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Abstract—Modern vehicle fleets, e.g., for ridesharing platforms
and taxi companies, can reduce passengers’ waiting times by
proactively dispatching vehicles to locations where pickup re-
quests are anticipated in the future. Yet it is unclear how to
best do this: optimal dispatching requires optimizing over several
sources of uncertainty, including vehicles’ travel times to their
dispatched locations, as well as coordinating between vehicles so
that they do not attempt to pick up the same passenger. While
prior works have developed models for this uncertainty and used
them to optimize dispatch policies, in this work we introduce a
model-free approach. Specifically, we propose MOVI, a Deep Q-
network (DQN)-based framework that directly learns the optimal
vehicle dispatch policy. Since DQNs scale poorly with a large
number of possible dispatches, we streamline our DQN training
and suppose that each individual vehicle independently learns
its own optimal policy, ensuring scalability at the cost of less
coordination between vehicles. We then formulate a centralized
receding-horizon control (RHC) policy to compare with our DQN
policies. To compare these policies, we design and build MOVI
as a large-scale realistic simulator based on 15 million taxi
trip records that simulates policy-agnostic responses to dispatch
decisions. We show that the DQN dispatch policy reduces the
number of unserviced requests by 76% compared to without
dispatch and 20% compared to the RHC approach, emphasizing
the benefits of a model-free approach and suggesting that there
is limited value to coordinating vehicle actions. This finding may
help to explain the success of ridesharing platforms, for which
drivers make individual decisions.

I. INTRODUCTION

With the development of smart devices and large-scale data
processing technology, most ride-hailing fleet networks (e.g.,
Uber, Lyft, and taxi services) can now track vehicles’ GPS
locations and passengers’ pickup requests in real time. This
data can then be utilized to predict passenger demand and
vehicle mobility patterns in the future, reducing passengers’
waiting times by proactively dispatching vehicles to predicted
future pickup locations [1].

Proactive taxi1 dispatch over a large city poses significant
coordination and uncertainty challenges: it requires real-time
decision making over uncertain future demand for thousands
of drivers competing to service pickup requests. Moreover,
individual drivers may have an incentive to deviate from
coordinated solutions, e.g., if the globally optimal coordinated
solution requires them to drive a long distance. Solving these
challenges simultaneously is difficult: computing a coordi-
nated dispatch solution for thousands of vehicles may take
time, exacerbating the uncertainty challenge of optimizing

1We use “taxi” and “vehicle” interchangeably in this work.

over rapidly changing passenger demands. Even evaluating
possible solutions is difficult due to the many sources of
future uncertainty (e.g., passenger demand, vehicle trip times),
which are hard to model. Yet realistic models are needed
to assess the tradeoffs between multiple, possibly conflicting
objectives like minimizing the passenger waiting time, the
number of unserved requests, and vehicles’ idle cruising time.
For instance, vehicles may need to drive long distances to the
locations with predicted pickup requests, increasing their idle
cruising time to reduce the number of unserved requests. Thus,
in this work we answer two major research questions:

• Can a distributed dispatch approach that does not rely
on system models outperform a coordinated approach?

• What are the performance tradeoffs of these approaches
in a realistic environment with uncertain future demand,
vehicle trip times, and driving routes?

A. Related Work

Traditional taxi networks dispatch taxis by having individual
drivers look for passengers hailing vehicles on the street.
Digitizing these systems allows drivers to view passenger
demands through a mobile application and move to regions of
higher demand, reducing passenger waiting times. However,
such apps still rely on drivers’ human intuition; they do
not show future demand, preventing drivers from proactively
heading to locations where future pickups are likely. Our goal
is to develop optimized dispatch algorithms that do not rely
on human intuition and account for likely future demands.

Most previous works on fleet management address pre-
diction challenges with a model-based approach, which first
models pickup request locations, vehicle travel times, etc. and
then optimally dispatches vehicles given these models. Indeed,
vehicle routing from a central depot is a classical operations
research problem [2]–[4]. Recent studies have taken advantage
of real-time taxi information to fit system models and mini-
mize passengers’ waiting times and vehicle cruising times [5]–
[8]. For instance, Miao et.al [1], [9] designed a Receding
Horizon Control (RHC) framework, which incorporates a de-
mand/supply model and real-time GPS location and occupancy
information. Both studies show a reduction in the total idle
distance through extensive trace-driven analysis. Others have
proposed matching algorithms [10] and re-balancing methods
for autonomous vehicles [11], considering both global service
fairness and future costs.
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Though the model-based approaches considered in these
works can improve system performance, they are inherently
limited by pre-specifying system models [12]. Such speci-
fication may be particularly restrictive in a highly dynamic
environment like fleet management, where components like
trip times and the actual routes vehicles should take must be
continually updated based on historical information.

In this work, we introduce MOVI (Model-free Optimization
of Vehicle dIspatching), the first model-free approach to fleet
management. MOVI uses a reinforcement learning technique
called deep Q-network (DQN) [13], [14] that focuses on
finding the optimal actions rather than accurately modeling
the system. DQNs’ known strengths for systems with a large
number of input variables allow them to solve the uncertainty
challenge presented by fleet management, but they exacer-
bate the coordination challenge: the complexity of the DQN
solution grows exponentially with the number of dispatch
possibilities, which in our scenario can be very large given the
thousands of taxi vehicles in a city. Indeed, most model-free
approaches would face this challenge, due to their lack of a
model to guide the search through dispatch possibilities. Thus,
we take a distributed approach in which each vehicle solves its
own DQN problem, without coordination. We introduce a new
DQN training method to ensure fast training at each vehicle.

Prior studies have taken a similar vehicle-centric approach
by providing route recommendations that aim to maximize
individual drivers’ profits [15], [16] or modeling individual
driver behavior [17]. We show that a distributed DQN decision
framework outperforms a model-based centralized dispatch
framework, indicating that model-free approaches can add
significant value to fleet management and that there may be
limited value to a coordinated vehicle dispatch approach.

B. Our Contributions

In this paper, we focus on modern fleet networks that
can collect vehicles’ GPS location and occupancy status in
real time and receive pickup requests from passengers over
the Internet at a cloud-based dispatch center. Our goal is to
optimally direct a fleet of taxi vehicles to different locations in
a city so as to minimize passengers’ wait times and vehicles’
idle driving costs. Our contributions are as follows:

• To the best of our knowledge, MOVI is the first work
to design a model-free approach for a large-scale
taxi dispatch problem. To ensure scalability, we use a
distributed DQN with streamlined training algorithm.

• To evaluate our model-free, distributed DQN approach,
we formulate a baseline model-based, centralized RHC
policy based on a linear program, integrating predicted
demands and trip times and fleet system dynamics.

• We design and build MOVI as a large-scale realistic
fleet simulator based on 15.6 million New York City taxi
records and Open Street Map road data [18], [19]. MOVI
uses a modular architecture that ensures policy-agnostic
dispatch responses from the simulated environment, al-
lowing us to fairly compare our RHC and DQN policies.
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Fig. 1: Interaction of vehicles and passengers with the dispatch
center. Our dispatch policies compute an action at based on
the environment state st =

(
(Ft, Xt(t:t+T ),Wt:t+T

)
.

• In spite of relying on individual decisions, we find that
our DQN approach reduces the average reject rate
by 76% compared to the results without dispatch and by
20% compared to the model-based RHC approach in our
simulator. Moreover, DQN leads to a higher minimum
vehicle utilization rate, indicating that drivers have more
incentive to follow its policies.

A DQN-based dispatch framework not only outperforms RHC,
but also offers significant practical benefits, e.g., being more
scalable to large numbers of drivers. We formally define the
taxi dispatch problem in Section II before introducing our
RHC and DQN policies in Sections III and IV respectively. We
then present our fleet simulator in Section V and our results
in Section VI. We finally conclude the paper in Section VII.

II. PROBLEM DEFINITION

We assume the ride service consists of a dispatch center,
a large number of geographically distributed vehicles, and
passengers with a mobile ride request application. Figure 1
illustrates this framework. The dispatch center tracks each
vehicle’s real-time GPS location and availability status and all
passenger pickup requests. It uses this information to proac-
tively dispatch vehicles to locations where it predicts future
pickups will be requested, and to match vehicles to incoming
pickup requests. We focus our optimization on policies for
proactive dispatching, as shown in Figure 1, rather than vehicle
matching. In this section, we formulate the proactive dispatch
problem using the notation summarized in Table I.

We view the dispatch center as an agent that interacts with
its external environment through a sequence of observations,
actions and rewards. We divide the geographical service area
into M regions and consider T timeslots of length ∆t indexed
by t = t0 + 1, . . . , t0 + T , where t0 is the current timeslot.
The number of pickup requests at the i-th region within
time slot t is then denoted by wt,i, and the number of
available vehicles in this region at the beginning of time slot
t is denoted by xt,i. We also define xtt′,i as the number
of vehicles that are occupied at time t but will drop off
passengers and become idle in the i-th region in time slot
t′. To predict the future xtt′,i given a set of dispatch actions,
we use Ft = (f

(1)
t , . . . , f

(N)
t ) to denote the current location,

occupied/idle status and destination of each vehicle available
at time t for the dispatch center. By combining this data, we



TABLE I: Notation used in the RHC and DQN formulations.
Parameters Description
N the number of vehicles
M the number of regions
γ ∈ (0, 1] time discount rate
∆t step size
T maximum time steps
st state of the environment at the beginning of t
at action taken at the beginning of t (dispatch order)
rt reward gained at the beginning of t
f
(n)
t n-th vehicle’s state at the beginning of t
xt ∈ ZM number of idle vehicles in each region at time slot t

xtt′ ∈ ZM number of occupied vehicles at time t that become
idle at time t′

wt ∈ ZM number of requests in each region at time slot t

w̄t ∈ ZM number of predicted requests in each region
at time slot t

ut ∈ ZM×M number of vehicles to be dispatched between regions
at time slot t

τt ∈ RN×N expected travel time between the regions at time slot t

Pt(d|o)
probability distribution of the destination region d
given the origin region o at time slot t

λ cost of a reject
θ network parameters in Q-network (Q)
θ− network parameters in target-network (Q̄)
η(l) demand supply distribution mismatch

can predict Xt(t:t+T ) = (xt, . . . , xt+T ), a matrix that gives the
number of vehicles available in each region from time t to time
t+T , given the dispatch actions. Similarly, we define the future
demand Wt:t+T = (w̄t, . . . , w̄t+T ). The state st of the external
environment at time t is then st = (Ft, Xt(t:t+T ),Wt:t+T ).

At each time step t, the agent receives some representation
of the environment’s state st and reward rt. It then takes
action at to dispatch vehicles to the different regions so as
to maximize the expected future reward:

∞∑
t′=t

γt
′−trt′(at, st) (1)

where γ < 1 represents a time discount rate. The action at
routes idle vehicles (i.e., with f (i)t = 1), the set of which we
denote by It, to different regions. We formally define at and
rt for each policy in Sections III and IV. To define rt, we
wish to minimize three performance criteria: the number of
service rejects, passenger waiting time and idle cruising time.
A reject means a ride request that could not be served within
a given amount of time because of no available vehicles near
a customer. The waiting time is defined by the time between
a passenger’s placing a pickup request and the matched driver
picking up the passenger; even if a request is not rejected,
passengers would prefer to be picked up sooner rather than
later. Finally, the idle cruising time is the time in which a taxi
is unoccupied and therefore not generating revenue, while still
incurring costs like gasoline and wear on the vehicle.

In the next two sections, we develop a baseline Receding
Horizon Control (RHC) policy and a Deep Q-Network (DQN)
policy to solve this dispatch problem.

III. RHC POLICY BASELINE

In the RHC formulation, we define our action variables at in
Section II to be ut ∈ ZM×M , where each ut,ij is the number

of vehicles dispatched within time slot t from the i-th to the
j-th region. We wish to choose the ut so as to minimize a
weighted sum of the number of rejects and the vehicles’ idle
cruising time, defining the reward as the negative of this sum:

rt(ut) = −λ
M∑
i=1

min(xt,i − w̄t,i, 0)−
M∑

i,j=1

τt,ijut,ij (2)

The first term in this objective, min(xt,i − w̄t,i, 0), represents
the difference between taxi demand and supply (xt,i− w̄t,i) at
each region i within time slot t. Demand that cannot be served
by these resources is deemed rejected2. The second term in (2)
corresponds to the idle vehicle cruising cost, where τt,ij is the
expected travel time from the i-th to the j-th region. Here λ
weights the rejection cost compared to the idle cruising time.

To find xt,i − w̄t,i in terms of the action variables ut, we
find the future number of available vehicles:

Lemma 1: The number of idle vehicles in each time slot is:

xt+1,i =max(xt,i − w̄t+1,i, 0)−
M∑
j=1

(ut,ij − ut,ji)

+ xt0t,i +

t∑
t′=t0

M∑
j=1

1
(⌊τt′,ji

∆t

⌋
= t− t′

)
× Pt′(i|j) min(w̄t′+1,j , xt′,j) (3)

Here the first term corresponds to “leftover” vehicles from
time slot t, and the second term to the net number of idle
vehicles dispatched to region i at time t, i.e., right before
the start of time slot t + 1.3 The last two terms represent
the vehicles that come into region i at time t: the term xt0t,i
corresponds to occupied vehicles at time t0 that will drop off
their passengers in time slot t. The final term corresponds to
currently idle vehicles that will serve customers in the future
and drop them off in the i-th region within time slot t. To
derive this term, we sum over all regions j and times t′ for
which the expected travel time τt′,ij to region i places them
in region i at time t. The number of these trips given j and t′

is then Pt(i|j)min(w̄t′+1,j , xt′,j), where Pt(i|j) is the fraction
of trips that start at time t in region j and end in region i.

Assuming the w̄ are known, we choose the dispatch actions
ut so as to maximize the expected reward into the future:

Proposition 1: The optimal RHC policy
{
u?t,ij |∀t, i, j

}
solves the linear optimization problem

maximize
ut0 ,...,ut0+T

t0+T∑
t=t0

γt−t0rt(ut)

subject to
M∑
j=1

ut,ij ≤ xt,i; t = t0, . . . , t0 + T, ∀i

ut,ij = 0, {i, j, t | τt,ij > ∆t}

(4)

2This definition can be easily extended by summing over multiple time slots
t in min (xt,i − w̄t,i, 0) to allow for greater waiting times before rejection.

3For simplicity, we assume that dispatched vehicles are not assigned to any
customers while traveling and that they always get to the destination regions
in the next time slot, as we specify in (4). Extending this definition still results
in a linear optimization problem as in (4).



The first constraint in (4) ensures that the total number of
vehicles dispatched from the ith region does not exceed
the number of idle vehicles in the ith region. The second
constraint ensures that we do not dispatch vehicles to regions
with travel times that exceed ∆t, ensuring that all dispatch
movement completes within a time interval; as noted above,
this constraint may be relaxed without changing the linearity of
the optimization problem. Using the definition of rt in (2) and
the vehicle dynamics (3), we see by inspection that (4) can
be written as a linear optimization problem. For simplicity,
we assume that the ut,ij are continuous variables, as there
are generally a large number of taxis to be dispatched; we
can then solve (4) efficiently with known linear programming
methods.4 We retain u?t0 to execute now, updating the future
dispatch actions u?t0+1, . . . , u

?
t0+T

by re-solving (4) in each
future timeslot as new information arrives.

Algorithm 1 presents the RHC dispatch algorithm using
Proposition 1. In addition to solving (4), the algorithm predicts
the input trip times τt,ij and destination distributions Pt (d|o)
from historical trip data (cf. Section V). It then assigns specific
idle vehicles to fine-grained dispatch locations within each
region, given the number of vehicles to be dispatched to each
region (u?t,ij). For computational efficiency, we specify vehicle
locations in a greedy manner. We define Li as a set of locations
l within the i-th region, which satisfies:

xt,i =
∑
l∈Li

xt(l), wt,i =
∑
l∈Li

wt(l), (5)

where xt(l) and wt(l) represent the number of available
vehicles and requests at location l respectively. The demand
supply distribution mismatch at location l is then given by:

ηt(l) =
xt(l)∑
l xt(l)

− wt(l)∑
l wt(l)

(6)

For each dispatch u?t,ij , we send vehicles from locations with a
greater mismatch, i.e., higher ηt(l), to those with lower ηt(l).

IV. DISTRIBUTED DQN POLICY

Our DQN policy learns the optimal dispatch actions for
individual vehicles. To do so, we suppose that all idle vehicles
sequentially decide where to go within a time slot t. Each
vehicle’s decision accounts for the current locations of all
other vehicles, but does not anticipate their future actions.
Since drivers have an app that updates with other drivers’
actions in real time, and it is unlikely that drivers would make
decisions at the exact same times, they would have access to
this knowledge. We can thus express the DQN reward function
for each vehicle n:

r
(n)
t = r(s

(n)
t , a

(n)
t ) =

t∑
t′=t−δ

λb
(n)
t′ − c

(n)
t′ ,

where r(n)t is the weighted sum of the number of rides the nth
vehicle picks up at time t, b(n)t , and the total dispatch time c(n)t ,

4We show in our simulations that even with this approximation, the RHC
policy yields significant performance improvement.

Algorithm 1: Receding Horizon Control (RHC) dispatch
policy at time slot t.

Input : Xt(t:t+T ),Wt+1:t+T , ηt, It

Output: dispatch solution
Update trip time estimation table τt;
Update destination distribution table Pt(d|o);
Solve LP problem and get u?

t ;
for i = 1:M do

for j = 1:M do
for k = 1:u?

t,ij do
Select vehicle f (n)

t ∈ It located at
arg max

l∈Li,x(l)>0

ηt(l);

Select dispatch location d(n)
t = arg min

l∈Lj

ηt(l);

Add (n, d(n)
t ) to the dispatch solution;

end
end

end

analogous to the RHC reward (2). Here δ is the action update
cycle, or minimum time between dispatches sent to a given
vehicle. The action a(n)t represents the region to which the n-
th vehicle should head. We limit the action space in the range
of the dispatch cycle similar to the RHC. Note that this reward
is not an explicitly specified function of at: DQN’s model-free
approach means that the exact relationship between at and rt
will the learned by the DQN algorithm.

We define the optimal action-value function for vehicle n as
the maximum expected return achievable by any policy πt ={
a
(n)
t′ | t′ > t

}
:

Q∗(s, a) = max
π

E

[ ∞∑
t′=t

γt
′−tr

(n)
t′ |s

(n)
t = s, a

(n)
t = a, πt

]
,

(7)
which satisfies the Bellman equation:

Q∗(s, a) = Es′ [rt + γmax
a′

Q∗(s′, a′)|s(n)t = s, a
(n)
t = a],

(8)
where Es′ denotes the expectation with respect to the envi-
ronment after time s′. Instead of using the full representation
of the state st, we approximate Q with a neural network. We
use θ to denote the weights of this Q-network, which can be
trained by updating the θi at each iteration i to minimize the
following loss function:

Li(θi) = Es,a,r,s′ [(rt + γmax
a′

Q(s′, a′; θ−i )−Q(s, a; θi))
2]

(9)
This function represents the mean-squared error in the Bell-

man equation, where the optimal target values are substituted
with approximate target values rt + γmaxa′ Q(s′, a′; θ−i ),
using parameters θ−i from some previous iteration.

The dispatch algorithm for the DQN policy is shown in
Algorithm 2. The input and output of the DQN policy are
the same as for the RHC policy (Algorithm 1). An action for
each vehicle is selected by taking the argmax of the Q-network
output. Whenever the algorithm adds a dispatch order to the
solution, we update Xt(t:t+T ) according to the selected action.



Algorithm 2: Deep Q-Network (DQN) dispatch policy.
Input : Xt(t:t+T ),Wt:t+T , ηt, It

Output: dispatch solution
for f (n)

t ∈ It do
Create a feature vector φ(n)

t = φ(f
(n)
t , Xt(t:t+T ),Wt:t+T );

Select a(n)
t = arg max

a
Q(φ

(n)
t , a; θ);

Select a destination region i from action a(n)
t ;

Select d(n)
t = arg max

l∈Li

ηt(l);

Add (n, d(n)
t ) to the dispatch solution;

Update Xt(t:t+T ) based on a(n)
t ;

end

This update enables subsequent vehicles to take other vehicles’
actions into account; note, however, that decisions are still
made myopically with respect to possible future decisions
taken by other vehicles, limiting coordination between vehi-
cles. As in the RHC algorithm, after determining dispatched
regions, the DQN policy finds specific dispatch locations in a
greedy manner using the demand-supply mismatch ηt.

V. MOVI FLEET SIMULATOR DESIGN

To realistically evaluate our RHC and DQN policies, we
design and implement MOVI as a taxi fleet simulator based
on 15.6 million taxi trip records from New York City [18].
We used Python and tensorflow [20] for the implementation.

We base MOVI’s implementation on NYC Taxi and Limou-
sine Commission trip records from May and June 2016,
including the pickup and drop-off dates/times, locations, and
travel distances for each trip [18]. While each pickup location
in this dataset represents where a passenger hailed a taxi on
the street, we assume the distribution of demand is similar
when the passenger uses a mobile application. We use 12.8
million trip records from May 2016 to train the simulator and
2.8 million trip records from June 2016 for testing.

We extract trip records in New York City within the area
shown in Figure 2’s heat map, which covers more than 95%
of trips in the dataset after removing records with outliers.
The colored zones in the figure represent the number of total
ride requests in the training data. The weekly numbers of
ride requests for the training and test datasets are shown in
Figure 3, indicating that the demand curves in both datasets
exhibit the same daily periodicity, with a dip in demands
over the weekend. In the discussion below, we outline the
architecture of the simulator and then our RHC and DQN
implementations. More details are given in [21].

A. A Modular Architecture

Figure 4 presents MOVI’s modular architecture design: to
ensure a fair comparison between different dispatch policies,
MOVI does not rely on the DQN policy. Instead, the dispatch
policy is a separate module that does not affect the other
simulator modules, which simulate policy responses in the
surrounding environment. Thus, the simulated responses to
dispatch decisions are policy-agnostic.

Fig. 2: Geographic demand distribution in NYC.

Fig. 3: Typical demand patterns in May and June 2016.

MOVI is based around the fleet object, which maintains the
states Ft of all vehicles at all times. In every time step, all
vehicles update their states according to their matching and
dispatch assignments. We discretize the city into 212 × 219
grid locations of size 150× 150 m2, which are later grouped
into regions to compute the RHC and DQN dispatch policies.
As detailed in Algorithm 3, MOVI first initializes vehicles
and generates ride requests based on the real trip records. The
agent then computes the actions at, using either the RHC
or DQN policy, and after the vehicles have gone to these
locations, the dispatcher matches appropriate idle vehicles
(those in the set It) to requesting customers. When the agent
sends a dispatch order to the vehicles, MOVI creates an
estimated trajectory to the dispatched location based on the
shortest path in the road network graph, and the vehicles move
to dispatched locations within the trip time given by our ETA
model. If there are no available resources in the customer’s
region, this ride request is rejected and disappears.

Road Network Graph. We construct a directed graph to
model the road network in the service area from Open Street
Map data [19]. Whenever a vehicle is dispatched from an
origin o to destination d for a vehicle, the simulator first finds
the closest road edges to the o and d coordinates and then
conducts an A* search for the shortest path between them.

ETA (Estimated Time of Arrival) Model. To estimate the
trip times τ (n)l,m for every dispatch n at time t from location l
to location m, we trained a multi layer perceptron. The input
feature vector consists of the sine and cosine of the day of
the week and hour of the day, pickup latitude and longitude,
dropoff latitude and longitude, and trip distance. We use a
random 70% of the trip records in the training dataset to
train the perceptron and 30% for validation. With the trained
model, the root-mean-square error (RMSE) for the training and
validation datasets are 4.740 and 4.739 minutes respectively.

Matching Algorithm. When a pickup request arrives, we
assign it to the closest available vehicle. If there are no idle



Algorithm 3: Fleet Simulator
Initialize the fleet state F0;
for t = 0 : Tmax do

Load ride requests within time slot t;
for each ride request do

Select the closest vehicle n to a pickup location;
Compute dispatch trip time with the ETA model;
Update f (n)

t according to the assigned ride request;
end
Output Ft,Wt to the agent;
Get dispatch orders at from the agent;
for n, d(n)

t ∈ at do
Search the shortest path from the n-th vehicle location

to dispatch location d(n)
t ;

Compute dispatch trip time with the ETA model;
Generate the future trajectory and assign it to the n-th

vehicle;
end
Update the fleet state Ft+1;

end
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Prediction

RHC/DQN	
Policies

Fleet	Object

Ride	
Requests

Dispatcher

ETA	Model

OSM	Road	
Network

Matching

Dispatch

Route

Trip Time

Trip Time

Environment	Simulator

wt - 1

Ft 

at

Fig. 4: MOVI’s modular architecture. By separating the dis-
patch policy from the simulated environment, MOVI can
compare the performance of our RHC and DQN policies.

vehicles within five kilometers of the pickup location, the
request is instead rejected. An assigned vehicle heads towards
the pickup location with trip time τ predicted by the ETA
model. After the pickup, the vehicle drives to the drop off
location within the trip time on the actual trip record.

B. Optimized Dispatch Policies

The agent in Figure 4 runs either the RHC or DQN algo-
rithm (Algorithms 1 and 2)). We detail our implementations
of both in this section, after outlining the demand prediction
that both algorithms use to represent the environment state.

Demand Prediction. To predict future demand, we build a
small convolutional neural network. The output of the network
is a 212 × 219 heat map image in which each pixel stands
for the predicted number of ride requests in a given region
in the next 30 minutes. The network inputs are the actual
demand heat maps from the last two time steps; we capture
daily periodicity by also including the sine and cosine of the
day of the week and hour of the day. The network consists
of two hidden layers; configuration details are in [21]. We
use thirty-minute timeslots, with the first 70% of timeslots
used for training and the last 30% for validation. The RMSEs
for the training and validation datasets are 1.047 and 0.980
respectively, i.e., our predicted demand is accurate to within a

Fig. 5: Example of target and predicted demand heat maps.

Fig. 6: Q-Network architecture.

single request. Figure 5 shows an example of the target and
predicted demand heat maps; they are visually identical.

RHC Implementation. Since the RHC optimization in-
volves M2T variables, the number of regions significantly
affects the computational time. Thus, we use the 226 taxi
zones shown in Figure 2 as our dispatch regions. Predicted
demand in each zone is calculated by aggregating outputs of
the demand prediction model. We use a timeslot length of
∆t = 15 minutes, reflecting the minute-scale runtime of the
RHC algorithm, and T = 3. The destination distribution given
a trip’s origin, Pt(d|o), was extracted from training data using
a histogram count of the number of trips between regions for
time t’s day of the week and hour of the day, thus taking into
account cyclical demand patterns (cf. Figure 3).

Streamlined DQN Training. For the DQN policy, we use
smaller dispatch regions so as to utilize spatial convolution in
training the Q network. We divide the entire service area into
a 43× 44 grid of regions, each of which is around 800× 800
m2. Each vehicle can move at most 7 regions horizontally or
vertically from its current region, matching the constraint on
vehicle travel times in the RHC optimization problem (4) and
resulting in a 15×15 map of possible destination regions. We
select ∆t = 1 minute as the length of each simulation step
and a horizon of T = 30, retraining the Q-network after each
simulation step. Our technical report [21] has more details on
the Q-network input features and training.

Figure 6 presents our Q-network’s architecture. We use
a convolutional neural network with a 15 × 15 output map
corresponding to the estimated Q-value for each possible
action, given the input state. The input features are summarized
in Table II. In addition to the predicted ride requests Xt(t:t+T )

and future available vehicles Wt:t+T , we include environment
features like the vehicle location, time of the day, and day of
the week. We use three hidden layers and one output layer.

Reinforcement learning is known to be unstable when a non-
linear approximator like a neural network is used to represent



TABLE II: Input features used for the Q-network. All are represented as planar images (cf. Figure 6.
Type Feature Plane size # of planes Description
Main Demand 51× 51 1 Predicted number of ride requests next 30 minutes in each region

Supply 51× 51 3 Expected number of available vehicles in each region in 0, 15 and 30 minutes
Idle 51× 51 1 Number of vehicles in It in each region

Main* Cropped 23× 23 5 Main features applied (23, 23) cropping
Average 23× 23 5 Main features applied (15, 15) average pooling with (1, 1) stride
Double Average 23× 23 5 Main features applied (30, 30) average pooling with (1, 1) stride

Auxiliary Day of week 15× 15 2 Constant planes filled with sin and cos of the day of week
Hour of day 15× 15 2 Constant planes filled with sin and cos of the hour of day
Position 15× 15 1 A constant plane filled with 0 except current position of the vehicle with 1
Coordinate 15× 15 2 Constant planes filled with current normalized coordinates of the vehicle
Move Coordinate 15× 15 2 Normalized coordinate at this point
Distance 15× 15 1 Normalized distance to this point from the center
Sensibleness 15× 15 1 Whether a move at this point is legal

Training Step Training Step

Fig. 7: Training curves tracking the agent’s average loss and
predicted action-value for the Q-network over the simulation.

the Q function. This instability is mainly due to correlations
in the sequence of experiences and between the action-values
Q(s, a) and the target values r + γmaxa′ Q(s′, a′). We use
experience replay to remove these correlations and the Double
DQN algorithm to prevent overestimation [22], [23], using the
RMSProp algorithm to train the Q-network.

We further streamline this training procedure to handle
one of the biggest challenges in applying DQN to a fleet
of vehicles: as vehicles execute policies, the state st =(
Ft, Xt(t:t+T ),Wt(t:t+T )

)
from the perspective of other ve-

hicles changes, disrupting their Q-network training. Thus, we
introduce a new parameter α as the probability that a vehicle
moves in each simulation step, increasing α linearly from 0.3
to 1.0 over the first 5000 training steps. Thus, only 30% of the
vehicles move in the first step, which is roughly the percentage
of vehicles taking actions in the optimal policy. We trained
the Q-network for a total of 20,000 steps, corresponding to
two weeks of data, and used a replay memory of the 10,000
most recent transitions. As illustrated in Figure 7, our method
achieves stable loss and maximum Q-values over time. Once
the average max-Q-value reaches 100, it starts decreasing:
training in the previous time steps has improved taxis’ Q-
networks, allowing them to compete more for passengers and
decreasing the average return an individual taxi can gain.

VI. RESULTS AND DISCUSSION

For our evaluation, we use 2.8 million trip records from
Monday, 6/6/2016 to Sunday, 6/12/2016. We assume that a
day starts at 4 a.m. and ends at 4 a.m. in the following day,
e.g., “Monday” is defined as 4 a.m. on Monday 6/6/2016 to 4
a.m. on Tuesday 6/7/2016. For each day, we conduct a dispatch

simulation with 8000 taxi vehicles, whose initial locations are
chosen from the pickup locations of the first 8000 ride requests
in our data. We initialize the environment by first running the
simulation for 30 minutes without dispatching.

For each day of the week, we compute three performance
metrics: the average reject rate, wait time, and idle cruising
time. The average reject rate is defined as the number of
rejected requests divided by the number of total requests in
each day, and the wait time is defined as the average time
between a (un-rejected) pickup request originating to the time
it is fulfilled. We define the idle cruising time as the total
driving time without passengers divided by the number of
accepted requests. We also track the total trip time with
passengers for each vehicle to compute the utilization rate,
or fraction of time for which a given vehicle is occupied.

A. Performance Results

We show the results of each policy before comparing them.
RHC Policy. We conduct a simulation with the test dataset

using the RHC policy and compute each metric’s average value
over a week. Figure 8a shows the results with different reject
penalties λ from 0 to 40. While all three metrics improve as
λ increases from 10 to 20, they take nearly the same value
when λ ≥ 20. This result indicates that in practice, our three
performance criteria do not conflict, which is surprising: we
would expect the idle cruising time to increase as the reject rate
decreases, due to vehicles traveling longer distances to pick
up more passengers. The result suggests that most vehicles are
close to passenger demand locations, yet many requests are
not served quickly due to drivers not realizing this proximity.
The floor on the reject rate as λ increases, however, indicates
that some requests are simply too far from any idle vehicles;
our constraint on idle cruising time in (4) then prevents any
vehicles from traveling to their locations.

We also investigate the importance of maximum horizon T .
In the technical report [21], we show that the performance does
not change significantly with T ≥ 1, indicating that there is
limited value to coordinating vehicle locations too far into the
future, perhaps due to limited ability to predict future demands.

DQN Policy. Similar to RHC, we evaluate our DQN policy
by a simulation calculating each metric’s average value over
a week. Figure 8b shows the results with different reject
penalties λ from 0 to 20. As seen in the figure, as λ increases,
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(a) Average performance vs. λ for the RHC policy.

Reject Penalty Reject Penalty Reject Penalty 

(b) Average performance vs. λ for the DQN policy.

Fig. 8: The reject rate and passenger wait time improve as the reject penalty λ increases, with little effect on the idle cruising
time, in the (a) RHC and (b) DQN policies. The x-axis in all figures is the value of λ.

Fig. 9: DQN consistently outperforms RHC over one week.

the reject rate improves until λ = 10, while the idle cruising
time increases modestly for λ ≥ 10. As for the RHC policy,
all metric values level off as λ increases, indicating that there
is a nonzero floor for the reject rate.

Performance Comparison. We compare both dispatch
policies to a simulation without dispatch. We summarize the
results of no dispatch (NO), DQN with λ = 10 (DQN), and
RHC with λ = 20 (RHC) in Figure 9. Our results indicate
that DQN outperforms RHC, but both significantly outperform
no dispatching, indicating the value of optimized dispatch
algorithms. They also suggest that DQN’s better adaptability
compensates for RHC’s better coordination between vehicles.

In every day of the week, the RHC and DQN policies
significantly reduce the reject rate and wait time compared
to no dispatching, while the idle cruising time stays almost
the same. The reject rate and average wait time of the DQN
policy are reduced by 76% and 34% respectively compared
with no dispatch, and by 20% and 12% compared with the
results of the RHC policy. The idle cruising time of the
DQN policy increases by 1.3% compared with the time of no
dispatch, and by 4.0% compared with the time of RHC. Since
DQN optimizes individual vehicle rewards, its policies may
have individual drivers travel further to pickup requests, even
though closer vehicles could also have served those requests.

Figure 10 shows the reject rate, wait time, and idle cruising
time with RHC and DQN dispatch and without dispatch on
Tuesday. DQN dispatch consistently reduces the reject rate
and wait time more than RHC; the technical report [21]
shows that this holds for Saturday as well. We note that the
greatest reduction in the reject rate occurs at the time of
highest demand, around 8pm to midnight (cf. Figure 3). Thus,
optimized dispatch policies realize the most benefit at times
of high demand. At these times, without dispatching, drivers
may not search for the locations of future ride requests, instead

Hour of the Day

Fig. 10: DQN consistently outperforms RHC on Tuesday. The
x-axis runs from 4 a.m. on Tuesday to 4 a.m. on Wednesday.

simply waiting for a request at their current locations. At these
times DQN, but not RHC, drastically reduces passenger wait
times, perhaps due to DQN having vehicles drive more to look
for pickups. Indeed, the idle cruising times for the DQN policy
are slightly higher than those for the RHC policy at these
times, which is consistent with the overall results in Figure 9.

We finally show that DQN more evenly distributes ride
requests between vehicles by considering our 8000 vehicles’
mean and minimum utilization rates in Figure 11. While the
mean utilization rates for the two policies are almost the same,
DQN’s minimum utilization rate is much greater than RHC’s.
This smaller variance may be due to the fact that the DQN
policy learns the optimal policy for an individual vehicle,
meaning that every vehicle tries to take the best actions for
itself. On the other hand, the RHC policy aims to maximize
the total reward, forcing vehicles to take actions that may not
benefit themselves, but do benefit the system as a whole.

B. DQN Advantages

Despite the fact that the DQN policy does not make co-
ordinated decisions for idle vehicles, our results show that
DQN’s reject rate is lower than RHC’s on every day of week.
We conjecture that this is due to DQN’s much faster dispatch
decisions, allowing the dispatch policies to rapidly adapt to
the environment state. Compared to the fast computation of
a neural network forward pass in each vehicle for DQN,
which takes less than a hundred milliseconds, solving a linear
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Fig. 11: Utilization rates vs. time. DQN has higher minimum
but comparable mean utilization rates compared to RHC.

program with tens of thousands of variables in the RHC policy
is more expensive, taking from seconds to tens of seconds.

In order to investigate the effect of the dispatch cycle, we
simulate the DQN policy with the same dispatch cycle as the
RHC policy. The results are plotted as DQN* in Figure 9,
showing that the reject rate is almost the same as RHC. DQN’s
faster on-demand dispatch thus helps the agent to adapt to
disruptive environmental changes more quickly than RHC, at
the expense of centralized cooperation. Even when DQN and
RHC have the same dispatch cycles, DQN’s lack of model
constraints allows it to compensate for its lack of coordination
and perform as well as RHC.

Obeying the DQN policy is generally more beneficial for
drivers than the RHC policy, as DQN predicts the best action
for each individual vehicle given its current state. Thus, the
DQN policy may be more realistic to implement in real-world
applications. Indeed, ride-sharing platforms like Uber allow
drivers to choose where they go and which pickup requests
to accept [24], which may partially explain their success
in improving passenger wait times compared to traditional
taxi services. Other potential advantages of a DQN approach
include the fact that the same network architecture and input
features can be used for different service areas; DQN’s for-
ward computation time is also independent of the number of
dispatch regions, making it suitable for large service areas.
In addition, other input features such as a vehicle’s speed
and capacity can easily be taken into account in the dispatch
policies by simply adding them to the network input.

VII. CONCLUSION

In this paper, we propose MOVI, a Deep Q-network (DQN)
framework to dispatch taxis, which uses value-based function
approximation with deep learning models and learns a optimal
policy through directly interacting the environment. Dispatch
simulation using taxi trip records in New York City shows
that DQN policies lead to significantly fewer service rejects
and wait times compared to no dispatching, outperforming the
RHC policy with centralized coordination. In the future, it will
be important to explore different network architectures and
other input features such as the estimated time of each action to
improve the DQN performance and computational efficiency,
as well as establish a theoretical basis for DQN’s superiority
to RHC. Our work takes a first step in demonstrating the

benefits of applying a model-free, practical dispatch solution
with state-of-the-art deep reinforcement learning techniques to
large-scale taxi dispatch problems.
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