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Abstract—Millimeter-wave (mmWave) communication is a
promising technology to cope with the expected exponential
increase in data traffic in 5G networks. mmWave networks
typically require a very dense deployment of mmWave base
stations (mmBS). To reduce cost and increase flexibility, wireless
backhauling is needed to connect the mmBSs. The characteristics
of mmWave communication, and specifically its high directional-
ity, imply new requirements for efficient routing and scheduling
paradigms. We propose an efficient scheduling method, so-called
schedule-oriented optimization, based on matching theory that
optimizes QoS metrics jointly with routing. It is capable of
solving any scheduling problem that can be formulated as a
linear program whose variables are link times and QoS metrics.
As an example of the schedule-oriented optimization, we show
the optimal solution of the maximum throughput fair scheduling
(MTFS). Practically, the optimal scheduling can be obtained even
for networks with over 200 mmBSs. To further increase the
runtime performance, we propose an efficient edge-coloring based
approximation algorithm with provable performance bound. It
achieves over 80% of the optimal max-min throughput and runs
5 to 100 times faster than the optimal algorithm in practice.
Finally, we extend the optimal and approximation algorithms
for the cases of multi-RF-chain mmBSs and integrated backhaul
and access networks.

I. INTRODUCTION

5G cellular systems are embracing millimeter wave

(mmWave) communication in the 10-300 GHz band where

abundant bandwidth is available to achieve Gbps data rates.

One of the main challenges for mmWave systems is the high

propagation loss at these frequency bands. Although it can

be partially compensated by directional antennas [1], [2], the

effective communication range of a mmWave base station

(mmBS) remains around 100 meters at best. Thus, base station

deployment density in 5G will be significantly higher than

in 4G [3], [4]. This leads to high infrastructure cost for

the operators. Besides the cost of site lease, backhaul link

provisioning is in fact the main contributor to this cost because

the mmWave access network may require multi-Gbps backhaul

links to the core network. Currently, such a high data rate can

only be accommodated by fiber-optic links which have high

installation cost and are inflexible with respect to relocation.

Recent studies show that mmWave self-backhauling is a

cost-effective alternative to the wired backhauling. This ap-

proach is particularly interesting in a heterogeneous network

setting where the existing cellular base stations (eNBs) act

as a gateway for the mmBSs. Fig. 1 illustrates such a setup

in which the eNB can reach mmBSs directly or via other

mmBSs. Moreover, directionality of mmWave communication
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Fig. 1. mmWave self-backhauling setup.

reduces or removes the wireless backhaul interference and

allows simultaneous transmissions of multiple links over the

same channel as long as their beams do not overlap. However,

the number of simultaneous links a base station can have is

limited by the number of its RF chains.

To date, much of the research on mmWave communication

has been dedicated to issues faced by the mobile users (UEs)

in the access networks. How to maximize performance such

as throughput and energy efficiency in mmWave backhaul

and access networks has received less attention. Here, two

important issues need to be addressed: (i) routes to be taken,

(ii) the scheduling of the transmission overs the links.

A naive scheduling which lets the eNB serve all the mmBSs

in a round robin fashion is neither practical nor efficient. If

mmBSs’ links to the eNB are weak compared to their links

to other nearby mmBSs (which in turn have high-capacity

links to the eNB), a schedule allowing multi-hop routing is

much more favorable since it alleviates the bottleneck at the

eNB. At the same time, the limited interference at mmWaves

makes it efficient to maximize spatial reuse and operate as

many links simultaneously as possible. The goal of the paper

is to design a scheduler that exploits these characteristics to

optimize mmWave backhaul efficiency.

The paper is organized as follows. We discuss related work

in Sec. II. Sec. III provides the system model. The relation

between a schedule and matchings is studied in Sec. IV.

In Sec. V, we present our optimal schedule-oriented opti-

mization method, through an example—maximum throughput

fair scheduling. We then propose a fast edge-coloring based
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approximation algorithm in Sec. VI. In Sec. VII, we extend

our algorithms to more general scenarios. Sec. VIII shows the

numerical evaluation and Sec. IX concludes the paper.

II. RELATED WORK

Few works on mmWave backhaul and access network

scheduling exist [5]–[8]. These works share the assumptions

that (i) the traffic demand is measured in discrete units of slots

or packets, and (ii) a flow has to be scheduled sequentially, i.e.,

a hop closer to the source should be scheduled earlier than a

hop farther away. The resulting optimization problems are all

formulated as mixed integer programming (MIP) problems. As

MIPs are in general NP-complete, optimal solutions can only

be computed for small networks with a few nodes. For practi-

cal use, these works all rely on heuristics, which are based on

the ideas such as greedy edge coloring [5], [7] or finding the

maximum independent set in a graph [6], [8]. Furthermore, [5],

[6], [8] assume that routing is pre-determined, which does not

fully exploit the freedom given by a reconfigurable mmWave

backhaul, and may limit performance.

In contrast, our work relaxes the constraint of sequential

flow scheduling (i.e., if needed, packets are queued for a

short time) which does not harm the long-term throughput,

and allows the slots in a schedule to be of any length. Based

on these assumptions, we propose a polynomial time optimal

scheduling method which is shown by simulation to be practi-

cal for mmWave cellular networks. Moreover, the scheduling

takes QoS optimization goals or QoS requirements as input

and finds an optimal routing automatically. The first attempt to

solve the problem of joint routing and scheduling in a network

with Edmonds’ matching formulation goes back to [9]. Hajek

et al.’s polynomial time scheduling algorithm is different from

ours in that it minimizes the schedule length. Furthermore,

we use a one-step schedule-oriented approach while they first

compute the optimal link time and then compute the minimum

length schedule given the link time.

Following [9], recent research on scheduling focuses on

optimization of delay [10] and queue length [11], as well as

investigating more realistic interference models [12]. Another

interesting line of research is the on-line node-based sche-

duling algorithms which achieve good performance bound in

throughput and evacuation time [13].

III. SYSTEM MODEL

The system model considers a backhaul network which has

a single eNB, equipped with multiple mmWave RF chains,

and multiple mmBSs, each equipped with a single RF chain.

Later in Sec. VII, we will show that our optimization method

applies equally to (i) the case where each node has multiple

RF chains, and (ii) a network model that includes UEs.

We consider an eNB macro cell together with a number

of mmWave base stations in a heterogeneous TDMA cellular

network. The eNB acts as the backhaul gateway for mmBSs. In

addition to an LTE radio interface, the eNB is equipped with R
mmWave RF chains. There are W single-RF-chain mmBSs in

the macro cell. We assume analog or hybrid beamforming with

R RF chains which allows up to R simultaneous links at the

eNB. We use directed graphs to model the links between the

mmBS1 
mmBS2 

mmBS3 mmBS4 

eNB 

Fig. 2. A backhaul network example. The edges shown are the potential links
for downlink schedule. A bidirectional edge represents two opposite links.

different nodes in the network. Fig. 2 illustrates a toy example

of a backhaul network. The following analysis focuses on

downlink communication. The same analysis can be applied

to the uplink scenario.

Let G = (V , E) be a directed graph with the vertex (node)

set V and edge (link) set E . Each edge represents a potential

link between two vertices. The capacity of each edge e is

denoted ce. The received power is given by prx = ptx+gx−PL,

where ptx is the transmission power, gx is the directivity gain,

and PL is path loss between the transmitter and the receiver.

PL(d) = α + 10β log10 d + ξ, where α, β are constants that

depend on the frequency and line-of-sight conditions. d is the

distance between the transmitter and receiver. ξ represents the

shadowing effect and is a normal distributed random variable

with zero mean and σ standard deviation.

We can observe in Fig. 2 that there are many ways to sched-

ule downlink communication among the eNB and mmBSs.

Our goal is to obtain the optimal unit length schedule with

respect to a QoS metric, while satisfying given QoS require-

ments and the constraints on simultaneous transmissions. In

practice, the unit time is the duration of the radio frame. We

observe that each feasible schedule S can always be divided

into N ≥ 1 slots numbered as 1 to N . We define ti as the

length of the i-th slot. It is required that
∑N

i=1 ti = 1 and

ti > 0. Moreover, in the i-th slot, a set of links Ei ⊆ E (can

be empty) are active for the whole slot.

IV. PRELIMINARY: SCHEDULE POLYHEDRON

This section first shows the relation between a feasible

schedule and matchings in a graph. Based on the relation, we

mathematically formulate the set of all feasible schedules as

the schedule polyhedron that is described by linear constraints.

Suppose that a set of links Ei are scheduled in the i-th slot,

and e1, e2 ∈ Ei are two different links. Then e1 and e2 can not

share a common mmBS node since a mmBS has one RF chain

and is therefore half-duplex. On the other hand, e1 and e2 may

share the eNB node given that R > 1. However, the number

of links in Ei that are incident to the eNB cannot be more than

R. We enforce this constraint through the eNB expansion.

A. eNB expansion

In graph G, we replace the eNB with R expanded eNBs:

eNB1, ..., eNBR. If the eNB is connected to a set of mmBSs,

then each eNBi is connected to the same set of mmBSs

with the same respective link capacities as the eNB. The

resulting graph is equivalent to the original graph with respect

to scheduling. Yet each expanded eNB has one RF chain. In

the rest of the paper, the graph G = (V , E) is assumed to be

2
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Fig. 3. eNB expansion with two RF chains.

expanded if not explicitly stated otherwise. An example of the

process described above is shown in Fig. 3. Let R and W
denote the set of expanded eNBs and mmBSs, respectively.

As a result, we can ensure that the active link set of a slot

corresponds to a matching in the expanded graph. A matching

in a graph is defined as a set of edges in the graph that share

no common vertices.

B. The schedule polyhedron

We define the link time te ∈ [0, 1] as the total active time

of a link e in a schedule. Correspondingly, t is the link time

vector, each element of which is a link time te, ∀e ∈ E . A link

time vector t is feasible if t can be scheduled in unit time.

We first define the schedule polyhedron P and then prove that

each point in P is one-to-one mapped to each feasible link

time vector.

Definition 1 (Schedule Polyhedron). Given a graph G =
(V , E), the schedule polyhedron of G is defined as the set of

link time vectors t that satisfy the following linear constraints.
∑

e∈δ(v)

te ≤ 1 ∀ v ∈ V , (1a)

∑

e∈E(O)

te ≤

⌊

|O|

2

⌋

∀ odd set O ⊆ V , (1b)

te ≥ 0 ∀ e ∈ E , (1c)

where δ(v) is the set of links incident to node v. An odd set

O has odd number of nodes. E(O) is the set of links whose

endpoints are both contained in O.

The following lemma summarizes the relation between the

schedule polyhedron and the unit length schedules.

Lemma 1. (1) Each point in the schedule polyhedron P is

a feasible link time vector t, and (2) each feasible link time

vector t is a point in P .

Proof. The proof uses the Edmonds’ matching polyhedron

theorem [14]. A feasible schedule S consists of N ≥ 1 slots.

Each slot contains a set of links from G that is a matching and

therefore corresponds to a vertex of the matching polyhedron

Q. Since Q has the same formulation as P , except the variables

are binary, P and Q has the same set of vertices. Since S has a

length of 1, the link time vector t of S is a convex combination

of the vertices of P . So it is a point in P . On the other

hand, a point in P can be written as a convex combination

of all vertices of P where each vertex corresponds to a slot.

b
 c
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α  8 β  6 

γ  3 

δ  2 

ε  4 

α θ γ δ ǫ α, ǫ








a −8 −6 0 0 0 −8
b 8 0 −3 2 0 8
c 0 6 3 −2 −4 −4
d 0 0 0 0 4 4

Fig. 4. Node-matching matrix, a to d are nodes, α to ǫ are edges. The
numbers are capacities.

Therefore, each point in P corresponds to a feasible unit time

schedule. See the details in Appendix A.

V. MAXIMUM THROUGHPUT FAIR SCHEDULING

Having established the relation between a schedule and

matchings, we now investigate the problem of maximum

throughput fair scheduling (MTFS) for backhaul networks.

The goal of the problem is to maximize the downlink network

throughput under the condition that the max-min fairness [15],

[16] in throughput is achieved at the mmBSs. The MTFS

problem serves as one example of our method for scheduling

optimization in mmWave backhaul networks.

Definition 2 (Maximum Throughput Fair Schedule). Given

a backhaul network G and a unit time schedule S, let the

throughput vector of S be hS = [hS
v |v ∈ W ], where hS

v

denotes the downlink throughput of an mmBS node v.

(i) A feasible unit time schedule Sf is said to satisfy the max-

min fairness criteria if minv∈W h
Sf
v ≥ minv∈W hS

v for any

feasible unit time schedule S. Such minv∈W h
Sf
v is called the

max-min throughput.

(ii) A feasible unit time schedule S∗ is a solution of the MTFS

problem if S∗ has achieved the maximum network throughput
∑

v∈W h
Sf
v among all possible feasible unit time schedule Sf

satisfying the max-min fairness criteria in (i).

In the following, we present our general optimization

method—schedule oriented optimization.

A. Schedule oriented optimization

The schedule oriented optimization solves a linear optimiza-

tion problem, the solution to which is directly the optimal

schedule. For the mathematical formulation of the optimization

problem, we construct the node-matching matrix.

Definition 3 (Node-Matching Matrix). Given a directed graph

G = (V , E). Suppose the number of all possible matchings of

G is K . Then the node-matching matrix A = [ai,j ] is a |V|×K
matrix, whose elements is defined as follows: ai,j = c, if there

is a link with capacity c entering node i in the j-th matching;

ai,j = −c, if there is a link with capacity c leaving node i in

the j-th matching. Otherwise, ai,j = 0.

As we will see, the node-matching matrix helps in formu-

lating the throughput constraints at individual nodes. Fig. 4

gives an example of node-matching matrix for a graph.

Let A be the node-matching matrix of the backhaul network

G, we define A
W as the submatrix of A, which consists only

of the rows of A related to the nodes in W (mmBSs). As
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we pointed out in Sec. IV, the link set scheduled in each slot

of a schedule must be a matching in G. We define tS as a

K × 1 slot length vector, each element of which is the length

of a potential slot. Let the minimum throughput among all

mmBSs be θ. Then we can solve the MTFS problem in two

steps: (i) maximizing θ (such θ is the max-min throughput)

and (ii) computing the optimal schedule S∗ that offers the

highest network throughput, given the max-min throughput θ.

Linear programs for the MTFS problem. The linear

program to maximize θ for step (i) of the MTFS problem

can be formulated as follows,

maximize θ (2a)

subject to A
WtS ≥ θ1 (2b)

1
TtS = 1 and tS ≥ 0, (2c)

where 1 and 0 represent the all-one and all-zero column

vector, respectively. The superscript “T" denotes the vector

transposition. (2b) is the constraint that the throughput at each

mmBS should be at least θ. (2c) is the constraint that the

schedule length should be unit time. The feasibility of the

schedule is implicitly guaranteed by the formulation in terms

of all possible matchings.

After we have computed θ from (2), we can formulate the

linear program that maximizes the network throughput, i.e.,

the total throughput of all mmBSs under the condition that

each mmBS has throughput at least θ.

maximize cTtS (3a)

subject to (2b), and (2c). (3b)

Here, c is the capacity vector whose element cj is the

cumulative capacity of all eNB-to-mmBS links in the j-th

matching Mj , i.e., cj =
∑

(v,v′)∈Mj ,v∈R c(v,v′), where (v, v′)

denotes the link from node v to node v′. Note that θ is a

variable in (2), but it is a constant in (3).

The apparent difficulty in solving (2) and (3) is the huge

number of elements in tS (same as the number of matchings

in G, which is exponential to the number of vertices in G).

Yet, we will show that we can still solve it in polynomial time.

Theorem 1. The MTFS problem can be solved in polynomial

time with the ellipsoid algorithm [17].

Proof. This proof uses a similar technique to the proof of

Theorem 2 in [18], which states that the fractional edge

coloring can be solved in polynomial time by the ellipsoid

algorithm. See the details in Appendix B.

Although polynomial, in practice the ellipsoid algorithm

almost always takes longer than the simplex algorithm. In

the following, we propose algorithms based on the revised

simplex algorithm [19] which does not require the generation

of all columns of AW . Conceptually, the algorithms first create

a feasible schedule. Then in each iteration, to improve the

optimization objective, we replace one slot in the schedule by

another matching (a set of simultaneous links) while keeping

the schedule feasible, until the optimum is reached. The

maximum weighted matching algorithm [14] is used to choose

the matching (column) to enter the basis (schedule).

Algorithm 1: Compute the max-min throughput θ

1 Set the basis B = B0 corresponding to the initial schedule S0;
2 while True do

3 Compute the dual variable pT = f T

BB
−1;

4 Set weight w(vi,vj) to each link (vi, vj) of G as follows.

w(vi,vj) =

{

c(vi,vj)(pj − pi) if vi, vj ∈ W

c(vi,vj)pj otherwise vi ∈ R, vj ∈ W

Do max weighted matching on G. Let the optimal
matching be M , compute η1 = −

∑

e∈M
we − pW+1;

5 Compute η2 = −1 +
∑W

k=1 pk;
6 Compute η3 = min1≤k≤W pk;
7 Compute η = min(η1, η2, η3) and let the corresponding

column be uη ∈ U;
8 if η ≥ 0 then
9 return the optimal θ and Bθ = B;

10 else
11 Update B by replacing a column of B with uη

according to the simplex algorithm;
12 end
13 end

B. Solving the MTFS problem

To optimize θ, we need an initial basic feasible solution

to (2). Suppose that the backhaul network G is connected,

otherwise there are mmBSs unreachable from the eNB. We

perform a breath-first-search (BFS) starting from an arbitrary

expanded eNB, say eNB1. The result is a tree T that spans

eNB1 and all mmBSs. T has exactly W edges. The initial

schedule S0 is constructed as follows: S0 has W slots, each

of which contains one link in T . Moreover, it is required that

the throughputs of all mmBSs are the same and the schedule

takes exactly unit time. It is obvious that the initial solution

is unique. We convert the linear program (2) to the standard

form (4) by introducing W surplus variables si as follows.

minimize f Tx (4a)

subject to Ux = g and x ≥ 0, (4b)

where U , [U1|U2|U3] ,

[

A
W −1 −I

1
T 0 0

T

]

, f T =
[

0
T | −1 |0T

]

, xT ,
[

(tS)T | θ | sT
]

, and gT ,
[

0
T | 1

]

. Alg. 1

shows the computation of the max-min throughput θ.

The basis B is a square matrix that consists of W + 1
columns from U. fB is the elements of f corresponding to the

basis B. The lines 4, 5 and 6 compute the minimum reduced

cost of a column in the matrices U
1,U2 and U

3 respectively.

To decrease −θ, we need to find a column of U, uk that has

negative reduced cost fk − pTuk < 0 to enter the basis. In

the algorithm, we find the column uη in U that produces the

minimum reduced cost η. If η ≥ 0, then no columns can be

used to decrease −θ, thus we have reached the optimum.

Let the final basis in computing θ be Bθ . To directly use

Bθ as the initial basis to the solution of step (ii) of the MTFS

problem, we add an artificial scalar variable y ≥ 0 to (3) and

replace the constraint AWtS ≥ θ1 with A
WtS − 1y ≥ θ1.

Since θ is the max-min throughput, the feasible y must be 0.

Hence, the optimal solution (maximum network throughput) to

4



Algorithm 2: Solving the MTFS problem

1 Set the basis B = Bθ ;
2 while True do

3 Compute the dual variable pT = f T

BB
−1;

4 Set weight w(vi,vj) to each link (vi, vj) of G as follows.

w(vi,vj) =

{

c(vi,vj)(pj − pi) if vi, vj ∈ W

c(vi,vj)(pj + 1) otherwise vi ∈ R, vj ∈ W

Do max weighted matching on G. Let the optimal
matching be M , compute η1 = −

∑

e∈M
we − pW+1;

5 η2 =
∑W

k=1 pk;
6 η3 = min1≤k≤W pk;
7 Compute η = min(η1, η2, η3) and let the corresponding

column be uη ∈ U;
8 if η ≥ 0 then
9 return the optimal schedule S∗ corresponding to B;

10 else
11 Update B by replacing a column of B with uη;
12 end
13 end

(3) is unaffected. Again, we convert (3) into the standard form

of (4), which is solvable with the revised simplex algorithm.

In the standard form, U remains unchanged, we redefine

f T ,
[

−cT | 0 |0T
]

, xT ,
[

(tS)T | y | sT
]

, and gT ,
[

θ1T | 1
]

.

The optimization algorithm is similar to Alg. 1 and is outlined

in Alg. 2. Since the basis B is a square matrix of W + 1
dimension, it follows that the optimal schedule S∗ contains no

more than W +1 slots. Additionally, since the links on a flow

from the eNB to a destination mmBS may not be scheduled in

sequential order, some transmission opportunities of the flow

in the first few frames may be wasted. Therefore, maximum

throughput is achieved in the long-term.

C. Generalization

The scheduled-oriented optimization method illustrated by

the optimal MTFS algorithm is quite general. It can solve

any scheduling problem that can be formulated as a linear

program whose variables are link times and QoS metrics. For

example, it can optimize for the constraint that each mmBS has

a minimum throughput requirement. Another example is that

the proposed method can optimize the energy consumption as

it can be translated into the minimization of total transmission

time in a schedule. We do not further elaborate on them due

to the space limitation. Moreover, in Sec. VII, we extend the

optimization method to backhaul and access networks, as well

as to multi-RF chains at each node.

VI. EDGE-COLORING BASED APPROXIMATION

ALGORITHM

In Sec. V, we proposed an optimal joint routing and sche-

duling algorithm for mmWave backhaul networks. Although

it is optimal, it may have a high runtime (c.f. the evaluation in

Sec. VIII) when the number of mmBS nodes is large. Hence,

we propose a run-time efficient edge-coloring (EC) based

approximation algorithm that has a provable performance

bound. The EC algorithm follows a two-step approach of (i)

computing the link time and (ii) scheduling within unit time.

A. Step (i): computing link time

To precisely compute the link time, we need to include

all the constraints of the schedule polyhedron (1). Since the

number of odd set constraints (1b) is huge, which leads to a

high runtime for the optimization, instead we use a small set

of constraints that is a necessary but not sufficient condition

for a feasible unit time schedule. The selection of the new set

of constraints is based on the following observation.

Let G = (V , E) be the backhaul network before the eNB

expansion (Sec. IV-A) and GW be the subgraph of G, which

contains only the mmBSs W and the links among them. We

define ν =
⌊

W
2

⌋

as an upper bound of the maximum number

of mmBS-to-mmBS links that can be active simultaneously1.

We assume the number of RF chains at the eNB satisfies

R ≤ L, where L is the number of mmBSs that are directly

connected to the eNB, because L RF chains is enough to serve

the mmBSs. We have the following observation.

Observation 1. If k mmBS-to-mmBS links are active at a time

t, then at most min(R,W − 2k) eNB-to-mmBS links can be

active at t, each using one RF chain of the eNB. Hence, at

least R−min(R,W −2k) = max(0, R−W +2k) RF chains

of the eNB are idle at t.

For a schedule of unit time, we define t′k as the time in

which exactly k mmBS-to-mmBS links are active. Each fea-

sible schedule should be subject to the following constraints.

ν
∑

k=1

t′k ≤ 1, and t′k ≥ 0 ∀ k ∈ {1, 2, ..., ν} (5a)

ν
∑

k=1

k · t′k =
∑

e∈{(v,v′)∈E : v,v′∈W}

te (5b)

∑

e∈δ(eNB)

te ≤ R−

ν
∑

k=1

max(0, R−W + 2k)t′k (5c)

∑

e∈δ(v)

te ≤ 1 ∀ v 6= eNB, and te ≥ 0 ∀ e ∈ E . (5d)

(5b) formulates the total mmBS-to-mmBS transmission time

in terms of the variables t′k and te (link time of e), respectively.

(5c) shows that the total eNB-to-mmBS transmission time

should be no more than R minus the minimum idle time of

the RF chains at the eNB. (5d) expresses the single RF chain

constraint on mmBSs.

We substitute the precise constraint set to link times (1)

with the constraints in (5). The advantage is the low runtime

and small memory complexity of linear programming due to

the following reason. The total number of constraints in (1)

and (5) are O(2W+R) (exponential) and O(W 2) (polynomial),

respectively. Moreover, with the polynomial number of con-

straints, the computation of link time can be carried out by

off-the-shelf linear optimization tools. However, the link time

vector that satisfies (5) may be infeasible in unit time, because

satisfying the constraints in (5) is a necessary but not sufficient

condition for a feasible unit time schedule.

1The active links form a matching in GW . According to the definition of
matching, the number of active links is upper-bounded by

⌊

W
2

⌋

.
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Algorithm 3: EC-based scheduling.

1 Reduce graph. Given the link time vector t, we remove edges
in G with zero link time and call the subgraph Gr;

2 Expand eNB. We perform the eNB expansion on Gr . Let the
expanded eNBs be eNB1, ..., eNBR. For a given link (eNB, v)
in Gr with link time t(eNB,v), we set the link time of the links

(eNBk, v), k = 1, ..., R to
t(eNB,v)

R
. We call the graph after

eNB expansion Gv = (Vv, Ev);
3 Create multigraph and assign link time. We create the

coloring graph Gm = (Vm, Em), which has the same vertex
set as Vv , and its edges is defined as follows. For each e ∈ Ev

between two nodes v and v′ with link time te, we install
⌈

te
tg

⌉

edges between v and v′ in Gm. Among these edges,
⌈

te
tg

⌉

− 1
edges are assigned tg link time, and the left edge is assigned
mod(te, t

g) link time (mod is the modulo operation);
4 Coloring and scheduling. We perform edge coloring on Gm.

Suppose that Gm can be edge-colored with κ colors. For those
edges colored by the i-th color, i = 1, . . . , κ, we schedule the
corresponding links in the i-th slot (a slot has the length tg);

5 Scale. The schedule is now of length κtg . If κtg > 1, we scale

the total time length with the factor 1
κtg

;

Specifically, for the MTFS problem, the linear program for

computing the max-min throughput θ is

maximize θ (6a)

subject to
∑

e∈δ−(v)

cete −
∑

e∈δ+(v)

cete ≥ θ ∀ v ∈ W (6b)

and (5),

where δ−(v) and δ+(v) are the set of links coming into node

v and the set of links leaving v, respectively.

With the optimal θ, we compute the link time for the MTFS.

maximize
∑

e∈δ+(eNB)

cete

subject to constraints in (6). (7)

B. Step (ii): edge-coloring based scheduling

After we obtain the link time, the next step is to generate

a unit time schedule. The approximation algorithm is based

on the idea of edge-coloring of multigraphs (graphs allowing

multiple edges between two nodes). A proper edge-coloring

assigns a color to each edge in a graph such that any two ad-

jacent edges (sharing one or two common nodes) are assigned

different colors. Obviously, the set of edges Eλ of a color

λ must be a matching. Hence, Eλ corresponds to a slot and

an edge coloring scheme corresponds to a schedule. The EC-

based scheduling takes a parameter granularity tg ∈ (0, 1],
which is the quantization of the link time. A smaller tg

typically leads to better schedules at the cost of longer runtime.

Alg. 3 shows the process of the EC-based scheduling.

C. Performance analysis of the EC-based scheduling

The following lemma shows that Alg. 3 (step (ii) of the EC

algorithm) reduces the performance metric µ 2 and link times

te by a factor of 1
κtg

, if the κtg > 1. Therefore, a high quality

2µ is the optimization goal such as throughput, energy consumption, etc.

edge-coloring heuristic (small κ) [20] and a small tg improve

the schedule performance.

Lemma 2. Suppose that after step (i) of the EC algorithm,

each link e of Gv has link time te, and the performance metric

is µ ≥ 0. Moreover, assume that if a schedule is scaled by

ρ > 0, then µ is also scaled by ρ. Therefore, after step (ii), the

final link time is t′e = min( te
κtg

, te) and the final performance

metric is µ′ = min( µ
κtg

, µ).

Proof. If κtg ≤ 1, then Gv can be scheduled in unit time, and

t′e = te and µ′ = µ. On the other hand, if κtg > 1, then Gv

needs κtg time to schedule. To fit in the unit time schedule, we

perform the scaling. Afterwards, t′e =
te
κtg

and µ′ = µ
κtg

.

Since minimum edge coloring of an arbitrary graph is NP-

complete [21], we have to employ approximation algorithms.

We choose a simple multigraph edge-coloring algorithm by

Karloff et al [22]. It uses at most 3 ⌈∆(G)/2⌉ colors, where

∆(G) is the maximal node degree of a multigraph G. The

following lemma gives the upper bounds on ∆(Gm), the

number of vertices |Vm| and edges |Em| of Gm.

Lemma 3. ∆(Gm) ≤ W +R+1/tg− 1. |Vm| ≤ W +R and

|Em| < 1
2

(

W 2 + (2R− 1)W + W+R
tg

)

.

Proof. Gv contains W +R nodes due to the eNB expansion.

For a expanded eNB node, the maximum degree is no more

than W . For a mmBS, the maximum degree is no more than

W − 1 + R since the directed graph Gv contains no cycles

as all cycles can be eliminated by shortening the link time.

So ∆(Gv) ≤ W + R − 1. Gm is transformed from Gv by

installing
⌈

te
tg

⌉

edges for each edge e in Gv. Therefore, the

degree of a node v in Gm is

deg(v) =
∑

e∈δ(v)
v∈Vv

⌈

te
tg

⌉

<
∑

e∈δ(v)
v∈Vv

(

te
tg

+ 1

)

≤
1

tg
+W +R− 1

In addition, we have |Vm| = |Vv| ≤ W +R. Using the degree

sum formula, the number of edges in Gm is

|Em| =
1

2

∑

v∈Vm

deg(v) <
1

2

∑

v∈Vv

∑

e∈δ(v)

(

te
tg

+ 1

)

≤
1

2

(

W 2 + (2R− 1)W +
W +R

tg

)

.

Since R ≤ W (W RF chains is sufficient to serve all

mmBSs), from the above Lemma, we have ∆(Gm) = O(W +
1
tg
). |Vm| = O(W ) and |Em| = O(W 2 + W

tg
).

In the following, we show the quality and time complexity

of the step (ii) of the EC algorithm. Practically, step (i) is

always much faster than step (ii).

Theorem 2. Let the performance metric after step (i) be

µ ≥ 0. Then step (ii) achieves the performance metric

µ′ > 2
3[(W+R+1)tg+1]µ and it has time complexity of O(

[

W 2+
W
tg

]

log(W + 1
tg
)).
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Proof. The Karloff’s algorithm uses κ ≤ 3 ⌈∆(Gm)/2⌉ col-

ors. Due to Lemma 3, κ ≤ 3
⌈

(W +R+ 1
tg

− 1)/2
⌉

. Hence,

κtg < 3tg
(

W +R+ 1
tg

− 1

2
+ 1

)

=
3

2
(W +R+ 1)tg +

3

2
.

According to Lemma 2, the final performance metric

µ′ = min(
1

κtg
, 1)µ >

2

3[(W +R+ 1)tg + 1]
µ

The time complexity of step (ii) is determined by Karloff’s

edge coloring algorithm, which has the same time complexity

as the perfect edge coloring of a bipartite graph of max-

imum degree ⌈∆(Gm)/2⌉ and number of edges O(|Em|).
Since the time complexity of the perfect edge coloring of a

graph with |E| edges and degree ∆ is O(|E| log∆) [23], the

time complexity of step (ii) is O(|Em| log(⌈∆(Gm)/2⌉)) =
O(

[

W
tg

+W 2
]

log(W + 1
tg
)).

For the MTFS problem, let the optimal max-min throughput

be θ∗. Since step (i) of the EC algorithm uses a looser

constraint set than the precise set of the schedule polyhedron,

it gives a θ ≥ θ∗. From Theorem 2, we have that the final max-

min throughput of the EC algorithm θ′ > 2
3[(W+R+1)tg+1]θ

∗.

In a typical backhaul network, we have W ≫ R, so
2

3[(W+R+1)tg+1] ≈
2

3(Wtg+1) . This means to keep a constant

performance quality, we can choose tg to be inversely propor-

tional to W , i.e., a bigger network requires a smaller tg. If tg is

so selected, then the time complexity is O(W 2 log(W ), which

is quite scalable with the number of mmBSs, and thus feasible

at the eNB in practice. Moreover, by setting the granularity

tg → 0, the performance metric approaches µ′ > 2
3µ. For the

MTFS problem, this means θ′ > 2
3θ

∗.

VII. EXTENSION TO MORE GENERAL SCENARIOS

In this section, we show that our schedule-oriented opti-

mization method proposed in Sec. V and the edge-coloring

based approximation algorithm in Sec. VI can be extended to

more general scenarios of (i) backhaul and access networks

and (ii) multiple RF chains at each node.

A. Extension to backhaul and access networks

The backhaul and access networks add an additional layer

of UEs to the backhaul networks. Each UE has a single RF

chain and is allowed to have links with one or more mmBSs.

Let U denote the set of UEs. For the downlink traffic, only

one-directional links from mmBSs to UEs exist.

We illustrate as an example the solution of the MTFS

problem. The max-min fairness in throughput is now defined

for the UEs, as they are the destinations. Let G be the

backhaul and access network after eNB expansion, and A be

the node-matching matrix of G. We define A
W and A

U as

the submatrices of A related to the nodes in W (mmBSs) and

in U (UEs), respectively. The linear program (2) to compute

max-min throughput θ needs to be modified as follows: (2b)

should be replaced by the constraints of (8).

A
UtS ≥ θ1 and A

MtS = 0 (8)

   v 

v’ 

c 

   v1 

v’1 

c 

   v2 

v’2 
v’3 

v 

v’ 

Expansion 

Fig. 5. Node expansion. v has 2 RF chains and v′ has 3 RF chains.

here, (8) expresses the constraint that the throughput at a

UE must be at least θ and each mmBS is a pure relay.

Obviously, the new MTFS problem can be solved with the

same optimization technique as proposed in Sec. V.

As for the EC algorithm, we need to replace the data flow

constraint of (6b) with the following (9).
∑

e∈δ−(v)

cete −
∑

e∈δ+(v)

cete = 0 ∀ v ∈ W (9a)

∑

e∈δ−(v)

cete −
∑

e∈δ+(v)

cete ≥ θ ∀ v ∈ U (9b)

B. Extension to multiple RF chains at each node

Now we remove the restriction that all nodes except the

eNB have single RF chain. The technique to deal with this

problem is the so-called node expansion which extends the

eNB expansion.

Node expansion. Let G be a directed graph representing the

network. We create a expanded graph G′ as follows: for each

node v in G, we create Rv expanded nodes v1, ..., vRv
in G′

where Rv is the number of RF chains at v. The expanded nodes

of v are collectively called a super node v in G′. Moreover,

if there is a link of capacity c between node v and node v′

in G, then we install Rv ·Rv′ links between all combinations

of vi, i = 1, ..., Rv and v′j , j = 1, ..., Rv′ . Each link (vi, v
′
j) is

assigned the capacity c. An example is shown in Fig. 5.

After the node expansion, the constraint of the RF chains is

implicitly guaranteed by the matchings in G′. For the MTFS

problem, the definition of the node-matching matrix A
W needs

adaptation because now multiple links can be incident to a

super node in a matching in G′. A row of AW corresponds to

an mmBS super node (a collection of expanded nodes) and a

column of AW corresponds to a matching in G′. Therefore, an

element of the matrix aWi,j has the value of the sum capacity

of all links entering the i-th mmBS super node in the j-th

matching minus the sum capacity of all links leaving the i-th
mmBS super node in the j-th matching.

As for the EC algorithm, we need to modify the necessary

schedule constraints in (5). Since the maximum number of si-

multaneous mmBS-to-mmBS links increases for R times when

each mmBS has R RF chains. This leads to R times more

variables of t′k in (5), which may lead to long computation

time in linear program. So, we delete the constraints on t′k.
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TABLE I
SIMULATION PARAMETERS

Parameter Value

Distance between 2 mmBSs, dg 100 m

Path loss parameters α, β, σ in

PL(d) = α+ 10β log10 d+ ξ

LOS: α = 61.4, β = 2, σ = 5.8

NLOS: α = 72, β = 2.92, σ = 8.7

Transmission power, ptx 30 dB

Directivity gain, gx 30 dB

Bandwidth, b 1 GHz

Noise N0 = kT0+F+10 log10 b kT0 = −174 dBm/Hz, F = 4 dB

Minimum SINR threshold, τ −5 dB

The following simple set of necessary schedule constraints is

used to replace (5),
∑

e∈δ(v)

te ≤ Rv ∀ v ∈ V , and te ≥ 0 ∀ e ∈ E .

Another modification is to replace the expand eNB step in

Alg. 3 with the following step.

Expand node. We perform the node expansion on Gr. Let the

resulting graph be Gv . For a given link (v, v′) in Gr with link

time t(v,v′), we assign the link time
t(v,v′)
RvRv′

to the links (vi, v
′
j)

in Gv for all combinations of i = 1, ..., Rv and j = 1, ..., Rv′ .

VIII. NUMERICAL EVALUATION

In this section, we evaluate the optimal MTFS algorithm

and EC-based approximation algorithm in terms of max-min

throughput, network throughput and runtime efficiency.

A. Evaluation setting

We simulate a mmWave backhaul network, where n × n
mmBSs are placed on the intersections of a n × n grid and

the eNB is placed in the center of the grid. The distance

between two neighboring mmBSs is dg . The capacity of each

link is calculated with the channel model described in Sec. III.

We assume a carrier frequency of 28 GHz. The channel state

between any two nodes is simulated according to the statistical

model derived from the real-world measurement [24]. The

channel state has three possibilities—LOS (line-of sight),

NLOS (non line-of-sight) or outage. The simulation param-

eters are listed in Tab. I.

The proposed algorithms are implemented in MATLAB,

with the exception that the optimal MTFS algorithm uses a

C++ implementation for maximum weighted matching [25].

B. mmBS with single RF chain

We evaluate the MTFS scheduling by varying the number of

mmBSs from 4×4 to 16×16. The eNB has R = 10 RF chains

and all the other nodes have single RF chain. For each network

size, 30 instances of link capacities are randomly generated

and then the network is scheduled for the MTFS problem.

The performance results are shown in Fig. 6. As expected,

the optimal MTFS algorithm (OPT-MTFS) always attains the

highest max-min throughput (Fig. 6(a)). In contrast, the max-

min throughput of the EC-based approximation algorithm

(EC) is smaller. However, the value is significantly better

than the theoretical lower bound of Theorem 2 (dashed lines

in the figure). It goes up with an increase in granularity

(corresponding to a lower tg). Practically, tg in the range of

0.01 to 0.001 is ideal for the network size of up to 200 nodes,

as on average, the EC algorithm achieves 70% to 90% of the

optimal max-min throughput. The price for the high max-min

throughput is a decrease in runtime efficiency. For a network

of 256 mmBSs, the EC algorithm with tg = 0.001 runs 100x

faster than the optimal MTFS algorithm (Fig. 6(b), note the log

scale). Moreover, with the increase of the number of nodes,

the runtime of the EC algorithm grows more slowly than the

optimal MTFS algorithm, which shows the better scalability

of the former for large networks.

As the goal of the MTFS is to maximize the network

throughput under the fairness condition, we also compare the

network throughput of the optimal MTFS algorithm, the EC

algorithm and the unconditional maximum network through-

put (MAX-TPUT). The MAX-TPUT achieves the maximum

network throughput for a given network. It is obtained when

the min(R,L) (L is the number of mmBSs directly connected

to the eNB) eNB-to-mmBS links with the highest capacities

are active throughout the unit schedule and all the other links

are inactive. If the number of mmBSs W > L, some of

the mmBSs will have zero throughput. This is the worst

case with respect to max-min fairness in throughput. Our

evaluation results show that, on average, max-min fairness

limits the network throughput to be approximately half of

the maximum value. Since the simulated backhaul network

is well-connected, the network throughput is in most cases

equal to the max-min throughput times the number of mmBSs.

Therefore, the relative performance of the network throughput

between the optimal MTFS algorithm and the EC algorithm at

different granularities is almost the same as that of the max-

min throughput in Fig. 6(a).

C. mmBS with multiple RF chains

We now evaluate the performance for the situation that each

mmBS is equipped with multiple RF chains. For that purpose,

we simulate a backhaul network with 10 × 10 mmBSs and

evaluate the cases that the eNB has 10 RF chains and each

mmBS has RW RF chains, with RW varying from 1 to 10.

For each given RW , 30 instances of random link capacities

are generated.

As shown in Fig. 7(a), the max-min throughput goes

up steadily with RW . The optimal max-min throughput at

RW = 10 is over 4 times higher than the value at RW = 1.

The difference in performance is due to the larger number of

simultaneous links in the setting of multi-RF-chain mmBSs.

Evaluation results show that the number of simultaneous links

is almost proportional to RW , as node expansion has increased

the number of nodes for RW times. Therefore, to attain higher

throughput at each mmBS, an option is to equip mmBSs with

multiple RF chains. However, the run time of the optimal

MTFS algorithm also increases with RW (Fig. 7(b)). The

extra time is spent in the maximum weighted matching in

an expanded network with roughly RW times more nodes

and R2
W times more edges. By using the EC-algorithm with
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Fig. 6. Performance of the optimal MTFS algorithm (OPT-MTFS) and the
EC-based approximation algorithm (EC) under the condition of single-RF-
chain mmBSs. The curves show the average performance, and the error bars
show ± standard deviation.

tg = 0.001, we achieve 85% to 90% of the optimal max-min

throughput while using 2% to 20% of the time.

IX. CONCLUSIONS

The paper presents an optimal joint routing and scheduling

method—schedule-oriented optimization for mmWave cellular

networks based on matching theory. It can solve any problem

that can be formulated as a linear program whose variables

are link times and QoS metrics. The method is demonstrated

to be efficient in practice, capable of solving the maximum

throughput fair scheduling (MTFS) problem within a few

minutes for over 200 mmBSs. For better runtime efficiency,

an edge-coloring based approximation algorithm is presented,

which runs 5 to 100 times faster than the optimal algorithm

while achieving over 80% of the optimal performance. In

summary, the proposed optimal and approximation algorithms

are highly practical for mmWave cellular networks.
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Fig. 7. Performance comparison for different number of RF chains at mmBSs.
The curves show the average performance, and the error bars show ± standard
deviation.
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APPENDIX

A. Proof of Lemma 1

Proof. We first prove part (2). Let a feasible schedule S consist

of N ≥ 1 slots. Because the total length of all slots is no more

than 1, we have
N
∑

i=1

ti ≤ 1 (10)
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In [14], Edmonds’ matching polyhedron theorem states that all

matchings in a graph G are one-to-one mapped to the vertices

of the matching polyhedron Q described by (11) (each vertex

of Q has elements of either 0 or 1, where xe = 1 means that

the edge e is in the matching).
∑

e∈δ(v)

xe ≤ 1 ∀ v ∈ V , (11a)

∑

e∈E(O)

xe ≤

⌊

|O|

2

⌋

∀ odd set O ⊆ V , (11b)

xe ≥ 0 ∀ e ∈ E . (11c)

Since in each slot, the set of scheduled links is a matching

in G, we further define xi
e = 1 if the link e is active in i-

th slot; otherwise, xi
e = 0. Then for a given index i, each

variable xi
e, e ∈ E satisfies (11) when xe is replaced with xi

e.

Combining (10) and (11), we have

N
∑

i=1

ti
∑

e∈δ(v)

xi
e ≤

N
∑

i=1

ti, (12a)

N
∑

i=1

ti
∑

i∈E(O)

xi
e ≤

N
∑

i=1

⌊

|O|

2

⌋

ti. (12b)

Since the link time te =
∑N

i=1 tix
i
e ≥ 0, this implies that

(12a) and (12b) are equivalent to (1a) and (1b), respectively.

Thus, each feasible link time vector is a point in P .

We now prove part (1). Since the schedule polyhedron P
is the same as the matching polyhedron Q, each vertex of P
is a matching in G. Suppose that all the vertices of P are

x1, ...,xK , where K is some positive integer. Since P is a

convex set, it means by definition that each point t ∈ P can

be expressed by a convex combination of the vertices of P :

t =

K
∑

k=1

αkxk,

where αk ≥ 0 and
∑K

k=1 αk = 1. This can be interpreted as

follows: a point t ∈ P corresponds to a feasible schedule S
of unit length. S has K slots and the length of the k-th slot is

αk. Here, the links correspond to xk is a matching, and they

are scheduled in the k-th slot. Thus, we have proved that any

t ∈ P is feasible.

B. Proof of Theorem 1

The proof applies the technique used in [18] to prove that

fractional edge coloring can be solved in polynomial time

by the ellipsoid algorithm. Specifically, a linear program is

solvable in polynomial time if the separation problem of its

dual problem can be solved in polynomial time. The separation

problem of a linear program J is to determine whether a given

solution satisfies all constraints of J or a violated constraint

is identified. If we can solve both linear programs of (2) and

(3) in polynomial time, then we can solve the MTFS problem

in polynomial time.

We first prove that (2) can be solved in polynomial time.

The dual of (2) is

maximize q (13a)

subject to pT
A
W + q1T ≤ 0

T (13b)

pT
1 = 1 (13c)

p ≥ 0. (13d)

Given a solution (p, q), (13c) and (13d) can be checked in

polynomial time, since the total number of constraints in (13c)

and (13d) is W + 1 and p contains W elements.

To check (13b), we use the polynomial maximum weighted

matching algorithm [14]. A constraint in (13b) is of the form

pTaW
k ≤ −q, where aW

k is the k-th column of A
W (aW

k

corresponds to a matching). We set the weights w(vi,vj) to

the links (vi, vj) such that

w(vi,vj) =

{

c(vi,vj)(pj − pi) if vi, vj ∈ W

c(vi,vj)pj otherwise vi ∈ R, vj ∈ W .
(14)

Then we perform maximum weighted matching on G. If the

weight of the maximum weighted matching satisfies w ≤ −q,

then (p, q) satisfies (13b). Otherwise the maximum weighted

matching gives a violated constraint.

According to Theorem. 3.10 in [26], for a linear program

J , if we can solve the separation problem of its dual J∗

in polynomial time, then we can solve both J and J∗ in

polynomial time with the ellipsoid algorithm. This proves that

(2) can be solved in polynomial time.

Similarly, we next prove that (3) can be solved in polyno-

mial time. The dual of (3) is

maximize θpT
1+ q (15a)

subject to pT
A
W + q1T ≤ −cT (15b)

p ≥ 0. (15c)

Given a tuple (p, q), we set the weights w(vi,vj) to the links

(vi, vj) such that

w(vi,vj) =

{

c(vi,vj)(pj − pi) if vi, vj ∈ W

c(vi,vj)(pj + 1) otherwise vi ∈ R, vj ∈ W .

(16)

Then we perform maximum weighted matching on G. De-

pending on whether the weight of the maximum weighted

matching satisfies w ≤ −q, the constraints of (15b) are satis-

fied or a violated one is identified. With the same argument as

above, (3) can be solved in polynomial time. This complete

the proof that the MTFS problem can be solved in polynomial

time with the ellipsoid method.
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