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Abstract—Online Social Networks (OSNs) attract billions of
users to share information and communicate where viral mar-
keting has emerged as a new way to promote the sales of products.
An OSN provider is often hired by an advertiser to conduct viral
marketing campaigns. The OSN provider generates revenue from
the commission paid by the advertiser which is determined by
the spread of its product information. Meanwhile, to propagate
influence, the activities performed by users such as viewing video
ads normally induce diffusion cost to the OSN provider. In
this paper, we aim to find a seed set to optimize a new profit
metric that combines the benefit of influence spread with the
cost of influence propagation for the OSN provider. Under many
diffusion models, our profit metric is the difference between two
submodular functions which is challenging to optimize as it is
neither submodular nor monotone. We design a general two-
phase framework to select seeds for profit maximization and
develop several bounds to measure the quality of the seed set
constructed. Experimental results with real OSN datasets show
that our approach can achieve high approximation guarantees
and significantly outperform the baseline algorithms, including
state-of-the-art influence maximization algorithms.

I. INTRODUCTION

Information can be disseminated widely and rapidly through
Online Social Networks (OSNs) (such as Facebook, Twitter,
Flickr, Google+, and LinkedIn) with “word-of-mouth” effects.
Viral marketing is a typical application that leverages OSNs as
the medium for information diffusion [9]. The market of OSN
advertisement is growing explosively. For example, Fortune
[25] reports that the online and digital advertisement spending
for the 2016 election of the United States will reach 1.2 billion
US dollars in which 49% is expected to go to social media.

Advertisers often delegate the operation of viral marketing
campaigns to OSN providers who have the complete infor-
mation of their social network structures [3]. Providing viral
marketing services is a potential and promising approach that
OSN providers can explore for monetization. When hiring an
OSN provider to conduct the viral marketing campaign, the
advertiser usually pays the OSN provider a commission for
each user that adopts its product or shares its ads. Thus, the
revenue of the OSN provider generated from the commission
is determined by the spread of the product information.
Meanwhile, to propagate influence, the activities performed
by users such as viewing video ads normally induce diffusion
cost to the OSN provider. For example, for a cloud-based
OSN running viral video marketing [20], the OSN will be

charged by the cloud for each video click due to the data traffic
produced. Intuitively, the number of clicks for each video is
dependent on the number of connections among users that are
actually used during the viral marketing campaign. Therefore,
to maximize its profit, the OSN provider needs to account
for both the reward of influence spread and the expense of
influence propagation, both of which are dependent on the
seed users selected to initialize the viral marketing campaign.
In this paper, we study the problem of finding a seed set to
optimize such a new profit metric that combines the benefit of
influence spread with the cost of influence propagation.

Our profit metric is challenging to optimize as it is signifi-
cantly different from the influence metric that has been studied
widely [6], [7], [12], [14], [15], [17], [22], [23], [24], [27],
[28], [30], [32], [33], [34]. It is well known that the influence
spread generated by a seed set is submodular and monotone
under many diffusion models [1], [15], [26], which makes it
easy to design influence maximization algorithms with strong
approximation guarantees [21]. Some recent studies have ad-
dressed profit maximization from the advertiser’s perspective
by putting together the benefit of influence spread and the cost
of seed selection [19], [29], [31], [35]. In these studies, the
cost of seed selection is modeled by the incentives (e.g., free
samples) provided to seed users. Since the seed selection cost
is given by the sum of the costs of individual seeds which
is modular, the resultant profit metric is still submodular. In
contrast, in our problem, both the revenue and cost of the OSN
provider are attached to the diffusion process. As a result,
our profit metric can be viewed as the difference between
two submodular functions, which is neither submodular nor
monotone and is thus much more difficult to deal with.

In this paper, we propose a general two-phase framework
to optimize profit for the OSN provider. Our framework is
comprised of a pruning phase that iteratively narrows down the
search space and a search phase that uses heuristics to select
seed nodes within the reduced search space. We theoretically
establish the advantages of our pruning technique in improving
the effectiveness and efficiency of any algorithm used in the
search phase. We further derive several bounds on the maxi-
mum achievable profit to evaluate the quality of the seed sets
obtained by any algorithm. We conduct extensive experiments
with several real OSN datasets. The results demonstrate the
effectiveness and efficiency of our framework.
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The rest of this paper is organized as follows. Section II
reviews the related work. Section III defines the profit maxi-
mization problem for the OSN provider. Section IV elaborates
the design of our two-phase framework. Section V develops
the bounds for quality measurement. Section VI presents the
experimental evaluation. Finally, Section VII concludes the
paper.

II. RELATED WORK

Influence Maximization. Kempe et al. [15] formulated an
influence maximization problem for a given seed set size with
two basic diffusion models, namely the Independent Cascade
(IC) and Linear Threshold (LT) models. They showed that
the influence spreads under these models are submodular
and monotone. Thus, they proposed a simple hill-climbing
greedy algorithm to address the problem, which can provide a
(1−1/e)-approximation guarantee [21]. The follow-up studies
have mainly concentrated on improving the efficiency of the
algorithm implementation for large-scale OSNs [6], [7], [12],
[14], [17], [22], [23], [24], [27], [28], [30], [32], [33], [34].
Different from the above studies, we target at maximizing the
profit that accounts for both the benefit of influence spread
and the cost of influence propagation in viral marketing.

Profit Maximization. Maximizing the influence spread
alone has been shown to be ineffective for optimizing the
profit return of viral marketing [29], [31]. This is because
the number of seeds selected yields a tradeoff between the
expense and reward of viral marketing. To avoid pre-setting
the number of seeds to select, some recent work studied profit
maximization from the advertiser’s perspective [19], [29],
[31], [35]. These studies considered the cost of seed selection
which is modular and implies that their profit metric is still
submodular. They investigated heuristics to select seeds under
the assumption that the social network structures are available
to the advertiser. In practice, only the OSN providers have
the complete information of their social graphs and they often
keep the formation secret for business and privacy reasons
[3], [16]. Therefore, the OSN providers are able to run viral
marketing campaigns more efficiently than the advertisers.
Different from the above work, we formulate a new profit
maximization problem from the OSN provider’s perspective
that takes into account the cost of information diffusion over
the social network. As shall be shown later, our profit metric
is the difference between two submodular functions, which is
neither submodular nor monotone.

Submodular Optimization. Iyer and Bilmes [13] inves-
tigated optimizing the difference between two submodular
functions. They showed that this problem is multiplicatively
inapproximable unless P=NP and proposed several heuristic
methods to address the problem. The greedy algorithm [15],
[29] is another widely used heuristic for submodular optimiza-
tion. We apply these heuristic methods to the search phase of
our two-phase framework. More importantly, we develop an
iterative pruning technique to reduce the search space which
significantly improves these heuristics in terms of not only
effectiveness but also efficiency. In addition, we also derive

several upper bounds of the optimum to benchmark the output
of any algorithm.

III. PROBLEM FORMULATION

A. Preliminaries

Let G = (V,E) be a directed graph modeling an OSN,
where the nodes V represent users and the edges E represent
the connections among users (e.g., friendships on Facebook,
followships on Twitter). For each directed edge 〈u, v〉 ∈ E,
we refer to v as a neighbor of u, and refer to u as an inverse
neighbor of v.

There are many diffusion models for the processes by which
influence propagates in social networks. The diffusion model is
normally a random process that starts with a set of seed nodes
S. Initially, the seed nodes S are activated, while all the other
nodes are not activated. When a node u becomes activated,
it would attempt to further activate its neighbors which are
not yet activated. The diffusion process terminates when no
more node can be further activated. Let g ∼ G be a sample
outcome of influence propagation by the diffusion process and
let Vg(S) be the set of nodes activated by the seed set S in
the sample outcome g. The influence spread of the seed set S,
denoted by σ(S), is the expected number of nodes activated
over all possible sample outcomes of influence propagation,
i.e., σ(S) = E[|Vg(S)|].
B. The Profit Maximization Problem

As discussed, the influence spread is the benefit gained by
the OSN provider and the cost of influence propagation is the
price to pay for viral marketing. We assume that each node v
in the social network is associated with a benefit weight b(v),
which represents the benefit offered by activating v (e.g., the
commission received from the advertiser). The benefit β(S) of
influence spread generated by a seed set S is the total benefit
brought by all the nodes activated:

β(S) = E
[ ∑
v∈Vg(S)

b(v)
]
. (1)

To model the cost of influence propagation, we consider the
diffusion process in the social network. Recall that when a
node is activated, it attempts to further activate its neighbors
through the connections to them in the social network. Without
loss of generality, we assume that each node v is associated
with a cost weight c(v), which represents the cost of infor-
mation diffusion incurred by v in attempting to activate its
neighbors when it becomes activated (e.g., pushing video ads).
The cost γ(S) of influence propagation introduced by a seed
set S is the total cost incurred by all the nodes activated:

γ(S) = E
[ ∑
v∈Vg(S)

c(v)
]
. (2)

Then, we naturally define a profit metric from OSN provider’s
perspective as the benefit of influence spread less the cost of
influence propagation, i.e., the profit φ(S) for running a viral
marketing campaign with a seed set S is given by

φ(S) = β(S)− γ(S), (3)
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Vg(fg)=fg, Á (fg)=0
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Vg(fv3g)=fv3,v4g, Á (fv3g)=-1

Vg(fv1,v3g)=fv1,v2,v3,v4g, Á (fv1,v3g)=0.5

Fig. 1. An example showing the non-monotonicity and non-submodularity
of the profit function φ(·). Each node is associated with a benefit weight b
and a cost weight c.

Our goal is to find a seed set S to maximize the profit φ(S).
By defining w(v) = b(v) − c(v), we can rewrite the profit

metric in (3) as

φ(S) = E
[ ∑
v∈Vg(S)

(
b(v)− c(v)

)]
, E

[ ∑
v∈Vg(S)

w(v)
]
.

Here, w(v) represents the profit gain of activating a node v. If
the benefit offered by v outweighs its cost, w(v) is positive.
Otherwise, w(v) is negative. Therefore, we can normalize the
benefit and cost weights of each node v by setting b̄(v) =
max{0, w(v)} and c̄(v) = max{0,−w(v)}. Then, the benefit
and cost metrics become

β̄(S) = E
[ ∑
v∈Vg(S)

b̄(v)
]
, and γ̄(S) = E

[ ∑
v∈Vg(S)

c̄(v)
]
,

respectively. We show later that this normalized form can make
the pruning phase of our proposed framework more effective.

It has been proved that the influence function σ(·) is
submodular under many commonly used diffusion models due
to Vg(S) ⊆ Vg(T ) for any S ⊆ T [15]. Similarly, it can
be shown that the benefit and cost metrics defined above are
both submodular under these diffusion models. That is, for
any two seed sets S and T where S ⊆ T and any node
v /∈ T , it holds that β(S ∪{v})−β(S) ≥ β(T ∪{v})−β(T )
and γ(S ∪ {v})− γ(S) ≥ γ(T ∪ {v})− γ(T ). Likewise, the
normalized β̄(·) and γ̄(·) are also submodular. Although both
the benefit and cost metrics are monotone and submodular, the
profit metric is neither monotone nor submodular (an example
is given in Fig. 1). Thus, the methods used for maximizing
monotone submodular functions would perform poorly for
our profit maximization problem as shall be shown in our
experiments. In the following, we develop heuristic algorithms
to address our profit maximization problem.

Example 1: Fig. 1 gives an example to illustrate that the
profit function φ(·) is neither monotone nor submodular. In
this example, once a node is activated, it will activate all of
its neighbors. It can be seen from the figure that φ(∅) = 0,
φ({v1}) = −1.5, φ({v3}) = −1 and, φ({v1, v3}) = 0.5.
Thus, φ(∅) > φ({v1}) and φ({v1}) < φ({v1, v3}), which
indicates that φ(·) is non-monotone. In addition, we can also
get that φ({v1}) − φ(∅) = −1.5 < φ({v1, v3}) − φ({v3}) =
1.5, which indicates that φ(·) is non-submodular.

IV. TWO-PHASE FRAMEWORK

We propose a general two-phase framework to select seed
nodes for optimizing the profit.

Algorithm 1: IterativePrune
1 start with A0 ← ∅, B0 ← V and t = 0;
2 repeat
3 At+1 ← At ∪ {v : β(v | Bt \ {v})− γ(v | At) > 0 and

v ∈ Bt \At};
4 Bt+1 ← Bt \ {v : β(v | At)− γ(v | Bt \ {v}) < 0 and

v ∈ Bt \At};
5 t← t+ 1;
6 until converged, i.e., At = At−1 and Bt = Bt−1;
7 return At and Bt as A∗ and B∗;

• Pruning phase (Algorithm 1): We develop an iterative
pruning technique to cut the search space.

• Search phase (Algorithms 2 and 3): We use some
heuristics to find the solution in the reduced search space.

A. Prune Search Space

To simplify the notations, we define the marginal gain of
adding a node v to a seed set S for metrics φ, β and γ as

φ(v | S) = φ(S ∪ {v})− φ(S),

β(v | S) = β(S ∪ {v})− β(S),

γ(v | S) = γ(S ∪ {v})− γ(S).

We start by proposing an iterative pruning approach that
can dramatically reduce the search space from the power set
of V to a smaller lattice for maximizing the profit function.
Algorithm 1 shows the pseudo code of the pruning algorithm.
Recall that by the submodularity of the benefit and cost
metrics, their marginal gains for adding a new seed node
decrease with the base seed set. Thus, the largest possible
benefit (cost) gain is produced by adding a node into an empty
seed set, whereas the smallest possible benefit (cost) gain is
generated by adding the node into an almost universal set. Note
that the marginal profit gain is bounded below by the smallest
benefit gain less the largest cost gain. So, it is intuitive that if
the latter is positive, the node must be selected in an optimal
solution. Similarly, the marginal profit gain is bounded above
by the largest benefit gain less the smallest cost gain. If the
latter is negative, the node cannot be selected in an optimal
solution. Algorithm 1 extends this idea in an iterative manner
to reduce the search space. It is easy to verify that after each
iteration, the newly generated lattice is a sublattice of that
in the previous iteration, i.e., At ⊆ At+1 ⊆ Bt+1 ⊆ Bt.
Furthermore, it can be proved that any seed set outside the
resultant lattice [A∗, B∗] delimited by the node sets A∗ and
B∗ returned by Algorithm 1 can be transformed to a seed set
in [A∗, B∗] with higher profit. The formal proofs of all the
theoretical results in this paper are given in the appendix.

Theorem 1: For any node set S and t ≥ 0, let St = S ∩
Bt ∪At, it holds that φ(St) ≤ φ(St+1), where the “=” holds
if and only if St = St+1.

Theorem 1 shows that the pruning technique can only
increase the profit value of the seed set St = S ∩ Bt ∪ At at
every iteration. The following corollary shows how our search
space reduction improves the quality of any solution.
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b=2,c=1
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Prune

Initialization: A0=fg, B0=fv1,v2,v3,v4g
Iteration 1: A1=fv3g, B1=fv1,v2,v3,v4g
Iteration 2: A2=fv3g, B2=fv1,v2,v3g
Iteration 3: A3=fv3g, B3=fv1,v2,v3g
Converged, return A*=A3, B*=B3

Fig. 2. An example of iterative pruning under the Independent Cascade
diffusion model. Each node is associated with a benefit weight b and a cost
weight c. Each edge has a propagation probability p.

Corollary 1: For any node set S, if S /∈ [A∗, B∗], then
φ(S) < φ(S ∩B∗ ∪A∗).

By Corollary 1, the pruning approach can always improve
the quality of any seed set S outside [A∗, B∗] by transforming
it to the seed set S ∩ B∗ ∪ A∗ in [A∗, B∗]. Thus, the lattice
[A∗, B∗] retains all the optimal seed sets. As a result, we can
reduce the search space from the lattice [∅, V ] to [A∗, B∗].
Our pruning approach can be used prior to any seed selection
algorithms to improve the solution quality.

Corollary 2: For any seed set S∗ producing the maximum
achievable profit, it holds that A∗ ⊆ S∗ ⊆ B∗.

Example 2: Fig. 2 gives an example to illustrate how the
pruning algorithm works as well as the above theorem and
corollaries. This example assumes the Independent Cascade
(IC) diffusion model. The IC model is a representative and
most widely-studied diffusion model for influence propagation
[6], [7], [14], [15], [17], [22], [23], [24], [27], [28], [30], [32],
[33], [34]. In the IC model, a propagation probability pu,v is
associated with each edge 〈u, v〉, representing the probability
for v to be activated by u through their connection. In the
diffusion process, when a node u first becomes activated, it
has a chance to activate its neighbors who are not yet activated.
Each such neighbor v would become activated with probability
pu,v . This process repeats until no more node can be activated.
For example, in Fig. 2, when {v1, v3} are selected as seeds, v2

would be activated with probability 0.3. Meanwhile, v4 would
be activated by v1 with probability 0.4, by v2 with probability
0.3×0.2 = 0.06, and by v3 with probability 0.3. Thus, overall,
v4 would be activated with probability 1 − (1 − 0.4) × (1 −
0.06)× (1− 0.3) = 0.6052.

To conduct iterative pruning, A0 is initialized by ∅ and
B0 is initialized by {v1, v2, v3, v4} respectively. To simplify
the notations, let φ−t (v) = β(v | Bt \ {v}) − γ(v | At)
and φ+

t (v) = β(v | At) − γ(v | Bt \ {v}) describe the
calculations in Algorithm 1. At iteration 1, φ−1 (v1) = β(v1 |
{v2, v3, v4}) − γ(v1 | ∅) = 1 × b(v1) −

(
1 × c(v1) + 0.3 ×

c(v2)+(1− (1−0.4)× (1−0.3×0.2))× c(v4)
)

= 1.5− (1+
0.3 + 2.18) = 1.5 − 3.48 = −1.98 < 0. Similarly, φ−1 (v2) =
−0.6 < 0, φ−

1 (v3) = 0.5 > 0, φ−1 (v4) = −4.328 < 0,
φ+

1 (v1) = 1.972 > 0, φ+
1 (v2) = 1.7 > 0, φ+

1 (v3) = 2.6 > 0,
and φ+

1 (v4) = 0.32 > 0. Thus, v3 is added to A1 so
that A1 = {v3} and B1 = {v1, v2, v3, v4}. At iteration 2,
φ−2 (v1) = −1.326 < 0, φ−2 (v2) = −0.3 < 0, φ−2 (v4) =
−2.828 < 0, φ+

2 (v1) = 1.7104 > 0, φ+
2 (v2) = 1.58 > 0, and

φ+
2 (v4) = −0.28 < 0. Thus, v4 is removed from B2 so that

A2 = {v3} and B2 = {v1, v2, v3}. At iteration 3, φ−3 (v1) =
−0.878 < 0, φ−3 (v2) = −0.1824 < 0, φ+

3 (v1) = 0.5904 > 0,
and φ+

3 (v2) = 1.286 > 0. Thus, both A3 and B3 remain the
same as in the previous iteration. As a result, A∗ = {v3} and
B∗ = {v1, v2, v3} are returned. For a seed set S = {v2, v4} /∈
[A∗, B∗], we have S1 = S ∩ B1 ∪ A1 = {v2, v3, v4} and
S2 = S3 = S ∩B∗ ∪A∗ = {v2, v3}. Then, it can be obtained
that φ(S) = −2 < φ(S1) = 0 < φ(S2) = 1.68, which
demonstrates Theorem 1 and Corollary 1. Moreover, it is easy
to verify that the optimal seed set S∗ = {v2, v3} belongs to
[A∗, B∗], which confirms Corollary 2.

Finally, it can be shown that normalizing the benefit and
cost weights as described in Section III-B can only increase
the amount of the search space cut by our pruning technique.

Theorem 2: Let Ā∗ and B̄∗ be the node sets returned by
Algorithm 1 under the normalized form. Then, A∗ ⊆ Ā∗ ⊆
B̄∗ ⊆ B∗.

We shall experimentally evaluate the additional reduction in
the search space due to normalization in Section VI.

B. Heuristic Algorithms

We now present some heuristic methods to address the profit
maximization problem since there does not exist any polyno-
mial time algorithm with any polynomial time multiplicative
approximation guarantees unless P=NP [13].

Greedy Algorithm: We apply a simple hill-climbing idea
to optimize the profit function (3). Algorithm 2 describes the
pseudo code. In each iteration, the greedy heuristic adds a new
node u to S that has the largest marginal profit gain φ(u | S)
until all the remaining nodes have negative marginal gains.

Algorithm 2: Greedy
1 initialize S ← A∗;
2 while True do
3 find u← argmaxv∈B∗\S {φ(v | S)};
4 if φ(u | S) ≤ 0 then return S;
5 S ← S ∪ {u};

Modular-Modular Algorithm: Iyer and Bilmes [13] intro-
duced a modular-modular (ModMod) algorithm for optimizing
the difference between submodular functions. Since we just
need to search the lattice [A∗, B∗] after pruning, we adapt the
ModMod algorithm as shown in Algorithm 3. In line 4 of Al-
gorithm 3, hπXt(Y ;β) is a modular lower bound of β(Y ) that
is tight at set Xt, i.e., hπXt(Y ;β) ≤ β(Y ) for any Y ⊆ V and
hπXt(X

t;β) = β(Xt), while mXt(X
t; γ) is a modular upper

bound of γ(Y ) that is also tight at Xt, i.e., mXt(Y ; γ) ≥ γ(Y )
for any Y ⊆ V and mXt(X

t; γ) = γ(Xt). Thus, the
difference hπXt(Y ;β) − mXt(Y ; γ) is a lower bound of the
profit function φ(Y ). The algorithm maximizes the lower
bound in each iteration. Since the lower bound is tight at
Y = Xt, it is guaranteed that φ(Xt+1) ≥ hπXt(X

t+1;β) −
mXt(X

t+1; γ) ≥ hπXt(X
t;β) −mXt(X

t; γ) = φ(Xt). This
indicates that Algorithm 3 always increases the profit value
at every iteration. Examples of the modular upper and lower
bounds will be given in Section V-A.



Algorithm 3: Modular-Modular (ModMod)
1 initialize X0 ← A∗ and t← 0;
2 repeat
3 choose the permutations of A∗, Xt \A∗, B∗ \Xt and

concatenate them as π;
4 Xt+1 ← argmaxA∗⊆Y⊆B∗ hπXt(Y ;β)−mXt(Y ; γ);
5 t← t+ 1;
6 until converged, i.e., Xt = Xt−1;
7 return Xt;

C. Discussions

Time Complexity: Evaluating the profit metric involves
estimating the influence spread given a seed set. Any existing
influence estimation methods, such as Monte-Carlo simulation
[15], [17], [24] and reverse influence sampling [2], [22], [23],
[32], [33], can be used. Suppose the time complexity for
computing the marginal profit gain of adding/removing a node
into/from a seed set is O(M). For the iterative pruning process
(Algorithm 1), the size of the node set Bt\At to check reduces
by at least 1 in each iteration. Therefore, it takes at most
O
(
(|V | + |V | − 1 + · · · + 1)M

)
= O(|V |2M) time to find

A∗ and B∗. After the reduction of the search space, there are
k1 = |B∗ \A∗| nodes to be further examined. For the Greedy
algorithm, it checks k1− i+1 nodes in the ith iteration. Thus,
it takes at most O(k2

1M) time, which means the total time
complexity of the Greedy algorithm is O

(
(|V |2+k2

1)M
)
. Each

iteration of the ModMod algorithm has a time complexity of
O(k1M). Let k2 denote the total number of iterations used
for the ModMod algorithm. Then, the total time complexity
of the ModMod algorithm is O

(
(|V |2 + k1k2)M

)
.

Diffusion Models: Our analysis and algorithms are general
frameworks that can be adapted to any diffusion models which
are submodular, such as the Independent Cascade and Linear
Threshold models, the triggering model [15], the continuous-
time models [5], [10], and the topic-aware models [1], [4].

V. PERFORMANCE ANALYSIS

The challenges to evaluate the quality of the seed set
constructed for the profit maximization problem are two-
fold. First, optimizing the difference between two submodular
functions is multiplicative inapproximability unless P=NP.
Thus, it is difficult to measure the gap between the seed set
obtained and an optimal seed set. Second, the random pro-
cesses of many diffusion models are analytically intractable.
For example, computing the exact influence spread under the
IC diffusion model is #P-hard [6]. Thus, the benefit brought
and the cost incurred by a seed set can only be estimated via
some sampling approaches [15], [2]. As a result, the sampling
error also affects the quality measurement of the seed set.

We propose techniques to analyze the aforementioned gap
and sampling error, which enable us to evaluate the approxi-
mation guarantee of the seed set obtained by any algorithm on
any given instance of the profit maximization problem. Specifi-
cally, let So be the seed set constructed for a problem instance.
We develop an upper bound µ on the maximum achievable

profit for the problem instance to characterize the gap between
the real profit value φ(So) and the maximum achievable profit.
Note that both φ(So) and µ are to be estimated by sampling.
Let φ̃(So) and µ̃ be their estimated values. We further study
the sampling errors to bound the difference between φ̃(So)
and φ(So) and the difference between µ̃ and µ. In this way,
we can obtain an approximation guarantee of So using the
estimated values φ̃(So) and µ̃.

A. Upper Bound of Maximum Achievable Profit

To derive our bounds on the maximum achievable profit, we
first introduce two modular bounds for submodular functions.

Modular Upper Bounds: For any submodular set function
f(·), we have the following two modular upper bounds m1

X

and m2
X that are tight at a given set X [13]:

m1
X(Y ) , f(X)−

∑
v∈X\Y

f(v | V \ {v}) +
∑

v∈Y \X

f(v | X), (4)

m2
X(Y ) , f(X)−

∑
v∈X\Y

f(v | X \ {v}) +
∑

v∈Y \X

f(v | ∅). (5)

In the previous section, we have reduced the search space so
that only the sets belonging to [A∗, B∗] need to be considered
for profit maximization. As a result, for any A∗ ⊆ X,Y ⊆ B∗,
the above two upper bounds can be improved to:

m3
X(Y ) , f(X)−

∑
v∈X\Y

f(v | B∗ \ {v}) +
∑

v∈Y \X

f(v | X), (6)

m4
X(Y ) , f(X)−

∑
v∈X\Y

f(v | X \ {v}) +
∑

v∈Y \X

f(v | A∗). (7)

It is easy to show that the bounds m3
X(Y ) and m4

X(Y ) remain
tight at X , i.e., m3

X(X) = m4
X(X) = f(X), and they are

tighter than m1
X(Y ) and m2

X(Y ) at other sets, i.e., m1
X(Y ) ≥

m3
X(Y ) ≥ f(Y ) and m2

X(Y ) ≥ m4
X(Y ) ≥ f(Y ) for any

A∗ ⊆ Y ⊆ B∗.
Modular Lower Bounds: For any submodular set function

f(·), a modular lower bound hX that is tight at a given set X
can be obtained as follows [11]. Let π be any permutation of
V that places all the nodes in X before the nodes in V \X .
Let Sπi = {π(1), π(2), · · · , π(i)} be a chain formed by the
permutation, where Sπ0 = ∅ and Sπ|X| = X . Define

hπX(π(i)) = f(Sπi )− f(Sπi−1). (8)

Then, hπX(Y ) =
∑
v∈Y h

π
X(v) is a lower bound of f(Y ),

which is tight at X , i.e., hπX(Y ) ≤ f(Y ) for any Y ⊆ V
and hπX(X) = f(X). After the search space is reduced to
[A∗, B∗], we restrict π to any permutation of V in the order
of A∗, X \A∗ and B∗ \X .

Upper Bounds on Maximum Achievable Profit: Based on
the above bounds, we can derive two series of upper bounds
on the maximum value of the profit function φ(·) as follows.
For any set X where A∗ ⊆ X ⊆ B∗, we define

µi(X) , max
A∗⊆Y⊆B∗

mi
X(Y ;β)− hπX(Y ; γ), (9)

where mi
X(Y ;β) (i = 3, 4) denotes the modular upper bound

on the benefit function β and hπX(Y ; γ) denotes the modular



lower bound on the cost function γ respectively. For briefness,
we shall use µ(X) to refer to either bound with i = 3 or 4 in
the rest of the paper.

Theorem 3: For any set X where A∗ ⊆ X ⊆ B∗,

µ(X) ≥ max
S⊆V

φ(S). (10)

The upper bounds established above can be computed very
fast since mi

X(Y ;β) and hπX(Y ; γ) are both modular functions
with respect to Y . It is much easier to find the maximum value
for a modular function than that for a submodular function. We
can obtain upper bounds by arbitrarily choosing the set X in
µ(X). Given a seed set solution So obtained by any algorithm,
we simply choose X = So. Then, the approximation guarantee
of So can be estimated by φ(So)/µ(So).

B. Sampling Error

To estimate φ(So) and µ(So), we make use of a state-of-
the-art technique called reverse influence sampling [2], [22].

Definition 1 (RR Set for Weighted Graph): A random
reverse reachable (RR) set R for a weighted graph G is
generated by (1) first selecting a random node v ∈ V with a
probability distribution p(·) proportional to the node weights,
(2) then sampling a graph g randomly from G according to
the diffusion model, (3) finally taking the set of nodes in g
that can reach v as R.

Taking our benefit metric as an example, the probability for
choosing a node v in a random RR set is given by p(v) =
b(v)/Υb, where Υb = b(V ) =

∑
v∈V b(v) is the total benefit

weight of all nodes. For a seed set S, the relation between its
benefit and a random RR set R is β(S) = Υb · Pr[S ∩ R 6=
∅], where Pr[S ∩ R 6= ∅] is the probability that R contains
at least one node in S [22]. Similarly, we can estimate the
diffusion cost γ(S) by choosing each node in a random RR
set with a probability proportional to the cost of the node, i.e.,
p(v) = c(v)/Υc, where Υc = c(V ) =

∑
v∈V c(v) is the total

cost weight of all nodes. Therefore, we generate two groups
of RR sets to estimate the benefit and cost respectively for a
seed set.

Suppose that we generate a total of θβ random RR sets to
estimate the benefit brought by a seed set S. An RR set is
said to be covered by S if it contains at least one node in S.
Let Λβ(S) denote the number of RR sets covered by S among
the θβ random RR sets. Then, the benefit brought by S can
be estimated as Λβ(S) ·Υb/θβ . To analyze the sampling error,
we make use of the Chernoff-Hoeffding Theorem [8].

Lemma 1 (Chernoff-Hoeffding Theorem [8]): Let
Z1, Z2, . . . , Zθ denote random variables that are independently
and identically distributed according to Z in the interval [0, 1]
with mean E[Z]. For any fixed θ > 0 and ε > 0,

Pr

[
θ∑
i=1

Zi − θ · E[Z] ≥ ε
]
≤ exp

(
− ε2

4(e− 2)θE[Z]

)
,

Pr

[
θ∑
i=1

Zi − θ · E[Z] ≤ −ε
]
≤ exp

(
− ε2

4(e− 2)θE[Z]

)
.

Based on Lemma 1, we can establish the following relation
between Λβ(S) and the real benefit β(S).

Theorem 4: For θβ random RR sets that are independent of
S and any δ ∈ (0, 1), we have

Pr

[
β(S) ≥

(√
Λβ(S) + 0.25a− 0.5

√
a

)2

· Υb

θβ

]
≥ 1− δ

2
,

Pr

[
β(S) ≤

(√
Λβ(S) + 0.25a+ 0.5

√
a

)2

· Υb

θβ

]
≥ 1− δ

2
,

where a = 4(e− 2) ln(2/δ).
According to Theorem 4, given Λβ(S), we can define a

lower bound and an upper bound of β(S) with a probability
at least 1− δ/2 asβl(S) ,

(√
Λβ(S) + 0.25a− 0.5

√
a
)2

·Υb/θβ ,

βu(S) ,
(√

Λβ(S) + 0.25a+ 0.5
√
a
)2

·Υb/θβ .
(11)

The above analysis can also be applied to the estimation
of the cost. Let θγ denote the number of random RR sets
generated to estimate the cost incurred by a seed set S. Let
Λγ(S) denote the number of RR sets covered by S among
the θγ random RR sets. Then, the cost incurred by S can
be estimated as Λγ(S) · Υc/θγ . We can similarly define a
lower bound γl(S) and an upper bound γu(S) on the real
cost γ(S) with a probability at least 1 − δ/2. Then, given a
seed set solution So obtained by any algorithm, we can derive
a lower bound βl(So)− γu(So) on its real profit φ(So) such
that Pr[φ(So) ≥ βl(So)−γu(So)] ≥ Pr

[(
β(So) ≥ βl(So)

)
∧(

γ(So) ≤ γu(So)
)]

= 1−Pr
[(
β(So) < βl(S

o)
)
∨
(
γ(So) >

γu(So)
)]
≥ 1− (δ/2 + δ/2) > 1− δ.

The difficulty in analyzing the sampling error for the upper
bound µ(So) of the maximum achievable profit lies in that we
can never find a specific seed set to achieve the upper bound.
From Theorem 4, we know that the profit of any seed set S is
bounded above by βu(S)− γl(S) with a high probability. By
definition, βu(S)− γl(S) is a function of Λβ(S) and Λγ(S).
Let φ̃(S) be the estimated profit of S on the RR sets generated,
which is defined by φ̃(S) = Λβ(S) ·Υb/θβ −Λγ(S) ·Υc/θγ .
Then, βu(S) − γl(S) can be represented as a function η of
Λβ(S) and φ̃(S), i.e., η

(
Λβ(S), φ̃(S)

)
. We can prove that

η
(
Λβ(S), φ̃(S)

)
is increasing with both Λβ(S) and φ̃(S).

Naturally, Λβ(S) is bounded above by θβ . On the other
hand, thanks to the submodularity of the set coverage used to
estimate the benefit and cost metrics in the reverse influence
sampling approach, we can easily get the estimated upper
bound µ̃(So) on the maximum achievable profit from the RR
sets generated according to the analysis in Section V-A. As a
result, for any seed set S, the upper bound η

(
Λβ(S), φ̃(S)

)
of its profit is bounded above by η

(
θβ , µ̃(So)

)
. In this way,

we can obtain the sampling error for the upper bound µ(So).
Theorem 5: For any δ ∈ (0, 1), we have

Pr

[
max
S⊆V

φ(S) ≤ µ̃(So) + ε
(
µ̃(So)

)]
≥ 1− δ, (12)



where ε
(
µ̃(So)

)
is the sampling error for µ̃(So) such

that ε
(
µ̃(So)

)
= ργ

√
a
((
ρβθβ − µ̃(So)

)
/ργ + 0.25a

)
+

0.5a(ρβ − ργ) + ρβ
√
a(θβ + 0.25a), and ρβ = Υb/θβ and

ργ = Υc/θγ .
By Theorems 4 and 5, we have the approximation guarantee

that
φ(So)

maxS⊆V φ(S)
≥ βl(S

o)− γu(So)

µ̃(So) + ε
(
µ̃(So)

) (13)

with a probability at least 1− 2δ.

C. Reduce Sampling Error via Normalization

As discussed in Section III-B, we can normalize the benefit
and cost weights by b̄(v) and c̄(v) for every node v ∈ V .
Intuitively, the normalization can avoid unnecessary sam-
ples conducted by the weights

∑
v∈V min{b(v), c(v)} for

the estimations of both the benefit and cost. Therefore, the
normalization can reduce the sampling error by increasing the
number of useful samples.

Theorem 6: For any seed set S and a fixed number of
samples, let εφ be the sampling error limit that can provide a
probability guarantee of 1− δ, i.e., Pr[−εφ ≤ φ̃(S)−φ(S) ≤
εφ] ≥ 1− δ, and let ε̄φ be the sampling error limit under the
normalized form. We have ε̄φ ≤ εφ.

Theorem 6 indicates that the normalization can improve the
solution quality which shall be demonstrated in the experi-
ments.

VI. EVALUATION

A. Experimental Setup

Datasets. We use several real social networks available
at [18] to evaluate our proposed techniques. Due to space
limitations, we report here the results for two representative
datasets, Google+ (108K nodes, 14M edges), and LiveJournal
(5M nodes, 69M edges).

Algorithms. Recall that the ModMod algorithm needs a
modular lower bound of the benefit function β(·) and a
modular upper bound of the cost function γ(·). In Section V-A,
we have presented one such lower bound and two such upper
bounds. We use ModMod-1 to refer to that using the upper
bound m3

X(Y ) defined in Eq. (6) and use ModMod-2 to refer
to that using the upper bound m4

X(Y ) defined in Eq. (7). We
compare our two-phase methods with the following baselines.
• Random: It randomly selects k nodes. We run the algo-

rithm 10 times and take their average as the expected
profit.

• HighDegree: It selects k nodes with the highest degrees.
• BenefitMax: It makes use of the reverse influence sam-

pling technique to find the top-k influential nodes for
influence/benefit maximization [2], [22], [23], [32], [33].

The above baselines are executed on the entire social networks
without applying any pruning technique. To explore different
seed numbers, in each baseline, we iterate through k = |V |

2i for
i = 0, 1, . . . , 10 (where |V | is the network size) and choose
the k value producing the largest profit.

Parameter Settings. By default, we use the IC diffusion
model (as described in Example 2 of Section IV-A), a uniform
benefit distribution (where every node has a unit benefit to
model the commission paid by the advertiser for each user
activated), and a degree-proportional cost distribution (where
the cost of each node is set proportional to its out-degree to
emulate the diffusion cost for each activated user to push the
product advertisement to all of his neighbors). In the IC model,
we set the propagation probability pu,v of each edge 〈u, v〉
to the reciprocal of v’s in-degree (the number of v’s inverse
neighbors) as widely adopted by other studies [6], [14], [22],
[23], [32], [33].

By default, we normalize the benefit and cost weights as
described in Section III-B. We use a scale factor r to control
the ratio between the total cost and total benefit of all nodes.
A higher r implies a higher cost of influence propagation
relative to the benefit of influence spread. The default value
of r is set to 1. We have tested a wide range of r values and
observed similar performance trends. In executing our two-
phase methods and the baseline BenefitMax algorithm, we
vary the number of RR sets generated to study the impact of
benefit and cost estimations. To evaluate the profits of the seed
sets returned by different algorithms, we generate a group of
validation RR sets to keep the estimation errors within 1% with
a high probability at least 1− 10−6 according to Theorem 4.

B. Profits Produced by Different Algorithms

Fig. 3 shows the profits produced by different algorithms.
Comparing the seed selection algorithms, our heuristic algo-
rithms are more effective in optimizing the profit than the three
baseline algorithms (Random, HighDegree and BenefitMax)
on the datasets tested. This suggests that improving the influ-
ence spread or benefit alone is not effective for maximizing
the profit. Our three heuristic algorithms perform quite close
in terms of the profit produced. It can also be seen that with
increasing number of RR sets generated for profit estimation in
the seed selection process, the solution quality of our heuristics
is improved due to lower estimation errors.

C. Running Times of Different Algorithms

Fig. 4 shows the running times of different algorithms. The
algorithms are all implemented in C++ and the experiments are
carried out on a machine with an Intel Xeon E5-1650 3.2GHz
CPU and 16GB memory. The time spent for generating RR
sets is common to all our heuristics as well as BenefitMax. We
plot it as a separate curve and exclude it from the running times
of all the algorithms in Fig. 4. It can be seen that generating the
RR sets takes significant time. The Random and HighDegree
algorithms do not need benefit and cost estimations. Thus,
their running times are independent of the number of RR sets.
The other four methods have running times increasing almost
linearly with the number of RR sets (note that both axes are
in logscale). In most cases, our heuristic methods complete
execution within 100 seconds even for the LiveJournal dataset
with millions of nodes. This shows the efficiency of our two-
phase algorithms.
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Fig. 3. Profits produced by different algorithms.
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Fig. 4. Running times of different algorithms.
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Fig. 5. Impact of iterative pruning technique (algorithms with prefix “O-” do not use pruning technique).

TABLE I
SEARCH SPACE REDUCTION.

Dataset |V | |A∗| |B∗| |B∗ \A∗| Reduction
Google+ 108K 80.6K 82.4K 1.8K 98.3%

LiveJournal 5M 2.5M 3.3M 0.8M 83.7%

(a) With Normalization

Dataset |V | |A∗| |B∗| |B∗ \A∗| Reduction
Google+ 108K 62.2K 97.1K 34.9K 67.6%

LiveJournal 5M 1.3M 4.3M 3.0M 38.3%

(b) Without Normalization

D. Iterative Pruning Technique

Table I shows the amount of search space reduction by the
iterative pruning technique proposed in Section IV-A. These
results are for the experiments with 210 × 10, 000 RR sets
generated. As can be seen, the pruning technique substantially
reduces the number of nodes that need to be considered for
seed selection. Specifically, the search space is reduced by
98.3% and 83.7% of the original network size for the Google+
and LiveJournal datasets respectively when the normalization
is applied. On the other hand, the reduction is much less
when the normalization is not applied (67.6% and 38.3%
for the Google+ and LiveJournal datasets respectively). This
observation confirms Theorem 2.

Fig. 5 shows the impact of the search space reduction on
the profit produced and the running time of our heuristics,
where O-X refers to heuristic X without the search space
reduction. As claimed in Corollary 1, the pruning technique
can help improve all the heuristic algorithms in terms of the
profit produced. This is confirmed by the experimental results.
For the LiveJournal dataset (Fig. 5(b)), the Greedy algorithm
even produces negative profit without pruning the search space

TABLE II
APPROXIMATION GUARANTEE OF SEED SETS OBTAINED.

Dataset Greedy ModMod-1 ModMod-2
Google+ 98.7% 98.8% 98.6%

LiveJournal 72.9% 75.8% 74.3%

first, and the pruning technique can bring improvements up
to 24.1% and 14.3% for the ModMod-1 and ModMod-2
algorithms respectively. Furthermore, the pruning technique
can also help reduce the running time considerably. By pruning
the search space first, our heuristic algorithms can run up to 3
orders faster. These observations demonstrate the effectiveness
of our pruning technique.

E. Guarantee of Solution Quality

We evaluate the quality of the seed sets returned by different
algorithms using the techniques presented in Section V. In
our evaluation, we always choose the tighter bound between
µ3(X) and µ4(X) as defined in (9). We set δ = 10−6

so that the approximation guarantees obtained by (13) have
high confidence. Table II shows the approximation guarantees
derived for the seed sets constructed with 210 × 10, 000 RR
sets generated. As can be seen, the seed sets constructed by
our algorithms have approximation guarantees above 98% and
70% for the Google+ and LiveJournal datasets respectively.
This implies that (i) our proposed upper bounds on the
maximum achievable profit are quite tight, and (ii) the heuristic
algorithms perform rather close to the optimal.

F. Normalization

In Section VI-D, we have shown that the normalization
can increase the amount of search space reduction by the
pruning technique. Now, we further evaluate the impact of
normalization on the profit. Fig. 6 shows the profit produced by
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Fig. 6. Impact of normalization (algorithms with prefix “O-” do not use
pruning technique and with postfix “-w/o” are without normalization).

the Greedy algorithm with and without the normalization. The
results for the ModMod algorithms are similar. As can be seen,
no matter whether the pruning technique is used, the Greedy
algorithm with normalization can always produce higher profit
than that without normalization. This confirms Theorem 6 that
the normalization can reduce the sampling error limit and thus,
it can further improve the solution quality.

VII. CONCLUSION

In this paper, we have studied a profit maximization problem
for OSN providers conducting viral marketing. The objective
is to select initial seed nodes to maximize the total profit
that accounts for both the benefit of influence spread and
the cost of influence propagation. We have proposed a two-
phase framework that first reduces the search space via an
iterative pruning technique and then finds the solution via some
heuristic algorithms. We have presented several bounds to
measure the quality of the solution obtained by any algorithm.
Experimental results with real OSN datasets demonstrate the
effectiveness and efficiency of our techniques, and show the
tightness of our derived upper bounds.

ACKNOWLEDGMENT

This research is supported by Singapore Ministry of Edu-
cation Academic Research Fund Tier 1 under Grant 2017-T1-
002-024 and Tier 2 under Grant MOE2015-T2-2-114.

REFERENCES

[1] N. Barbieri, F. Bonchi, and G. Manco, “Topic-aware social influence
propagation models,” in Proc. IEEE ICDM, 2012, pp. 81–90.

[2] C. Borgs, M. Brautbar, J. Chayes, and B. Lucier, “Maximizing social
influence in nearly optimal time,” in Proc. SODA, 2014, pp. 946–957.

[3] P. Chalermsook, A. Das Sarma, A. Lall, and D. Nanongkai, “Social
network monetization via sponsored viral marketing,” in Proc. ACM
SIGMETRICS, 2015, pp. 259–270.

[4] S. Chen, J. Fan, G. Li, J. Feng, K.-L. Tan, and J. Tang, “Online topic-
aware influence maximization,” Proc. VLDB Endowment, vol. 8, no. 6,
pp. 666–677, 2015.

[5] W. Chen, W. Lu, and N. Zhang, “Time-critical influence maximization
in social networks with time-delayed diffusion process,” in Proc. AAAI,
2012, pp. 592–598.

[6] W. Chen, C. Wang, and Y. Wang, “Scalable influence maximization for
prevalent viral marketing in large-scale social networks,” in Proc. ACM
KDD, 2010, pp. 1029–1038.

[7] W. Chen, Y. Wang, and S. Yang, “Efficient influence maximization in
social networks,” in Proc. ACM KDD, 2009, pp. 199–208.

[8] P. Dagum, R. Karp, M. Luby, and S. Ross, “An optimal algorithm for
monte carlo estimation,” SIAM Journal on Computing, vol. 29, no. 5,
pp. 1484–1496, 2000.

[9] P. Domingos and M. Richardson, “Mining the network value of cus-
tomers,” in Proc. ACM KDD, 2001, pp. 57–66.

[10] N. Du, L. Song, M. Gomez-Rodriguez, and H. Zha, “Scalable influence
estimation in continuous-time diffusion networks,” in Proc. NIPS, 2013,
pp. 3147–3155.

[11] S. Fujishige, Submodular Functions and Optimization. Elsevier Sci-
ence, 2005, vol. 58.

[12] A. Goyal, F. Bonchi, and L. V. S. Lakshmanan, “A data-based approach
to social influence maximization,” Proc. VLDB Endowment, vol. 5, no. 1,
pp. 73–84, 2011.

[13] R. Iyer and J. Bilmes, “Algorithms for approximate minimization of the
difference between submodular functions, with applications,” in Proc.
UAI, 2012, pp. 407–417.

[14] K. Jung, W. Heo, and W. Chen, “IRIE: Scalable and robust influence
maximization in social networks,” in Proc. IEEE ICDM, 2012, pp. 918–
923.

[15] D. Kempe, J. Kleinberg, and E. Tardos, “Maximizing the spread of
influence through a social network,” in Proc. ACM KDD, 2003, pp.
137–146.

[16] A. Khan, B. Zehnder, and D. Kossmann, “Revenue maximization by
viral marketing: A social network host’s perspective,” in Proc. IEEE
ICDE, 2016.

[17] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and
N. Glance, “Cost-effective outbreak detection in networks,” in Proc.
ACM KDD, 2007, pp. 420–429.

[18] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, 2014.

[19] W. Lu and L. V. Lakshmanan, “Profit maximization over social net-
works,” in Proc. IEEE ICDM, 2012, pp. 479–488.

[20] A. Meyer, “Viral video marketing: What’s, why’s & how’s of going vi-
ral,” http://www.marketergizmo.com/viral-video-marketing-cats-babies-
and-your-company/, 2015.

[21] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of ap-
proximations for maximizing submodular set functions-I,” Mathematical
Programming, vol. 14, no. 1, pp. 265–294, 1978.

[22] H. T. Nguyen, T. N. Dinh, and M. T. Thai, “Cost-aware targeted viral
marketing in billion-scale networks,” in Proc. IEEE INFOCOM, 2016.

[23] H. T. Nguyen, M. T. Thai, and T. N. Dinh, “Stop-and-stare: Optimal
sampling algorithms for viral marketing in billion-scale networks,” in
Proc. ACM SIGMOD, 2016, pp. 695–710.

[24] N. Ohsaka, T. Akiba, Y. Yoshida, and K. Kawarabayashi, “Fast and
accurate influence maximization on large networks with pruned monte-
carlo simulations,” in Proc. AAAI, 2014, pp. 138–144.

[25] J. J. Roberts, “Facebook and Google are big winners as political ad
money moves online,” Fortune, 2016.

[26] M. G. Rodriguez, D. Balduzzi, and B. Schölkopf, “Uncovering the
temporal dynamics of diffusion networks,” in Proc. ICML, 2011, pp.
561–568.

[27] G. Song, X. Zhou, Y. Wang, and K. Xie, “Influence maximization on
large-scale mobile social network: A divide-and-conquer method,” IEEE
Trans. Parallel and Distributed Systems, vol. 26, no. 5, pp. 1379–1392,
2015.

[28] J. Tang, X. Tang, X. Xiao, and J. Yuan, “Online processing algorithms
for influence maximization,” in Proc. ACM SIGMOD, 2018.

[29] J. Tang, X. Tang, and J. Yuan, “Profit maximization for viral marketing
in online social networks,” in Proc. IEEE ICNP, 2016, pp. 1–10.

[30] J. Tang, X. Tang, and J. Yuan, “Influence maximization meets effi-
ciency and effectiveness: A hop-based approach,” in Proc. IEEE/ACM
ASONAM, 2017, pp. 64–71.

[31] J. Tang, X. Tang, and J. Yuan, “Profit maximization for viral marketing
in online social networks: Algorithms and analysis,” IEEE Transactions
on Knowledge and Data Engineering, 2018.

[32] Y. Tang, Y. Shi, and X. Xiao, “Influence maximization in near-linear
time: A martingale approach,” in Proc. ACM SIGMOD, 2015, pp. 1539–
1554.

[33] Y. Tang, X. Xiao, and Y. Shi, “Influence maximization: Near-optimal
time complexity meets practical efficiency,” in Proc. ACM SIGMOD,
2014, pp. 75–86.

[34] C. Zhou, P. Zhang, J. Guo, X. Zhu, and L. Guo, “UBLF: An upper
bound based approach to discover influential nodes in social networks,”
in Proc. IEEE ICDM, 2013, pp. 907–916.

[35] Y. Zhu, Z. Lu, Y. Bi, W. Wu, Y. Jiang, and D. Li, “Influence and profit:
Two sides of the coin,” in Proc. IEEE ICDM, 2013, pp. 1301–1306.

http://snap.stanford.edu/data
http://www.marketergizmo.com/viral-video-marketing-cats-babies-and-your-company/
http://www.marketergizmo.com/viral-video-marketing-cats-babies-and-your-company/


APPENDIX

Lemma 2: At ⊆ At+1 ⊆ Bt+1 ⊆ Bt for any t ≥ 0.
Proof of Lemma 2: By the definitions in lines 3 and 4

of Algorithm 1, At gradually expands over iterations and Bt
gradually shrinks, i.e., At ⊆ At+1 and Bt+1 ⊆ Bt. What is
left is to show that At is always a subset of Bt. We prove it
by induction. Obviously, A0 = ∅ ⊆ V = B0. Suppose that
At ⊆ Bt holds for some t ≥ 0. Then, we can easily get that
At ⊆ Bt+1 by the definition in line 4 of Algorithm 1 and that
At+1 ⊆ Bt by the definition in line 3 of Algorithm 1. On the
other hand, for any node v ∈ Bt \At, it is obvious that At ⊆
Bt\{v}. Thus, for any node v ∈ At+1\At ⊆ Bt\At, we have
β(v | At)−γ(v | Bt \{v}) ≥ β(v | Bt \{v})−γ(v | At) > 0,
where the first inequality is due to the submodularity of β(·)
and γ(·) and the second inequality is by the definition of At+1

in line 3 of Algorithm 1. It indicates that v ∈ Bt+1 as well.
Therefore, At+1 \ At ⊆ Bt+1, which implies At+1 ⊆ Bt+1

since we already know that At ⊆ Bt+1. Thus, we can conclude
that At+1 ⊆ Bt+1.

Proof of Theorem 1: By the definition of St, we easily
have At ⊆ St ⊆ Bt. We already know that At ⊆ At+1 ⊆
Bt+1 ⊆ Bt by Lemma 2. Thus,

St+1 = S ∩Bt+1 ∪At+1

= S ∩
(
Bt \ (Bt \Bt+1)

)
∪At+1

= S ∩Bt \
(
S ∩ (Bt \Bt+1)

)
∪At+1

= S ∩Bt ∪At+1 \
(
S ∩ (Bt \Bt+1) \At+1

)
= S ∩Bt ∪At+1 \

(
S ∩ (Bt \Bt+1)

)
= S ∩Bt ∪At ∪ (At+1 \At) \

(
S ∩ (Bt \Bt+1)

)
= St ∪ (At+1 \At) \

(
S ∩ (Bt \Bt+1)

)
. (14)

By line 3 of Algorithm 1, for any node v ∈ At+1 \ At, it
holds that β(v | Bt \ {v}) − γ(v | At) > 0. Then, for any
St ⊆ T ⊆ St∪(At+1\At), since At ⊆ T and T ⊆ Bt\{v}, we
have φ(v | T ) = β(v | T )−γ(v | T ) ≥ β(v | Bt\{v})−γ(v |
At) > 0 due to the submodularity. Let v1, v2, . . . , vk be the
set of nodes in At+1 \At \ St. It follows that

φ(St) < φ(St ∪ {v1})
< φ(St ∪ {v1, v2})
< · · ·
< φ(St ∪ {v1, v2, . . . , vk})
= φ

(
St ∪ (At+1 \At \ St)

)
= φ

(
St ∪ (At+1 \At)

)
.

Similarly, by line 4 of Algorithm 1, for any node v ∈ Bt \
Bt+1, it holds that β(v | At)− γ(v | Bt \ {v}) < 0. Then, for
any St∪(At+1\At)\

(
S∩(Bt\Bt+1)

)
⊆ T ⊆ St∪(At+1\At),

since At ⊆ T and T ⊆ Bt \ {v}, we have φ(v | T ) = β(v |
T ) − γ(v | T ) ≤ β(v | At) − γ(v | Bt \ {v}) < 0 due to
the submodularity. Let u1, u2, · · · , ul be the set of nodes in
S ∩ (Bt \Bt+1). It follows that

φ(St ∪ (At+1 \At))
< φ(St ∪ (At+1 \At) \ {u1})

< φ(St ∪ (At+1 \At) \ {u1, u2})
< · · ·
< φ(St ∪ (At+1 \At) \ {u1, u2, . . . , ul})
= φ

(
St ∪ (At+1 \At) \

(
S ∩ (Bt \Bt+1)

))
= φ(St+1),

where the last equality is due to (14). Therefore, φ(St) <
φ(St+1) if At+1 \At \St 6= ∅ or S ∩ (Bt \Bt+1) 6= ∅. On the
other hand, if At+1 \ At \ St = S ∩ (Bt \ Bt+1) = ∅, based
on (14), we have St = St+1.

Proof of Corollary 1: According to Theorem 1, φ(S) =
φ(S0) ≤ φ(S1) ≤ · · · ≤ φ(S ∩ B∗ ∪ A∗) since S = S ∩
B0 ∪ A0 = S0. On the other hand, if every “=” holds, we
have S = S0 = S1 = · · · = S ∩ B∗ ∪ A∗, which implies
A∗ ⊆ S ⊆ B∗. This is contradictory to S /∈ [A∗, B∗]. Thus,
it holds that φ(S) < φ(S ∩B∗ ∪A∗).

Proof of Corollary 2: Suppose S∗ /∈ [A∗, B∗]. By
Corollary 1, we have φ(S∗) < φ(S∗ ∩ B∗ ∪ A∗). This
is contradictory to the fact that S∗ produces the maximum
achievable profit. Thus, it holds that A∗ ⊆ S∗ ⊆ B∗.

Proof of Theorem 2: Let α(S) denote the overlapping
value between the benefit of influence spread and the cost of
influence propagation for a seed set S, which is defined as

α(S) = E
[ ∑
v∈VX(S)

min{b(v), c(v)}
]
.

It is easy to verify that α(·) is also submodular and monotone.
By the definition of normalization in Section III-B, we have
β(S) = β̄(S)+α(S) and γ(S) = γ̄(S)+α(S). We prove that
At ⊆ Āt ⊆ B̄t ⊆ Bt for any t ≥ 0 by induction. Obviously,
it holds that ∅ = A0 = Ā0 ⊆ B̄0 = B0 = V . Suppose that
At ⊆ Āt ⊆ B̄t ⊆ Bt holds for some t ≥ 0.

Then, for any node v ∈ Bt \ B̄t, we have β(v | Bt \ {v})−
γ(v | At) = β̄(v | Bt\{v})−γ̄(v | At)+α(v | Bt\{v})−α(v |
At) ≤ β̄(v | Bt \ {v})− γ̄(v | At) ≤ β̄(v | B̄t \ {v})− γ̄(v |
Āt), where the inequalities are due to the submodularity of
α(·), β̄(·) and γ̄(·). By Lemma 2, Āt−1 ⊆ Āt ⊆ B̄t−1 =
B̄t−1 \{v} ⊆ B̄t \{v}. It follows from the submodularity that
β̄(v | B̄t \ {v}) − γ̄(v | Āt) ≤ β̄(v | Āt−1) − γ̄(v | B̄t−1 \
{v}) < 0, where the last inequality is due to v /∈ B̄t. This
implies that (At+1\At)∩(Bt\B̄t) = ∅. Since At+1\At ⊆ Bt,
we have At+1 \ At ⊆ B̄t. Since At ⊆ B̄t, it follows that
At+1 ⊆ B̄t. Thus, for any node v ∈ At+1 \ Āt ⊆ B̄t \ Āt, we
have β̄(v | B̄t \ {v}) − γ̄(v | Āt) ≥ β̄(v | Bt \ {v}) − γ̄(v |
At) = β(v | Bt \ {v})− γ(v | At)− α(v | Bt \ {v}) + α(v |
At) ≥ β(v | Bt \ {v}) − γ(v | At) > 0, where the first two
inequalities are due to the submodularity and the last inequality
is due to v ∈ At+1. This implies that At+1\Āt ⊆ Āt+1. Since
Āt ⊆ Āt+1, it follows that At+1 ⊆ Āt+1.

Similarly, for any node v ∈ Āt \ At, we have β(v | At) −
γ(v | Bt \ {v}) = β̄(v | At) − γ̄(v | Bt \ {v}) + α(v |
At)− α(v | Bt \ {v}) ≥ β̄(v | At)− γ̄(v | Bt \ {v}) ≥ β̄(v |
Āt)− γ̄(v | B̄t \{v}) ≥ β̄(v | B̄t−1 \{v})− γ̄(v | Āt−1) > 0,
where the first three inequalities are due to the submodularity
of α(·), β̄(·) and γ̄(·), and the last inequality is due to v ∈ Āt.



This implies that Āt \At ⊆ Bt+1. Since At ⊆ At+1 ⊆ Bt+1,
it follows that Āt ⊆ Bt+1. Thus, for any node v ∈ B̄t\Bt+1 ⊆
B̄t\Āt, we have β̄(v | Āt)−γ̄(v | B̄t\{v}) ≤ β̄(v | At)−γ̄(v |
Bt \ {v}) = β(v | At)− γ(v | Bt \ {v})− α(v | At) + α(v |
Bt\{v}) ≤ β(v | At)−γ(v | Bt\{v}) < 0, where the first two
inequalities are due to the submodularity and the last inequality
is due to v /∈ Bt+1. This implies that B̄t+1∩ (B̄t \Bt+1) = ∅.
Since B̄t+1 ⊆ B̄t, it follows that B̄t+1 ⊆ Bt+1. By induction,
we have At ⊆ Āt ⊆ B̄t ⊆ Bt for any t ≥ 0 (it also holds
after converged) and thus, A∗ ⊆ Ā∗ ⊆ B̄∗ ⊆ B∗.

Proof of Theorem 3: Let S∗ be an optimal seed set
producing the maximum achievable profit. We can directly
obtain that µi(X) ≥ mi

X(S∗;β) − hπ
∗

X (S∗; γ) ≥ β(S∗) −
γ(S∗) = φ(S∗), where the first inequality is by the definition
of µi(X) and the second inequality is due to the modular
upper and lower bounds.

Proof of Theorem 4: Let λβ(S) be the expected fraction
of samples covered by the seed set S. We have λβ(S) =
β(S)/B. To simplify the notation, we omit the common
symbol S in what follows, e.g., β represents β(S) and Λβ
represents Λβ(S). Then, the inequalities to prove are equiva-
lent to

Pr

[
λβ <

(√
Λβ + 0.25a− 0.5

√
a
)2

/θβ

]
≤ δ/2,

and

Pr

[
λβ >

(√
Λβ + 0.25a+ 0.5

√
a
)2

/θβ

]
≤ δ/2.

We prove the former first. In fact,

Pr

[
λβ <

(√
Λβ + 0.25a− 0.5

√
a
)2

/θβ

]
= Pr

[√
λβθβ <

√
Λβ + 0.25a− 0.5

√
a
]

= Pr

[(√
λβθβ + 0.5

√
a
)2

< Λβ + 0.25a

]
= Pr

[
Λβ − λβθβ >

√
aλβθβ

]
≤ exp

(
− aλβθβ

4(e− 2)λβθβ

)
= δ/2,

where the inequality is due to Lemma 1.
The proof of the latter is analogous.

Pr

[
λβ >

(√
Λβ + 0.25a+ 0.5

√
a
)2

/θβ

]
= Pr

[√
λβθβ >

√
Λβ + 0.25a+ 0.5

√
a
]

= Pr

[(√
λβθβ − 0.5

√
a
)2

> Λβ + 0.25a

]
= Pr

[
Λβ − λβθβ < −

√
aλβθβ

]
≤ exp

(
− aλβθβ

4(e− 2)λβθβ

)
= δ/2

Hence, the theorem is proven.
Proof of Theorem 5: Imagine that we evaluate S∗ with

the benefit and cost samples. By Theorem 4, we know that

Pr [φ(S∗) ≤ βu(S∗)− γl(S∗)]
≥ Pr

[(
β(S∗) ≤ βu(S∗)

)
∧
(
γ(S∗) ≥ γl(S∗)

)]
≥ 1−

(
Pr [β(S∗) > βu(S∗)] + Pr [γ(S∗) < γl(S

∗)]
)

≥ 1−
(
δ

2
+
δ

2

)
= 1− δ. (15)

However, without knowing S∗, βu(S∗) and γl(S
∗) cannot

be obtained. In what follows, we are going to bound βu(S∗)−
γl(S

∗) by an upper bound on the function η(S) = βu(S) −
γl(S). To simplify the notations, and we omit the common
symbol S in what follows, e.g., η represents η(S). Then, the
estimated profit φ̃ = ρβΛβ − ργΛγ . Consider η as a function
of φ̃ and Λβ . We study the monotonicity of η with respect to
φ̃ and Λβ . By the definition of η, we have

η(Λβ , φ̃) = ρβ

(
Λβ +

√
a(Λβ + 0.25a) + 0.5a

)
− ργ

(
Λγ −

√
a(Λγ + 0.25a) + 0.5a

)
= φ̃+ ργ

√
a
(
(ρβΛβ − φ̃)/ργ + 0.25a

)
+ 0.5a(ρβ − ργ) + ρβ

√
a(Λβ + 0.25a).

which is increasing with Λβ under any given φ̃. Meanwhile,
we also have

η(Λβ , φ̃) = ρβ

(√
Λβ + 0.25a+ 0.5

√
a
)2

− ργ
(√

Λγ + 0.25a− 0.5
√
a
)2

= ρβ

(√
Λβ + 0.25a+ 0.5

√
a
)2

− ργ
(√

(ρβΛβ − φ̃)/ργ + 0.25a− 0.5
√
a

)2

,

which is increasing with φ̃ under any given Λβ .
For an estimated upper bound µ̃(So) on the maximum

achievable profit, we have φ̃(S∗) ≤ µ̃(So). On the other hand,
it naturally holds that Λβ(S∗) ≤ θβ . Thus,

βu(S∗)− γl(S∗)
= η

(
Λβ(S∗), φ̃(S∗)

)
≤ η

(
θβ , µ̃(So)

)
= µ̃(So) + ργ

√
a
((
ρβθβ − µ̃(So)

)
/ργ + 0.25a

)
+ 0.5a(ρβ − ργ) + ρβ

√
a(θβ + 0.25a).

Hence, the theorem is proven.
Proof of Theorem 6: Consider the sampling error limit

ε under θ samples that can provide a probability guarantee of
1 − δ, i.e., Pr[−ε ≤ Λ − λθ ≤ ε] ≥ 1 − δ (where λ is the



expected value of the random variable and Λ is the sum of θ
samples). According to Lemma 1, ε is given by

ε =
√

4(e− 2) ln(2/δ)λθ =
√
aλθ, (16)

where a = 4(e− 2) ln(2/δ).
We denote εβ and εγ as the sampling error limits for the

benefit and cost metrics under θβ and θγ samples that can
satisfy Pr[−εβ ≤ β̃(S)− β(S) ≤ εβ ] ≥ 1− δ and Pr[−εγ ≤
γ̃(S)− γ(S) ≤ εγ ] ≥ 1− δ. Then, εφ = εβ + εγ gives a total
sampling error limit for the profit metric which guarantees
Pr[−εφ ≤ φ̃(S)− φ(S) ≤ εφ] ≥ 1− 2δ. Likewise, let ε̄β , ε̄γ
and ε̄φ denote the sampling error limits under the normalized
form.

Similar to the definitions of Υb and Υc, we define Ῡb =
b̄(V ) =

∑
v∈V b̄(v) and Ῡc = c̄(V ) =

∑
v∈V c̄(v). Then,

Ῡb − Ῡc = Υb − Υc. For a given seed set S, let λ̄β(S)
and λ̄γ(S) denote the expected fractions of benefit and cost

samples covered by S under the normalized form. To simplify
the notation, we omit the common symbol S in what follows,
e.g., β represents β(S) and λ̄β represents λ̄β(S). Since
β = Υb

θβ
· λβθβ , based on the definition of ε in (16), we have

εβ =
Υb

θβ
· ε =

Υb

√
aλβθβ

θβ
=

√
aΥ2

bλβ
θβ

=

√
aΥbβ

θβ
. (17)

Similarly, we have

ε̄β =

√
aῩbβ̄

θβ
, εγ =

√
aΥcγ

θγ
and ε̄γ =

√
aῩcγ̄

θγ
.

(18)
Note that Υb ≥ Ῡb, Υc ≥ Ῡc, β ≥ β̄ and γ ≥ γ̄. Together
with (17) and (18), we have εβ ≥ ε̄β and εγ ≥ ε̄γ . Therefore,
εφ = εβ + εγ ≥ ε̄β + ε̄γ = ε̄φ.
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