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Abstract

Mobile Edge Computing (MEC) pushes computing functionalities away from the centralized cloud

to the network edge, thereby meeting the latency requirements of many emerging mobile applications and

saving backhaul network bandwidth. Although many existing works have studied computation offloading

policies, service caching is an equally, if not more important, design topic of MEC, yet receives much

less attention. Service caching refers to caching application services and their related databases/libraries

in the edge server (e.g. MEC-enabled BS), thereby enabling corresponding computation tasks to be

executed. Because only a small number of application services can be cached in resource-limited edge

server at the same time, which services to cache has to be judiciously decided to maximize the edge

computing performance. In this paper, we investigate the extremely compelling but much less studied

problem of dynamic service caching in MEC-enabled dense cellular networks. We propose an efficient

online algorithm, called OREO, which jointly optimizes dynamic service caching and task offloading to

address a number of key challenges in MEC systems, including service heterogeneity, unknown system

dynamics, spatial demand coupling and decentralized coordination. Our algorithm is developed based

on Lyapunov optimization and Gibbs sampling, works online without requiring future information,

and achieves provable close-to-optimal performance. Simulation results show that our algorithm can

effectively reduce computation latency for end users while keeping energy consumption low.

I. INTRODUCTION

Pervasive mobile computing and the Internet of Things are driving the development of many

new compute-demanding and latency-sensitive applications, such as cognitive assistance, mobile

gaming and virtual/augmented reality (VR/AR). Due to the often unpredictable network latency

and expensive bandwidth, cloud computing becomes unable to meet the stringent requirements

of latency-sensitive applications. The ever growing distributed data also renders it impractical to

http://arxiv.org/abs/1801.05868v1


2

Tasks requiring services that are 

uncached in the local BSs have to 

be directly offloaded to Cloud. 

Service    A  B  C  D

MEC-enabled BS

User 1

User 2

User 3

User 4

Tasks requiring services that are cached in 

the local BSs can be processed on the edge. 

Service Caching
(which services to cache)

Task Offloading
(how much workload to 

retain/offload)

BS decisionType-A Tasks

Type-C Tasks

…

Fig. 1. System illustration. Each BS can only cache a subset of services. Only user tasks requesting services cached in the BS

can be executed by the BS. BSs have to jointly optimize service caching and task offloading.

transport all the data over today’s already-congested backbone networks to the remote cloud. To

overcome these limitations, mobile edge computing (MEC) (a.k.a. fog computing) [1], [2] has

recently emerged as a new computing paradigm to push the frontier of computing applications,

data and services away from centralized cloud computing infrastructures to the logical edge of a

network, thereby enabling analytics and knowledge generation to occur closer to the data source.

Considered as a major form of MEC, mobile base stations (BSs) endowed with cloud-like

computing and storage capability, are able to serve end-users’ computation requests as a substitute

of the cloud [3]. Extra tasks exceeding the BS’s computing capacity are further offloaded to the

cloud, resulting in a hierarchical offloading structure among end-users, BSs and the cloud. While

computation offloading has been the central theme of most recent works studying MEC, what is

often ignored is the heterogeneity of mobile services and how these services are cached on BSs

in the first place. Precisely, service caching (or service placement) refers to caching application

services and their related databases/libraries in the edge server co-located with the BS, thereby

enabling user tasks requiring these services to be executed. However, unlike the cloud which

has huge and diverse resources, the limited computing and storage resources of BS allow only a

small set of services to be cached at the same time. As a result, which services are cached on the

BS determines which tasks can be offloaded, thereby significantly affecting the edge computing

performance. Figure 1 provides a system illustration.

Optimal service caching faces many challenges. First, mobile services are heterogeneous in

terms of not only required resources (e.g. online Matlab and AR services have different CPU

and storage requirements [3]) but also popularity/demand among users. While the former is often

fixed, the latter is changing both spatially and temporally. Therefore, service caching has to be
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adaptively updated in resource-limited BSs depending on the predicted service popularity.

Second, since the considered system operates in a highly stochastic environment with random

demand arrivals, the long-term system performance is more relevant than the immediate short-

term performance. However, the long-term resource constraint (e.g. energy consumption) couples

the service caching decisions over time, and yet the decisions have to be made without foreseeing

the future system dynamics.

Third, to accommodate the surging data demand of mobile users, the density of BSs in cellular

networks has kept increasing since its birth to nowadays 4G networks, and is expected to reach

about 40-50 BSs/km2 in the next generation 5G networks [4]. Dense cellular networks create a

complex multi-cell environment where demand and resource are highly coupled in both spatial

and temporal domains. Effective service caching and task offloading requires careful coordination

among all BSs, and decentralized solutions are much favored in order to reduce complexity.

In this paper, we investigate the extremely compelling but much less studied problem of service

caching in MEC-enabled cellular networks, and develop an efficient solution that jointly opti-

mizes service caching and task offloading. The main contributions of this paper are summarized

as follows.

(1) We formalize the joint service caching and task offloading problem in MEC-enabled dense

cellular networks, for minimizing computation latency under a long-term energy consumption

constraint. To our best knowledge, this is the first work that studies joint service caching and

task offloading in multi-cell MEC systems.

(2) To solve this problem, we develop a novel online algorithm, called OREO (Online seRvice

caching for mobile Edge cOmputing), to perform stochastic service caching in an online fashion

without requiring future information. OREO is developed based on Lyapunov optimization,

and we prove that it achieves close-to-optimal performance compared to the optimal algorithm

with full future information, while bounding the potential violation of the energy consumption

constraint.

(3) We develop a decentralized algorithm based on a variation of Gibbs sampling, which is a

key subroutine of OREO, thereby enabling efficient decentralized coordination among the BSs.

This makes our algorithm scalable to large networks.

(4) Extensive and practical simulations are carried out to evaluate the performance of the

proposed algorithm.

The rest of this paper is organized as follows. Section II reviews related works. Section III
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presents the system model and formulates the problem. Section IV develops the OREO algorithm

and analyzes its performance. Section V performs simulations, followed by the conclusion in

Section VI.

II. RELATED WORK

Computation offloading is the central theme of many prior studies in both mobile cloud com-

puting (MCC) [5], [6] and mobile edge computing (MEC) [1], [2], which concerns what/when/how

to offload users’ workload from their devices to the edge servers or the cloud. Various works have

studied different facets of this problem, considering e.g. stochastic task arrivals [7], [8], energy

efficiency [9], [10], [11], collaboration [12], [13], [14] etc. However, the implicit assumption is

that edge servers can process whatever types of computation tasks that are offloaded from users

without considering the availability of services in edge servers, which in fact is crucial in MEC

due to the limited resources of edge servers.

Similar service caching/placement problems, known as virtual machine (VM) placement, have

been investigated in conventional cloud computing systems. VM placement over multiple clouds

is studied in [15], [16], [17], where the goal is to reduce the deployment cost, maximize

energy saving and improve user experience, given constraints on hardware configuration and

load balancing. However, these works cannot be directly applied to design efficient service

caching policies for MEC since mobile networks are much more complex and volatile, and

optimization decisions are coupled both spatially and temporally. The most related work probably

is [18], which extends the idea to MCC systems and studied the joint optimization of service

caching/placement over multiple cloudlets and load dispatching for end users’ requests. There

are several significant differences of our work. First, while the coverage areas are assumed

to be non-overlapping for different cloudlets in [18], BSs have overlapping coverage areas in

our considered dense cellular network. Second, while only heuristic solutions are developed

in [18], we prove strong performance guarantee for our algorithm. Third, while the algorithm

is centralized in [18], our algorithm enables decentralized coordination among BSs. We also

note that the term “service placement” was used by some other literature [19], [20] in a different

context. The concern there is to assign task instances to different clouds but there is no limitation

on what types of services/applications that each cloud can run.

Service caching/placement is also related to content caching/placement in network edge de-

vices [21]. For example, the authors of [22] aim to find optimal locations to cache the data
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that minimize packet transmissions in wireless sensor nodes. The concept of FemtoCaching is

introduced in [21] which studies content placement in small cell networks to minimize content

access delay. The idea of using caching to support mobility has been investigated in [23], where

the goal is to reduce latency experienced by users moving between cells. Learning-based content

caching policies are developed in [24] for wireless networks with a priori unknown content

popularity. While content caching mainly concerns with storage capacity constraints, service

caching has to take into account both computing and storage constraints, and has to be jointly

optimized with task offloading to maximize the overall system performance.

III. SYSTEM MODEL

We divide time into discrete time slots each of which has a duration that matches the timescale

at which service caching decisions can be updated. Although our model is not perfect, we believe

that it is a reasonable and valuable first step towards studying dynamic service caching and task

offloading in MEC systems. Future improvement directions are briefly discussed in the conclusion

section.

A. Network and Services

We consider a mobile network of N base stations (BSs), indexed by N . Each BS n ∈ N

is endowed with edge computing functionalities and hence can provide computing services to

end users in its radio range. The network is divided into M disjoint small regions, indexed by

M. User in each region m can reach a set of BSs in the radio range, denoted by Bm ⊆ N ,

due to the dense deployment of BSs. We consider regions instead of individual users because

service caching is a relatively long-term decision which cannot be updated very frequently, and

region captures statistical information of user task requests. Each BS n has a storage space Cn,

which can be used to store data (e.g. libraries and databases) associated with specific computing

services, and a CPU of maximum frequency fn (cycles per second), which can be used to process

tasks offloaded from end users.

Service is an abstraction of applications that is hosted by the BS and requested by mobile

users. Example services include video streaming, social gaming, navigation, augmented reality.

Running a particular service requires caching the associated data, such as required libraries

and databases, on the BS. We assume that there is a set of K computing services, indexed

by K = {1, 2, ..., K}. Each service k requires a storage space ck. For service k, we assume



6

that the workload (in terms of the required CPU cycles) of one corresponding task follows an

exponential distribution with mean µk. Therefore, services are heterogeneous in terms of both

required storage and CPU.

The computation demand for service k in time slot t is described by a vector dt
k = (dtk,1, ..., d

t
k,M)

where dtk,m is the demand intensity generated by users in region m. Specifically, we consider

that the task arrival follows a Poisson process at rate dtk,m. In practice, a demand predictor can

estimate the instantaneous demand prior to the beginning of time slot t using some well-studied

learning techniques (e.g. auto-regression analysis). Note that this prediction is short-term, only

for the immediate next time slot, which is different from the long-term prediction required by

an offline algorithm. Many prior studies show that such instantaneous workload can often be

predicted with a high accuracy [25].

B. Service Caching and Task Offloading Decisions

At the beginning of each time slot t, each BS n makes two decisions: service caching and

task offloading.

1) Service Caching: Caching service k allows tasks requiring service k to be processed at the

network edge, thereby reducing computation latency and improving user quality of experience.

However, due to the limited storage space of a BS, not all services can be cached at the same

time. Therefore, the BS has to judiciously decide which services to cache. Specifically, BS n

decides to cache a subset of services among K. Let atn,k ∈ {1, 0} be a binary decision variable to

denote whether service k is cached or not on BS n in time slot t. The service caching decision

of BS n is collected in at
n = {atn,1, a

t
n,1, . . . , a

t
n,K}. Moreover, the service caching decisions are

subject to the following capacity constraint

∑

k

atn,kck ≤ Cn, ∀t, ∀n (1)

Let At
m,k ⊆ Bm denote the set of BSs that have service k cached in time slot t and hence can

provide the corresponding computing service to region m. For analytical simplicity, we assume

that demand dtk,m in region m is evenly distributed among BSs in At
m,k. Nevertheless, other user-

cell association rules (e.g. a user offloads task to the BS with the best channel condition among

the ones who can provide the required service) can also be easily incorporated in our model.

The demand for service k to BS n can be computed as λt
n,k = atn,k

∑M
m=1 1{n ∈ Bm}

dt
k,m

|At
m,k

|
.

Note that if there is no BS in Bm providing service k, then all tasks demanding service k will be



7

offloaded to the remote cloud for processing via any nearby BS. Let at = {atn,1, a
t
n,1, . . . , a

t
n,K}

denote the service caching decisions of all BSs in time slot t.

2) Task Offloading: Among the set of cached services, BS n also has to decide the amount

of tasks that are processed locally at the network edge. The remaining tasks will be offloaded

to the remote cloud. Let btn ∈ [0, 1] be a continuous decision variable to denote the fraction of

service tasks that are processed locally at BS n. Hence, the amount of locally processed tasks

is btn
∑

k λ
t
n,k. We note that the actual task offloading actions are performed during the time slot

when the tasks actually arrive and will depend on the specific task requirements. Nevertheless,

the task offloading decisions in terms of the fraction of offloaded tasks can still be planned at a

reasonably high granularity at the beginning of each time slot. Let bt = {bt1, b
t
2, . . . , b

t
n} denote

the task offloading decisions of all BSs in time slot t.

C. Energy Consumption and Computation Delay Cost

Different service caching and task offloading decisions result in different computation latency

performance and incurs different computing energy consumption.

1) Energy consumption: The BS dynamically adjusts its CPU speed depending on the task

workload. To simplify our analysis, we assume that the BS processes tasks at its maximum

CPU speed while choosing the minimum CPU speed when it is idle. Assuming that the BS

consumes a negligible energy under the minimum speed mode, the average computation energy

consumption can be expressed as [26]:

Et
n(a

t, bt) = γn + κnb
t
n

∑

k

µka
t
n,kλ

t
n,k (2)

where γn is the static power regardless of the workload as long as BS n is turned on, and κn

is the unit energy consumption when BS n is processing tasks at its maximal speed fn. In the

above equation, btn
∑

k µka
t
n,kλ

t
n,k is the expected total number of CPU cycles required to process

tasks at BSs.

In addition to computation energy consumption, the BS also incurs energy consumption due

to load-independent operations. We denote it by Ẽt
n which varies over time but can only be

observed at the end of each time slot t.

2) Computation delay cost: To quantify the overall network performance, we introduce the

notion of delay cost capturing the delay-induced revenue loss and/or user dis-satisfaction. The

average computation delay for tasks processed by BS n can be computed by modeling the
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service process as an M/G/1 queue and analyzing its sojourn time (i.e. service time plus waiting

time). Since the task arrival of each service type is assumed to follow a Poisson process, the

overall task arrival process (without differentiating the specific service types) is also Poisson. Let

λ̃t
n,k = btnλ

t
n,k be the task processed at BS n for service k and λ̃t

n =
∑

k λ̃
t
n,k be the total workload,

which are results of the service caching and task offloading decisions of all BSs. Since there are

possibly multiple types of services, the overall service time distribution is a random sampling

among a number of exponential distributions. Specifically, the probability of the exponential

distribution with mean µk being sampled is λ̃t
n,k/λ̃

t
n. Let s be the random variable representing

the service time. Its first and second moments can be derived asE[s] =
∑

k µkλ̃
t
n,k/λ̃

t
n, E[s2] =

∑

k 2µ
2
kλ̃

t
n,k/λ̃

t
n. According to the Pollaczek-Khinchin formula for M/G/1 queuing system [27],

the expected sojourn time is therefore

T t
n(a

t, bt) =
1

fn
E[s] +

λ̃t
nE[s

2]

2(fn − λ̃t
nE[s])

(3)

We assume that the remote cloud has ample computing power and hence, the computation delay

for tasks offloaded to the cloud, denoted by ht, is mainly due to the transmission delay. Therefore,

the total expected computation delay cost for tasks arriving at BS n is

Dt
n(a

t, bt) = λ̃t
nT

t
n(a

t, bt) + (λt
n − λ̃t

n)h
t

= λt
nh

t +
∑

k

(µk − ht)λ̃t
n,k +

∑

k λ̃
t
n,k

∑

k µ
2
kλ̃

t
n,k

1−
∑

k µkλ̃t
n,k

(4)

D. Problem Formulation

The goal of the network operator is to make joint service caching and task offloading decisions

to minimize computation latency while keeping the total computation energy consumption low.
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The problem is formulated as follows:

(P1) min
at,bt,∀t

lim
T→∞

1

T

T
∑

t=1

[ N
∑

n=1

Dt
n(a

t, bt)

+ ht(
∑

m,k

dtk,m −
N
∑

n=1

λt
n)

]

(5a)

s.t. lim
T→∞

1

T

T
∑

t=1

N
∑

n=1

(

Et
n(a

t, bt) + Ẽt
n

)

≤ Q (5b)

∑

k

atn,kck ≤ Cn, ∀t, ∀n (5c)

Et
n(a

t, bt) + Ẽt
n ≤ Emax

n (5d)

Dt
n(a

t, bt) ≤ Dmax
n (5e)

where ht is the service delay for tasks whose service data is not cached in the BSs. The first

constraint (5b) is the long-term energy constraint for the network of BSs, which requires that the

long-term average total energy consumption does not exceed an upper limit Q. This constraint

couples the BS decision making both spatially (i.e. across BSs) and temporally (i.e. across time

slots). The second constraint (5c) is due to the individual BS’s storage space capacity. The

third and fourth conditions (5d) and (5e) impose per-slot constraints on the maximum energy

consumption and delay, respectively, for each BS.

The first major challenge that impedes the derivation of the optimal solution to the above

problem is the lack of future information: optimally solving P1 requires complete offline infor-

mation (distributions of task demands in all time slots) which is difficult to predict in advance,

if not impossible. Moreover, P1 is a mixed integer nonlinear programming and is very difficult

to solve even if the future information is known a priori. These challenges call for an online

approach that can efficiently make service caching and offloading decisions on-the-fly without

foreseeing the future.

IV. ONLINE SERVICE CACHING AND TASK OFFLOADING

In this section, we first develop our online algorithm, called OREO (Online seRvice caching

for mobile Edge cOmputing), and then show that it is efficient in terms of latency minimization

compared to the optimal offline algorithm. Our algorithm is developed under the Lyapunov

optimization framework which converts the original long-term optimization problem P1 to per-

slot optimization problems requiring only current slot information. Our algorithm also enables
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BSs to decide which services to cache and how much task workload to retain at the edge or to

offload to the cloud in a distributed way.

A. Lyapunov-based Online Algorithm

A major challenge of directly solving P1 is that the long-term energy constraint of BSs

couples the service caching and task offloading decisions across different time slots. To address

this challenge, we leverage the Lyapunov optimization technique and construct a (virtual) energy

deficit queue to guide the service caching and task offloading decisions to follow the long-term

energy constraint. Specifically, assuming q(0) = 0, we construct an energy deficit queue whose

dynamics evolves as follows

q(t+ 1) =

[

q(t) +
∑

n

(

Et
n(a

t, bt) + Ẽt
n

)

−Q

]+

(6)

where q(t) is the queue backlog in time slot t indicating the deviation of current energy

consumption from the energy constraint. The Lyapunov function is defined as L(q(t)) , 1
2
q2(t),

representing the “congestion level” in energy deficit queue. A small value of L(q(t)) implies that

the queue backlog is small, which means that the virtual queue has strong stability. To keep the

energy deficit queue stable, i.e., to enforce the energy consumption constraints by persistently

pushing the Lyapunov function towards a lower value, we introduce one-slot Lyapunov drift,

which is ∆(q(t)) = E[L(q(t + 1))− L(q(t))|q(t)]. Then we have

∆(q(t)) =
1

2
E
[

q2(t+ 1)− q2(t) | q(t)
]

(7)

(†)

≤
1

2
E

[

(q(t) + Êt −Q)2 − q2(t) | q(t)
]

(8)

=
1

2
(Êt −Q)2 + q(t)E

[

(Êt −Q) | q(t)
]

(9)

≤ B + q(t)E
[

(Êt −Q) | q(t)
]

(10)

where Êt =
∑

n(E
t
n(a

t, bt) + Ẽt
n) and B = 1

2
(
∑

nE
max
n −Q)2. The inequality (†) comes from

(q(t) + Êt −Q)2 ≥ [(q(t) + Êt −Q)+]2.

Under the Lyapunov optimization framework, the underlying objective of our optimal control

decision is to minimize a supremum bound on the following drift-plus-cost expression in each

time slot:

∆(q(t)) + V · E
[

D̂t(at, bt) | q(t)
]

(11)

≤ B + q(t)E
[

(Êt −Q) | q(t)
]

+ V · E
[

D̂t(at, bt) | q(t)
]
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where D̂t =
∑N

n=1D
t
n(a

t, bt) + ht(
∑

m,k d
t
k,m −

∑N
n=1 λ

t
n).

Our proposed algorithm OREO minimizes the right hand side of (11) (see Algorithm 1). The

network determines the service caching and task offloading strategies in each time slot by solving

the optimization problem P2 as follows

(P2) min
at,bt

(

V · D̂t(at, bt) + q(t) · Êt(at, bt)
)

(12a)

s.t. (5c), (5d), (5e) (12b)

Algorithm 1 OREO algorithm

Input: q(0)← 0, µk, ck, Cn, Emax
n ,Dmax

n ;

Output: service caching decision {a1,a2, . . . ,aT}, offloading decisions {b1, b2, . . . , bT};

1: for t = 0 to T − 1 do

2: Predict service demand dtm,n;

3: Observe ht, Ẽt
n, Rt

n;

4: Choose a, b by solving P2:

5: q(t+ 1) = [q(t) +
∑

n(E
t
n(a

t, bt) + Ẽt
n)−Q]+;

6: end for

The positive parameter V is used to adjust the tradeoff between computation latency mini-

mization and the energy consumption minimization of BSs. Notice that solving P2 requires only

currently available information as input. By considering the additional term q(t) ·
∑

nE
t
n(a

t, bt),

the network takes into account the energy deficit of BSs during current-slot service caching and

task offloading. As a consequence, when q(t) is larger, minimizing the energy deficit is more

critical. Thus, our algorithm works following the philosophy of “if violate the energy constraint,

then use less energy”, and the energy deficit queue maintained without foreseeing the future

guides the BSs towards meeting the energy constraint, thereby enabling online decision making.

Now, to complete the algorithm, it remains to solve the optimization problem P2, which will be

discussed in the next subsection.

B. Distributed Optimization for P2

In this subsection, we focus on solving P2 which is a joint optimization problem aiming to

find the optimal service caching and task offloading decisions for each time slot t. Since service
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caching decisions are binary and task offloading decisions are continuous, P2 is a mixed-integer

nonlinear programming. While there exist various centralized techniques (such as Generalized

Benders Decomposition [28]) to solve it, these methods are usually computationally prohibitive

and distributed solutions are much desired. In this paper, we present a distributed algorithm

based on a variation of Gibbs sampling [29], which determines the optimal decision pair (at, bt)

in an iterative manner at the beginning of a time slot.

The algorithm works as follows. In each iteration, a randomly selected BS n virtually changes

its current service caching decision at
n to ãt

n (Line 2) and then the optimal offloading scheme

bt is derived by solving (12). However, when deriving bt, only neighboring BSs (i.e. BSs that

have overlapping service areas with BS n) need to make the update since at
n affects the traffic

distribution only among the neighborhood of BS n. Afterwards, the new delay cost f̃ restricted

to the neighborhood of BS n is obtained, and the service caching action of BS n is updated to the

new action ãt
n with probability η and keeps unchanged (i.e. at

n) with probability 1−η depending

on the delay cost difference f̃ −f (Lines 7 and 8). Therefore, changing service caching decision

is more likely to occur if the new action ãt
n results in a lower delay cost. At the end of the

iteration, BS n broadcast its current service caching decision to its neighboring BSs.

Remark: It is known that always choosing a better decision in combinatorial optimization

can easily lead to a local optimality. To avoid being trapped in a local optimum, the proposed

algorithm explores a new decision with a certain probability even though it may be worse than

the current decision (i.e. f̃ > f ). The parameter τ > 0, referred as the smooth parameter, is

used to control exploration versus exploitation (i.e. the degree of randomness). When τ is small,

the algorithm tends to keep a new decision with larger probability if it is better than the current

decision. However, in this case, it takes more iterations to identify the global optimum since

the algorithm may be stuck in a local optimum for a long time before exploring other solutions

that lead to more efficient decisions. When τ → +∞, the algorithm tries to explore all possible

solutions from time to time without convergence.

Remark: The convergence rate of this algorithm can be further improved by letting multiple

BSs evolve their service caching decisions simultaneously in each iteration, provided that they

are sufficiently apart. Specifically, if a set of BSs do not have common neighboring BSs between

any pair, then their service caching decisions do not affect each other and hence, they are allowed

to evolve simultaneously.

Next, we formally prove the convergence of our algorithm.
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Theorem 1. As τ > 0 decreases, the algorithm converges with a higher probability to the global

optimal solution of P2. When τ → 0, the algorithm converges to the globally optimal solution

with probability 1.

Proof. See Appendix A

C. Performance Analysis

This subsection presents the performance analysis of OREO using the Lyapunov optimization

technique.

Theorem 2. By applying OREO, the time-average system delay satisfies:

lim
T→∞

1

T

T−1
∑

t=0

E

[

D̂t(at, bt)
]

< D̂opt +
B

V

and the time-average energy consumption of BSs satisfies:

lim
T→∞

1

T

T−1
∑

t=0

E

[

Êt(at, bt)
]

≤
B

ǫ
+

V

ǫ
(D̂max − D̂opt) +Q

where D̂opt = lim
T→∞

1

T

T−1
∑

t=0

N
∑

n=1

E
{

Dt
n(a

opt,t, bopt,t)
}

is the optimal system delay to P2, D̂max is

the largest system delay, and ǫ > 0 is a constant which represents the long-term energy surplus

achieved by some stationary control strategy.

Proof. See Appendix B.

The above theorem demonstrates an [O(1/V ), O(V )] delay-energy tradeoff. OREO asymptot-

ically achieves the optimal performance of the offline problem P1 by letting V →∞. However,

the optimal performance of P1 is achieved at the price of a higher energy consumption, as a larger

energy deficit queue is required to stabilize the system and hence convergence is postponed. This

also implies that the time-average energy consumption grows linearly with V .

V. SIMULATION

In this section, we carry out simulations to evaluate the performance of OREO. We simulate a

500m×500m area served by 9 BSs regularly deployed on a grid network. The serving radius for

each BS is set as 150m. The whole area is divided into 25 regions and the demand for service

k, dtm,k ∀k, in region m during slot t follows a uniform distribution dtm,k ∈ [0, 12]. The actual
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TABLE I

SIMULATION SETUP: SYSTEM PARAMETERS

Parameters Value

Total service types, K 10

BS service rate fn 10 GHz

BS communication distance 130m

CPU cycles requirement of service k, µk [0.1, 0.5] GHz/task

BS storage space Cn 200 GB

Storage space requirement of service k ck [20, 100] GB

Unit energy consumption, κn 1 kWh

Computation delay for tasks offloaded to cloud, h [2, 4] sec/task

Smooth factor, τ 10−2

Energy for cooling and communication traffic, Ẽt
n [0, 3] kWh

service demand in region m is formulated as a Poisson process with arrival rate dtm,k. Other

main parameters are collected in Table I.

We compare OREO with three benchmarks. Non-cooperative service caching: BSs cache

services with the largest demand in the serving region. Each BS works independently without

mutual communication and the long-term energy consumption constraint is ignored. Centralized

delay-optimal service caching: A centralized service caching decision is found for all BSs to

minimize the system delay. The decision is made regardless of the long-term energy consumption

constraint. Myopic service caching: We impose a hard energy consumption constraint in each

time slot and minimize the system delay. This method can also satisfy the long-term energy

constraint without requiring future information. However, it is less adaptive and purely myopic.

A. Performance comparison

Fig. 2 and Fig. 3 show the time average system delay and energy consumption, respectively.

It shows that OREO achieves near-to-optimal delay performance while closely following the

long-term energy constraint. The centralized optimal scheme achieves the lowest system delay

as expected. However, it is achieved at a cost of large energy consumption. By contrast, OREO

slightly sacrifices the delay performance to satisfy the energy consumption constraint. For the

myopic service caching, because a hard energy constraint is imposed in every time slot, the

long-term energy consumption constraint is also satisfied. However, because very little energy

consumption is incurred due to very low task demand in some time slots, the time average energy
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Q

consumption can be far below the long-term constraint, resulting in inefficient energy usage. In

the non-cooperative case, BSs make decisions individually based on their predicted demand.

This strategy neglects the interdependence among BSs and results in inferior performance in

both system delay minimization and energy saving.

B. Convergence of the distributed algorithm

Fig. 4 shows the convergence process when running the distributed algorithm. We see that

when τ = 10−3, the algorithm converges quickly to superior decisions. However, it stays in
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several local optimal solutions for a while before identifying the global optimum. By increasing

τ to 10−2, the algorithm can find the global optimum with much fewer iterations. However,

keeping increasing the parameter τ impedes the identification of global optimum and results in

the convergence to inferior solutions.

C. Impact of storage capacity

Fig. 5 and 6 show the impact of storage capacity on the converged system delay and energy

consumption after 150-slot simulation. It can be observed that the system delay decreases as the

storage capacity increases since a larger number of services can be cached at BSs. Moreover,

when the storage capacity is small, the system delay achieved by OREO is identical to the

centralized delay-optimal scheme. This is due to the fact that few computing tasks are processed

at BSs (most of them have to be offloaded to the cloud) and the energy deficit queue q(t) is zero

in most time slots and hence, the problem P2 degenerates to the delay-optimal format. As the

storage capacity increases, the system delay of OREO deviates from that of the delay-optimal

scheme as a result of meeting the energy consumption constraint. Fig. 6 shows that the long-term

energy consumption of OREO closely follows the energy consumption constraint for all levels

of storage capacity, while other three benchmarks either overuse or underuse the predetermined

energy budget.

D. Impact of energy constraint

Fig. 7 presents the converged time average system delay and energy consumption of OREO

under different energy consumption constraints Q. It is straightforward to see that the OREO

converges to a lower system delay with a larger energy consumption constraint since more tasks

are allowed to be processed at BSs. However, the performance gain by increasing the energy

constraints become modest when the constraint Q is large. We also see that OREO successfully

converges to the predetermined energy consumption constraint.

E. Impact of demand patterns

Fig. 8 shows the predicted demands for different services of two geographical adjacent base

stations, BS 1 and BS 2, in 20 time slots. Since BS 1 and BS 2 have overlapping regions,

their demand patterns are correlated. Fig. 9 shows the corresponding service caching decision

across these 20 time slots, where the length of color bar denotes the occupied storage space of
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services. As can be seen, even when the two BSs have similar demand patterns, their service

caching decisions can be dramatically different (see slot 2 for an example). Such cooperation

indeed helps to accommodate more types of services and hence more computation tasks, thereby

improving the overall system efficiency. Since service caching decisions alone do not determine

the system performance and its evolution, we show in Fig. 10 the total number of CPU cycles

used to process computation tasks at these two BSs, which is a reflection of the joint service

caching and offloading decisions as well as the demand. As can be observed, when the energy

deficit is small, the BSs tend to keep more workload locally to minimize the computation delay

(e.g. slot 16-18); when the energy deficit is large, BSs process less workload at the edge to

reduce the energy consumption. In this way, the energy consumption can be pushed to satisfy

the pre-determined constraint.

VI. CONCLUSION

In this paper, we studied joint service caching and task offloading for MEC-enabled dense

cellular networks. We proposed an efficient online and decentralized algorithm that tailors

service caching decisions to both temporal and spatial service popularity patterns. The proposed

algorithm is easy to implement while providing provable performance guarantee. There are a few

limitations in the current model that demand future research effort. First, user-cell association

(load dispatching) decisions can be incorporated in the joint optimization framework. Second,

task workload can be further balanced by allowing workload transfer among peer BSs.

APPENDIX

A. Proof of Theorem 1

Proof. Let Φ = {φ1,φ2, . . . ,φL} be the action space of service cache decision at
n, where L is

given by the Bell number
∑K

k=1

(

K
k

)

. At an arbitrary time slot, BS n chooses a service caching

decision at
n ∈ Φ.

For notational convenience, we drop the time index t and denote the BSs’ service caching

decision by a. Following the iterations in Algorithm 2, a evolves as a N-dimensional Markov

chain in which the i-th dimension corresponds to BS i’s service caching decision. For the ease

of presentation, we begin with a 2-BS case and denote the state of the Markov chain as Sa1,a2
,



18

where ai ∈ Φ, i = 1, 2. Since only one BS is selected to explore a new service caching decision

at each iteration with equal probability among all BSs, we have

Pr(Sa′

1
,a′

2
|Sa1,a2

) = (13)















e
−f(S

a
′

1
,a′

2

)/τ

2L(e
−f(S

a
′

1
,a′

2

)/τ
+ e−f(Sa1,a2

)/τ )
,a′

1 = a1 or a′
2 = a2

0, otherwise

where f(Sa1,a2
) is the objective value in P2 given Sa1,a2

.

We then derive the stationary distribution Pr∗ for each state and examine the balanced equation

as follows

L
∑

l=2

Pr∗(Sφ1,φ1
)× Pr(Sφ1,φl

|Sφ1,φ1
) (14)

=

L
∑

l=2

Pr∗(Sφ1,φl
)× Pr(Sφ1,φ1

|Sφ1,φl
)

By substituting (14) with (13), we have

L
∑

l=2

Pr∗(Sφ1,φ1
)×

e−f(Sφ1,φl
)/τ

2L(e−f(Sφ1,φ1
)/τ + e−f(Sφ1,φl

)/τ )
(15)

=

L
∑

l=2

Pr∗(Sφ1,φl
)×

e−f(Sφ1,φ1
)/τ

2L(e−f(Sφ1,φ1
)/τ + e−f(Sφ1,φl

)/τ )

Observing the symmetry of equation (15), we note that the set of equations in (15) are balanced

if for arbitrary state S̃ in the strategy space Ω, the stationary distribution is Pr∗(S̃) = Ke−f(S̃)/τ ,

where K is a constant. By applying the probability conservation law, we obtain the stationary

distribution for the Markov chain as

Pr∗(S̃) =
e−f(S̃)/τ

∑

Si∈Ω
e−f(S̃i)/τ

(16)

for arbitrary state S̃ ∈ Ω. In addition, we observe that the Markov chain is irreducible and

aperiodic. Therefore, the stationary distribution given in (16) is valid and unique.

Let S∗ be the optimal state which yields the minimum value in P2, i.e., S∗ = argmaxSi∈Ω f(Si).

From (16), we have limτ→0 Pr∗(S∗) = 1 which substantiates that the algorithm converges to the

optimal state in probability. Finally, the analogous analysis can be straightforwardly extended to

an N-dimensional Markov chain, thereby completing the proof.
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B. Proof of Theorem 2

Proof. To prove the performance guarantee, we first introduce the following Lemma.

Lemma 1. For any δ > 0, there exists a stationary and randomized policy Π for P2, which

decides aΠ,t, bΠ,t independent of the current queue backlogs q(t), such that the following in-

equalities are satisfied: E
[

Êt(aΠ,t, bΠ,t)−Q
]

≤ δ.

Proof. The proof can be obtained by Theorem 4.5 in [30], which is omitted for brevity.

Recall that the OREO seeks to choose strategies that minimizes P2 among feasible decisions

including the policy in Lemma 1 in each time slot. By plugging Lemma 1 into the drift-plus-cost

inequality (11), we obtain

∆(q(t)) + V E

[

D̂t(aΠ,t, bΠ,t) | q(t)
]

≤ B + q(t)E
[

(Êt(aΠ,t, bΠ,t)−Q) | q(t)
]

+ V E

[

D̂t(aΠ,t, bΠ,t) | q(t)
]

(17)

(‡)

≤ B + δq(t) + V (D̂opt + δ)

The inequality (‡) is because that the policy Π is independent of the energy deficit queue. By

letting δ go to zero, summing the inequality over t ∈ {0, 1, . . . , T − 1} and then dividing the

result by T , we have:

1

T
E [L(q(t))− L(q(0))] +

V

T

T−1
∑

t=0

E

[

D̂t(aΠ,t, bΠ,t)
]

≤ B + V D̂opt (18)

Rearranging the terms and considering the fact that L(q(t)) ≥ 0 and L(q(0)) = 0 yields the

time average system delay bound.

To obtain the energy consumption bound, we make following assumption: there are values

ǫ > 0 and Ψ(ǫ) and an policy aΓ,t, bΓ,t that satisfies:

E

[

D̂(aΓ,t, bΓ,t)
]

= Ψ(ǫ), E

[

Êt(aΓ,t, bΓ,t)−Q
]

≤ −ǫ

Plugging above into inequality (11)

∆(q(t)) + V E

[

D̂t(aΓ,t, bΓ,t)
]

≤ B + VΨ(ǫ)− ǫq(t)
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Summing the above over t ∈ {0, 1, . . . , T − 1} and rearranging terms as usual yields:

1

T

T−1
∑

t=0

E[q(t)] ≤

B + V (Ψ(ǫ)−
1

T

T−1
∑

t=0

E

[

D̂t(aΓ,t, bΓ,t)
]

ǫ

≤
B

ǫ
+

V

ǫ
(D̂max − D̂opt)

Considering
T−1
∑

t=0

E[q(t)] ≥
T−1
∑

t=0

E

[

Ê(aΓ,t, bΓ,t)−Q
]

yields the energy consumption bound.
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Algorithm 2 Distributed algorithm for OREO

Input: service cache decision at ← 0; task offloading decision bt ← 0; objective value

f ← +∞;

1: Predict the service demand dt
k;

2: Randomly pick a BS n ∈ N and select service cache decision ãn ∈ Φ;

3: if ãt
n is feasible then

4: ãt ← {at
−n, ã

t
n};

5: Observe computing demand λt
n,k, ∀n, ∀k;

6: Obtain b̃
t
, ∀k by minimizing P2:

min
b̃
t

V D̂t(ãt, b̃
t
) + q(t) · Êt(ãt, b̃

t
)

7: η ←
1

1 + e(f̃−f)/τ

8: With probability η, BS n sets at
n ← ãt

n, b
t ← b̃

t
, f ← f̃ ; with probability (1 − η), BS

n keeps at
n unchanged

9: Broadcast at
n to its neighboring BSs

10: end if

11: Return at
n, b

t if the stopping criterion is satisfied, otherwise, go to Line 2


