnames. Among the 806 endyp?@'ne to monitor potential leaks at runtime. It only idetfi

instances, the model only recognized 578 (71.7%) of theﬂﬁ.akage that is actually triggered during execution, theis 1

Compared to the prediction results (91%) shown previous&":ingla dlgivqav;{iLth g(()jog C(.)gg io‘v%rage. The start]ic analysi
the accuracy decreased dramatically. bols FlowDroid [1] and DroidSafe 9] overcome the coarse-

granularity through over-approximation. But they alsofeuf

8Since the data is heavily skewed towards the illegal class, used
SMOTE [2] to over-sample the legitimate class. https://iwww.roe.ch/SSLsplit

from imprecision by visiting code paths that are not actualreprints for Government purposes, notwithstanding any<op
feasible. AppAuditi[22] leverages hybrid static-dynami@ah right notation hereon.
ysis in order to keep the advantages and avoid the drawbacks

of both. It only examines f:ode paths determined statically a P S. Azt S. Rasthofer, C. Fritz, E. Bodden, A. Bartel. Jleik,
explores one path when it encounters an unknown branch. Y. Le Traon, D. Octeau, and P. McDaniel. Flowdroid: Precieatext,
contrast, our system dynamically extends the code coverage flow, field, object-sensitive and lifecycle-aware taint lgas for android

; apps. InPLDI, 2014.
and explores as many paths as feasible when an unkno NV, Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer

pranCh is found. ReCon [19] is a 5_0|e|y network_—bas_ed _de_te - Smote: synthetic minority over-sampling technigqdeurnal of artificial
tion that learns patterns from traffic traces, which is samil intelligence researgh16:321-357, 2002.

to the transmission classification used in LeakSemantic. Ol?! X- Chen and S. Zhu. Droidjust: automated functionakiyare privacy
leakage analysis for android applications. WiSe¢ 2015.

program analysis approaches can further improve the perfqi) H. choi, J. Kim, H. Hong, Y. Kim, J. Lee, and D. Han. Extractl:
mance of network-based detection. All above approachas tre Autoatic extraction of application-level protocol behai for android

; i ; applications. INSIGCOMM 2015.
any exposures of user data as illegitimate, which obscwee t | W. Enck, P. Gilbert, 5. Han, V. Tendulkar, B.-G. Chun, LGRx, J. Jung,

true threats thrOUgh generating large numbe_r of fa_lse .alarm P. McDaniel, and A. N. Sheth. Taintdroid: an informationafltracking
Appintent [24] first stresses the necessity to justify the system for realtime privacy monitoring on smartphonesO8D|, 2010.

it ieqi ; ; [6] Y. Fratantonio, A. Bianchi, W. Robertson, E. Kirda, C.uegel, and
sensitive transmissions in apps. Bayesdroid [20] propases G. Vigna. Triggerscope: Towards detecting logic bombs. idroid

solution by treating the transmissions that carry less rateu applications. INS&P, 2016.
information as legal. However, a transmission could be verff] H. Fu, Z. Zheng, A. K. Das, P. H. Pathak, P. Hu, and P. Molapa

harmful even if it only contains coarse information sinceah Flowintent: Detecting privacy leakage from user intentiannstwork
traffic mapping. INSECON 2016.

FOIIUde with Othersl- Flowmtem [7] Iever:?\ges front—pa_@ry [8] P. Godefroid. Compositional dynamic test generatianPDPL, 2007.
interfaces to discriminate location-sharing communaai [9] M. I. Gordon, D. Kim, J. H. Perkins, L. Gilham, N. NguyemadM. C.

Its effectiveness depends on the content shown on the pages Rinard. Information flow analysis of android applicatiomsdroidsafe.
In NDSS 2015.

a_nd_ its Underlying random fuzzi_ng based approach, which[i®] J. Huang, X. zhang, L. Tan, P. Wang, and B. Liang. Asdrdietecting
similar to Andrubis|[18], makes it hard to locate stealthy-ma stealthy behaviors in android applications by user interfand program

i~ ; ; e behavior contradiction. IhCSE 2014.
licious payloads. AAPL [14] IS a static app audltlng tool th 11] R. Kohavi et al. A study of cross-validation and boagptifor accuracy

queries a commercial recommendation system to rank sensiti estimation and model selection. ljcai, 1995.
disclosures. But as shown in [7], being in the same categdig] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traor§. Arzt,

; ; ; ; ; S. Rasthofer, E. Bodden, D. Octeau, and P. McDaniel. Icceeding
does not imply having the same functionality. Other static inter-component privacy leaks in android apps QSE 2015,

analysis approaches including AS_DrOid [10] and DroidJEkt [[13] M. Lindorfer, M. Neugschwandtner, L. Weichselbaum, Ffatantonio,
only treat connections that do not influence the user-obbéev V. Van Der Veen, and C. Platzer. Andrubis—1,000,000 appes:lak

[; i view on current android malware behaviors. BADGERS 2014.
phone states as malicious. But a flow can still be malicio K. Lu, Z. Li, V. P. Kemerlis. Z. Wu, L. Lu, C. Zheng, . Qiah. Lee,

even it_leads to visible Chang(?s as it can also triggler the’ and G. Jiang. Checking more and alerting less: Detectingagyi
underlying malicious payload simultaneously. LeakSeigant leakages via enhanced data-flow analysis and peer votingND8S

REFERENCES

] i 2015.
!OOkS.beyond the mere surface Of leaks _by examining th(ﬂ%] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker. Beyonctkilats:
intention based on the corresponding traffic flows. Learning to detect malicious web sites from suspicious. unskDD,
2009.
VIIl. CONCLUSION [16] A. Raghuramu, H. Zang, and C.-N. Chuah. Uncovering thagrints

. . of malicious traffic in cellular data networks. PAM, 2015.
In this work, we developed a prototype called LeakSemanticy] s. Rasthofer, S. Arzt, and E. Bodden. A machine-leayrdpproach for

that can identify suspicious sensitive network transroissi classifying and categorizing android sources and sinkND$S 2014.

; : : 18] S. Rasthofer, S. Arzt, M. Miltenberger, and E. Boddermntésting run-
from mobile apps automatically. Its hybrid program anayS[time values in android applications that feature anti+sialtechniques.

component enables it to provide better accuracy and poecisi In NDSS 2016.

than other state-of-the-art taint analysis approachesk{e[19] J. Ren, A. Rao, M. Lindorfer, A. Legout, and D. Choffne®econ:
Semantic further constructs machine learning classifiers t m\ﬁg;ggzoalgd controlling pil leaks in mobile network traffi In
differentiate among the disclosures based on featuresetrij20] 0. Tripp and J. Rubin. A bayesian approach to privacyorsgment in
from the program analysis. Our evaluation on 2279 sensitive smartphones. INSENIX Security2014.

: ~] M. Y. Wong and D. Lie. Intellidroid: A targeted input gerator for the
connections collected from real-world 1404 apps shows t at dynamic analysis of android malware. NDSS 2016.

LeakSemantic achieves a detection accuracy of 91%. [22] M. Xia, L. Gong, Y. Lyu, Z. Qi, and X. Liu. Effective redime android
application auditing. IrS&P, 2015.
IX. ACKNOWLEDGEMENTS [23] W. Yang, X. Xiao, B. Andow, S. Li, T. Xie, and W. Enck. Appe-

. text: Differentiating malicious and benign mobile app bebes using
The effort described in this article was partially sponslore context. InICSE 2015.

by the U.S. Army Research Laboratory Cyber Security Colla4] i Y?ngy M. Ya“% Y. ﬁh?”% G. Gu, P. Ning, a':jd Xasf- Waﬁﬂlgpmlt(e”ti
orative Research Alliance under Contract Number W911NF- dgtiztzi:)nnq Isrfcné's'vgmga ransmission in- androld for prydeakage
13-2-0045. The views and conclusions contained in this doqws] M. zhang, Y. Duan, H. Yin, and Z. Zhao. Semantics-awanelraid
ment are those of the authors, and should not be interprsted a Ima(':VVCaéeZ%ﬁSiﬁcaﬁO” using weighted contextual api dépeay graphs.
representing the official policies, either expressed orligap [26] Y. Zhou and X. Jiang. Dissecting android malware: Chiazation
of the Army Research Laboratory or the U.S. Government. and evolution. InS&P, 2012.

The U.S. Government is authorized to reproduce and diséribu

	I Introduction
	II Overview
	III LeakSemantic
	III-A Static Analysis
	III-B Dynamic Analysis
	III-B1 Execution Trace Generation
	III-B2 Sources of Unknowns
	III-B3 Handling of Unknowns

	III-C Transmission Classification

	IV Implementation
	V Evaluation
	V-A Benchmark Suites and Quality of Program Analysis
	V-A1 DroidBench
	V-A2 BombBench

	V-B Real Apps and Transmission Classification
	V-B1 Host-based Detection
	V-B2 Network-based Detection

	VI Limitations
	VII Related Work
	VIII Conclusion
	IX ACKNOWLEDGEMENTS

