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Abstract—In this paper, we investigate the problem of beam
alignment in millimeter wave (mmWave) systems, and design
an optimal algorithm to reduce the overhead. Specifically, due
to directional communications, the transmitter and receiver
beams need to be aligned, which incurs high delay overhead
since without a priori knowledge of the transmitter/receiver
location, the search space spans the entire angular domain. This
is further exacerbated under dynamic conditions (e.g., moving
vehicles) where the access to the base station (access point) is
highly dynamic with intermittent on-off periods, requiring more
frequent beam alignment and signal training. To mitigate this
issue, we consider an online stochastic optimization formulation
where the goal is to maximize the directivity gain (i.e., received
energy) of the beam alignment policy within a time period. We
exploit the inherent correlation and unimodality properties of the
model, and demonstrate that contextual information improves the
performance. To this end, we propose an equivalent structured
Multi-Armed Bandit model to optimally exploit the exploration-
exploitation tradeoff. In contrast to the classical MAB models,
the contextual information makes the lower bound on regret (i.e.,
performance loss compared with an oracle policy) independent
of the number of beams. This is a crucial property since the
number of all combinations of beam patterns can be large in
transceiver antenna arrays, especially in massive MIMO systems.
We further provide an asymptotically optimal beam alignment
algorithm, and investigate its performance via simulations.

I. INTRODUCTION

To meet the exponentially growing demand in mobile data,
the trend in wireless networks is migrating to higher frequen-
cies combined with increasing number of antennas per device
and per base station. For instance, it is envisioned that in
5G cellular systems certain portions of the millimeter wave
(mmWave) band will be used, spanning the spectrum between
30GHz to 300GHz. However, propagation loss at mmWave
frequencies is much higher due to a variety of factors including
atmospheric absorption, basic Friis transmission-effect, and
low penetration. When the users and/or surrounding objects
are mobile, this effect is more pronounced such that different
propagation paths become highly variable with intermittent
on-off periods. Thus, unlike existing communication schemes,
mmWave systems require highly directional communications
to compensate for large channel losses. Thanks to recent
advances in antenna technologies, large directional antenna
arrays with much smaller form factors can be deployed in
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relatively small chip areas. Such arrays have the potential to
focus the signal energy toward a specific direction, “making
up” for the channel losses.

In order to fully utilize directional communications, the
transmitter and receiver beams need to be aligned. The ex-
perimental results in [1] demonstrate that in a system with a 7
degree beam width, a misalignment of 18 degree reduces the
link budget by around 17 dB, which can reduce the maximum
throughput by up to 6 Gbps or break the link entirely [2].
On the other hand, as a result of such “pencil-beams” at
the transmitter and receiver, beam alignment incurs a large
overhead that scales with device mobility and the product of
the transmitter-receiver beam resolution. In exhaustive search
methods, both users and base stations have a predefined
codebook of beam directions that cover the entire angular
space and are used sequentially to transmit and receive. Thus,
the complexity of this exhaustive search is O(N2), where N is
the number of possible beam directions. To improve the search
efficiency, the transmitter and receiver steering is decoupled in
the 802.11ad standard such that the transmitter starts with a
quasi-omnidirectional beam, while the receiver scans the space
for the best beam direction. The process is then reversed [3].
This approach reduces the search complexity to O(N). Still,
for a beam of a few degrees, the delay can be hundreds of
milliseconds to seconds [4], which would easily stall real-time
applications.

Dynamic conditions make the beam alignment more chal-
lenging since there is the need for frequent beam alignment.
Under such scenarios, we pose the following question that
given the outcome of the past beam alignments, is it possible
to extract some information and reduce the search space for
the subsequent beam alignment procedures? In particular, our
work is based on the fact that successive beam alignments are
stochastically correlated, and thus, outcome of the previous
“beam matching” provides contextual information for the
subsequent matchings, thus eliminating the need to search the
entire angular domain. We exploit correlation and unimodality
properties across various beam matching. Specifically, for a
given beam matching, we call the difference between the
transmitter and receiver direction as misalignment. Because of
correlation if matching at a larger misalignment is successful
(i.e., received energy is above a threshold τ ), with a high
probability a matching will be successful at a smaller misalign-
ment as well. Furthermore, the directivity gain (or received
energy) can be approximated as a unimodal function of the
misalignment value. We exploit this contextual information in
order to obtain a beam search scheme that quickly identifies
the best beam direction and maximizes the directivity gain.
We formulate the problem of finding the best beam pair as
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an online stochastic optimization where the objective is to
maximize the expected amount of received energy within a
given time period.

To find the optimal solution, we show that this problem
can be considered as an instance of the Multi Armed Bandit
(MAB) model in which each transmit and receive beam pair
is considered as a single arm. Thus, the objective is to design
a sequential arm selection (or, equivalently, beam alignment)
strategy that maximizes the expected reward (received energy)
over a given time horizon. Performance of MAB models is
usually expressed in terms of regret that is defined as the
total expected reward loss compared with an oracle policy.
Regret of the best algorithm is in the form of O(K log(T ))
in which K is the number of arms and T is the time horizon
[5]. In distinction with the classical MAB models, we exploit
the contextual information of beam alignment that leads to
a structured MAB model, and prove that the regret does not
scale with the number of arms that is equal to the number
of beam matchings. This is a crucial property in (massive)
MIMO systems, and provides a fundamental performance limit
satisfied by any exhaustive beam selection algorithm. This
limit quantifies the inevitable performance loss due to the need
to explore sub-optimal beam pairs. It also characterizes the
performance gains that can be achieved by devising beam pair
selection schemes that optimally exploit the correlations and
the structural properties of the MAB problem. Therefore, in
contrast to the previous works that explore the sub-optimal
beam pairs by heuristics, our method optimally explores the
sub-optimal beam pairs. The following example illustrates
how we achieve this goal.

Example: Let us consider a scenario where the transmitter
beam direction is fixed at 75◦ angle with respect to the
receiver. For the sake of exposition, we assume a 2D setting.
Assume that there are 16 possible directions at the receiver, as
shown in Fig. 1. Using the exhaustive beam selection scheme,
each of 16 directions will be examined one at a time, and
the direction with the largest received energy (from beacon
messages) is picked. However, under dynamic conditions (e.g.,
with mobility), the optimal beam direction can potentially
change within a short period of time. In this case, we consider
maximizing the received energy within a given period of time.
Using our proposed scheme, the receiver assigns an index to
each beam direction, and the beam with the highest index will
be selected. The important point is that due to the correlation
and unimodality properties, the search space will be limited
to the neighborhood of the beam with maximum index. As a
result, it prevents the need of a uniform exploration over the
entire angular domain, thus mitigating the overhead of beam
alignment when the number of beam directions becomes large.

In summary, our contributions are as follows:

• We consider the beam alignment problem, and investigate
the fundamental performance limits of the search-based
beam alignment between the transmitter and receiver
antennas. We model the problem of finding the best beam
alignment as an online stochastic optimization problem.

• We exploit contextual information of the problem and
formulate an equivalent structured Multi-Armed Bandit
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Fig. 1. Beam alignment of the transmitter and receiver with 16 beams.

model. We experimentally demonstrate that the received
power (approximately) follows a unimodal pattern.

• We derive a lower bound on the regret of any search-
based algorithm, and demonstrate that the regret does
not scale with the number of transmission and receive
beams, thanks to the underlying structure of the problem.
Finally, based on the OSUB algorithm in [21], we propose
the Unimodal Beam Alignment (UBA) algorithm that is
shown to be asymptotically optimal.

II. RELATED WORK

A. Beam Alignment

The authors in [6] perform initial access for clustered
mmWave small cells using the power delay profile. In this
case, base stations are coordinated in clusters, and com-
municate through a backhaul network. Base stations share
their measurement reports obtained from the mobile devices,
and location of the mobile is estimated based on the shared
measurements. This will enable the base stations to point at the
estimated mobile location. Although this method is limited to
line-of-sight scenarios, the probability of having at least three
line-of-sight links (needed for mobile localization) increases
by assuming larger cluster sizes. In another line of research,
the authors in [7] proposed a fast-discovery hierarchical search
method, while [8] exploits the sparse multipath structure of
the mmWave channel to optimize the choice of beamforming
directions. A cell discovery method is proposed in [9] in
which the base station periodically transmits synchronization
signals to scan the entire angular space in time-varying random
directions. In [10], a beam alignment technique is designed
based on adaptive subspace sampling and hierarchical beam
codebooks. The authors in [11] use spatial information ex-
tracted at sub-6 GHz to help estimate the best beam pairs at
the transmitter and receiver at mmWave frequencies. In [12], a
beam alignment scheme based on scanning several directions
by one-shot is proposed. In contrast to the previous works,
we focus on exploiting contextual information in standalone
mmWave systems in order to reduce the search space, and thus
the overhead of beam alignment operation. Note that there are
other related work to reduce the overhead of beam search in
integrated sub-6 GHz-mmWave systems [13, 14].
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B. Multi-Armed Bandit

Multi-Armed Bandit (MAB) framework formulates sequen-
tial decision problems where an agent (i.e., decision maker)
has to strike an optimal trade-off between exploitation and
exploration by sequentially selecting an action (or an arm),
and observing the corresponding reward. Rewards of a given
arm are random variables with unknown distributions. The
objective is to maximize the expected reward over a given time
horizon by selecting the optimal arm at each time slot. Most
of the existing works focus on unstructured MAB problems
in which the reward associated with different arms are not
related [5, 15]. In contrast to the unstructured MAB models,
when the average rewards are structured, deriving the optimal
regret bound and designing of optimal decision algorithms is
more challenging [16]. Unimodal bandits are specific instances
of bandit models in which the average reward of arms are
correlated. In [17], unimodal bandits with a continuous set
of arms are studied, and the authors show that the regret
of the order of O(

√
T ) is achievable under some strong

regularity assumptions on the reward functions. For the same
problem, the authors in [18] provide an algorithm that achieves
O(
√
T log(T )) regret under relaxed regularity assumptions. In

this paper, we cast the problem of mmWave beam alignment
as a unimodal bandit model, and derive the regret bound.

III. MODEL AND OBJECTIVE

A. System Model

In mmWave systems, once the connection is lost, there
are two options for connection establishment and subsequent
beamforming: digital or analog. Digital beamforming is highly
efficient in delay such that with the observations from all
receive antennas, beamforming can be done by one-shot pro-
cessing of the observed beacons. However, to achieve digital
beamforming, there is the need for a separate analog-to-digital
converter (ADC) for each antenna, which may not even be
feasible for even a small to mid-sized antenna array due to
high energy consumption. On the other hand, while analog
beamforming requires only one ADC, it can focus on one
direction at a time, making the search process costly in delay.
Given the fragility of the mmWave channel, the need to scan
the entire space leads to the loss of opportunities to utilize the
mmWave channel upon its availability. In order to avoid high
energy consumption by mmWave components, we focus on
analog beamforming in which a single RF chain is deployed
at the transmitter and receiver. Other implementations (e.g.,
hybrid architectures) may look at combinations of directions,
which is out of scope of this work. Figure 2 depicts a
schematic of the analog beamforming, and directional beams
at the transmitter and receiver. We assume that the transmitter
and receiver are equipped with phased array antennas with Mt

and Mr identical antennas respectively, equally spaced by a
distance d along an axis. For the sake of exposition, we only
consider the receiver side, while a similar argument is held
for the transmitter. Due to the use of analog architecture, the
signal at the input of the decoder is a scalar, identical to a
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Fig. 2. Beam alignment using analog beamforming

weighted combination of signal xm across all antennas. Thus,
the received signal at the mmWave receiver can be written as:

ym = w†rHwt · xm + nm, (1)

where wr and wt are the beamforming vectors. The white
Gaussian noise nm is normalized to have unit variance. If
the transmitter uses Nt training precoding vectors wt, and
the receiver uses Nr training combining vectors wr, then the
collected signals (divided through by the training signal) is
given by:

Y = W†
rHWt + N,

where Wr = [wr1 , ...,wrNr
] is the Mr × Nr combining

matrix, and Wt = [wt1 , ...,wtNt
] is the Mt × Nt precoding

matrix. Furthermore, N is the Nr ×Nt post-processing noise
matrix. Hence, at each time slot, the problem of finding the
best beam pair boils down to finding the largest value of matrix
Y. In the exhaustive search, one should examine all Nr ×Nt
elements of Y to find the largest index, which determines
the optimal beam index at the transmitter and receiver. The
authors in [11] use spatial information extracted at sub-6 GHz
to help estimate the largest index of Y. Applying the same
framework, our beam alignment method exploits correlation
across the elements of Y in order to reduce the search space
to sub-matrices of Y.

B. Problem Statement

In order to establish a mmWave link, the transmitter selects
a beam direction that determines the phase shifter weights to
steer the beam in a certain direction. Similarly, the receiver
selects a receive beam index to receive the signals in a certain
direction. To obtain a high beamforming gain, the transmitter
and receiver beams should be well aligned with each other. We
let Di,j = (i, j) to denote a pair of beam direction in which i
is the beam index at the transmitter, and j denotes the receiver
beam index. There are Nt and Nr beams at the transmitter and
receiver, respectively. Further, we define D = {(i, j) : 1 ≤ i ≤
Nt, 1 ≤ j ≤ Nr} as the set of all possible beam pairs such
that there exists K = Nt × Nr distinct matching between
the transmit and receive beams. For each pair of transmit and
receive beams, misalignment is defined as follows.

Definition. (Misalignment) Given the pair (i, j) ∈ D of
transmitter and receiver beams, the misalignment δi,j captures
the angular mismatch between the i-th transmitter beam and
j-th receiver beam.

3
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    : Beam alignment phase

Communication phase 
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Fig. 3. Sequence of beam alignment operations followed by a data commu-
nication phase.

Set A = {δi,j : 1 ≤ i ≤ Nt, 1 ≤ j ≤ Nr} contains all possible
values of the misalignment values such that A is partially
ordered. With an abuse of notation, we let δk to denote the
kth (k ≤ K) misalignment value.

In order to detect the transmitted beacon signals, the re-
ceived energy level should lie above a certain threshold τ ,
which is determined based on the quality of service (QoS)
needed. Once the received energy is larger than τ , we call
it a successful matching. For a fixed transmit power, the
received signal energy can be expressed as a function of
the misalignment value, i.e., p(δk) such that p(.) is non-
increasing. For the sake of notations, we use pk := p(δk).
The probability of success for the misalignment δk is given by
θk = P(pk ≥ τ). We assume a fixed situation (e.g., LOS) such
that from one run of the alignment algorithm to another, the
situation remains fixed and only the orientations and distances
change, i.e., the success probabilities θk’s are time-invariant.
Furthermore, we let a binary random variable Xk represent
the success (Xk = 1) or failure (Xk = 0) of the matching.
The optimal matching is unique, i.e., there exists k∗ such that
pk∗θk∗ ≥ pkθk, for all k 6= k∗.

Problem formulation:Time is slotted, and we let T to
denote the length of beam alignment phase followed by the
data communication phase. Further, T̄ denotes the length of
pilot signal by which each beam is measured. This value
captures the amount of time that it takes to examine a
single pair of beams, as shown in Fig. 3. We formulate the
problem of finding the best beam pair as an online stochastic
optimization problem such that an optimal beam selection
policy π maximizes the expected amount of energy received
from beacon messages up to a certain finite time T . In this
case, we let sπk (T ) denote the number of times that the
misalignment k is selected under policy π and within the time
period T . Therefore, the optimal beam selection policy solves
the following optimization problem:

max
π

∑
k

E[sπk (T )]pkθk (2a)

s.t. T̄
∑
k

sπk (T ) ≤ T and sπk (T ) ∈ N. (2b)

In this formulation, small misalignment and large probability
of success is desirable. In addition, given that examining each
beam matching takes T̄ on average, the total number of beam
examinations is upper-bounded by T

T̄
, which is reflected in the

first constraint. The second constraint implies that the number
of each matching examination should be an integer.

IV. EQUIVALENT MULTI-ARMED BANDIT MODEL

The beam alignment formulation implies an MAB model
such that each combination of the transmitter and receiver
beam is considered as an arm, which leads to K = Nt ×Nr
total arms. In this work, we use the terms “arm” and “beam
direction” interchangeably. In this case, sπk (T ) denotes the
number of times that arm k has been selected under policy
π. Moreover, the reward of arm k has Bernoulli distribution
with parameter θk such that it is pk with probability θk and
0 with probability 1 − θk. The average reward of arm k is
denoted by µk := pkθk.

A. Contextual Information

We explore a new type of contextual information that
correlates the misalignment and the received energy. In par-
ticular, due to physics of signal propagation, if matching at
a larger misalignment is successful, a matching at a smaller
misalignment will be successful with a high probability. On
the other hand, if matching at a smaller misalignment fails,
then a matching at a larger misalignment will fail with a high
probability as well. Hence, we have:(

δm > δn and Xn = 0
)
⇒ Xm = 0, (3)(

δm < δn and Xn = 1
)
⇒ Xm = 1. (4)

Equivalently, we can define the vector of success probabilities
to satisfy the following condition: θ = (θ1, θ2, ..., θK) ∈ T ,
where T = {θ ∈ [0, 1]K : θ1 ≥ θ2 ≥ ... ≥ θK}. In
addition to the correlation property, we note that amount of
energy received can be approximated as a unimodal function of
misalignment. In this case, θ ∈ U such that U = {θ ∈ [0, 1]K :
∃k∗, p1θ1 < ... < pk∗θk∗ , pk∗θk∗ > pk∗+1θk∗+1 > ... >
pKθK}. Note that a similar unimodal model has been used
for other applications such as the rate adaptation in 802.11
systems [19] and channel selection in cognitive networks [20].

Graph representation: In order to demonstrate the im-
plications of contextual information, we can utilize a graph
representation to capture the order of arms (beam pairs) with
respect to each other. In this model, each arm corresponds to a
node of a graph and each edge is associated with a relationship
specifying which node of the edge gives the largest expected
reward, thus providing a partial ordering over the arm space.
Furthermore, from any node there is a path leading to the
unique node with the maximum expected reward along which
the expected reward is monotonically increasing. Under the
assumption of unimodal expected reward, we can move from
low expected rewards to high ones just by climbing them in
the graph, preventing the need of a uniform exploration over
all the graph nodes. This assumption reduces the complexity
in the search for the optimal arm, since the optimal policy
can avoid pulling the arms corresponding to some subset of
non-optimal nodes.

Experimental observations: For the purpose of illustration,
we provide experimental results to observe the typical prop-
agation pattern as a function of misalignment. In particular,
we consider the case of clear line of sight, and run a set of
experiments in which two horn antennas placed on tripods
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(a) Two horn antennas at 40 GHz
placed on tripods

(b) Connection of antenna with the
oscillator, mixer and USRP

Fig. 4. Experimental setup connection and equipment
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Fig. 5. Received power at distance of 1 meter vs. misalignment.

and facing each other symmetrically. The transmitter antenna
is set to be the stationary antenna, while the receiver antenna is
rotated throughout the experiment. Two software defined radio
(NI USRP-2901) are set up as the transmitter and receiver at
4 GHz. The transmit antenna is connected to an up-converter
with the output at 40 GHz. The receiver antenna takes the 40
GHz carrier and sends it to the down-converter with output
of 4 GHz. A power spectrum of gain (dB) vs. frequency
is displayed in real time for data collection, and then we
record the average peak value of gain. The receive horn
antenna sweeps 2 degrees incrementally on both clockwise and
counter-clockwise directions until the gain is indistinguishable
from the thermal noise floor (about 85 dB). Our experimental
setup is shown in Fig. 4, and Fig. 5 demonstrates the received
power as a function of misalignment angle between the trans-
mitter and receiver antennas. We observe that received power
approximately (due to the sidelobes) follows the unimodal pat-
tern. In this work, we assume that the transmitter and receiver
deploy highly directional antenna arrays in which the effect
of sidelobes is negligible and thus the received power can
be approximated as a unimodal function. Moreover, although
we would expect the misalignment of 0 degree provides the
highest signal energy, under blockage and reflection scenarios
a misalignment of δ 6= 0 may provide a larger gain. Our
model on contextual information is general and captures these

conditions as well.

V. PERFORMANCE ANALYSIS AND OPTIMAL ALGORITHM

A. Regret Analysis

In order to assess the performance of policy π for beam
alignment, or equivalently arm selection, we consider regret
as the performance metric, defined as follows:

Rπ(T ) = pk∗θk∗T −
∑
k

E[sπk (T )]pkθk. (5)

From this definition, regret measures the expected reward loss
(over a time period of T ) compared with an oracle policy that
would know everything. In the case that the expected reward of
the various arms are not correlated, regret of the best algorithm
is in the form of O(K log(T )) in which K is the number of
arms [5]. As a result, regret scales linearly with the number
of arms. In beam alignment, for a beam of a few degrees the
total number of arms (i.e., all combinations of transmitter and
receiver beam pairs) becomes very large. Therefore, in order
to avoid the scaling factor, we exploit the structural properties
of the arms and their reward functions, and show that due to
contextual information, the scaling factor is constant and does
not scale with the number of beam matchings (i.e., size of the
decision space). To this end, for any arm k, we denote the set
of its neighbors by:

N(k) = {j ∈ {k − 1, k + 1} : pkθk ≤ pj}.

Furthermore, given that the arms reward follow Bernoulli
distribution, the Kullback-Leibler (KL) divergence of two
Bernoulli distributions with respective parameters θ and θ∗ is
defined as: I(θ, θ∗) = θ log θ

θ∗ + (1− θ) log 1−θ
1−θ∗ . It has been

shown in [19, 21] that the problem of learning in a unimodal
bandit setting presents a lower bound over the regret of the
following form:

Theorem 1. For any beam alignment algorithm π, the lower
bound on the regret is given by:

lim inf
T→∞

Rπ(T )

log(T )
≥ c(θ),

in which c(θ) is a function of arms reward, and is given by:

c(θ) =
∑

k∈N(k∗)

pk∗θk∗ − pkθk
I
(
θk,

pk∗θk∗
pk

) . (6)

From (6), we observe that c(θ) is equal to a summation
over a constant number of terms (i.e., independent of K). On
the other hand, in the case that the structural properties is not
exploited, the regret is lower bounded by:

c′(θ) =
∑
k 6=k∗

pk∗θk∗ − pkθk
I
(
θk,

pk∗θk∗
pk

) ,
where c′(θ) linearly increases with the number of possible
arms, or equivalently, number of beam pairs at the transmitter
and receiver.
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Algorithm 1 Unimodal Beam Alignment (UBA)
1: At time slot t ≥ 1, select the beam direction with index
k(t) where:

k(t) =

 L(t) if lL(t)(t)−1

γ+1 ∈ N,
arg max
k∈N(L(t))

bk(t) otherwise. (9)

2: Evaluate the ratio

ψ(t) =
pk(t)

1
t

∑t
n=1 pk(n)

,

3: if ψ(t) ≥ Ψ then
4: Terminate the beam search
5: Proceed to the communications phase with the beam

index k
6: end if

B. Unimodal Beam Alignment (UBA) Algorithm

Next, we consider an algorithm whose regret matches the
lower bound given in Theorem 1. The first part of this
algorithm is identical to the OSUB algorithm proposed in [21],
that we briefly describe here. This algorithm is asymptotically
optimal, and is based on UCB algorithm that uses the KL
divergence as an index for arm. In particular, each arm is
attached an index that resembles the KL-UCB index, but the
arm selected at a given time is the arm with maximal index
within the neighborhood of the arm that yields the highest
empirical reward. Let k(t) be the arm selected at time t, and
sk(t) denote the number of times arm k has been selected up
to time t. The empirical reward of arm k at time t is:

µ̂k(t) =


∑t
n=1 1{k(n)=k}pkXk(n)

sk(t) if sk(t) 6= 0,

0 otherwise. (7)

At any time slot t, we denote by L(t) = arg max1≤k≤K µ̂k(t)
the index of the arm with the highest empirical reward. L(t) is
referred to as the leader at time t. Further, we define lk(t) =∑t
n=1 1{L(n) = k} the number of times that arm k has been

the leader up to time t. Now, the index of arm k at time t is
defined as:

bk(t) = sup

{
q ∈ [0, pk] : I

(
µ̂k(t)

pk
,
q

pk

)
≤ f(t)

sk(t)

}
, (8)

in which f(t) = log(lL(t)(t)) + c log(log(lL(t)(t))) and c is
a positive number. At any time slot, the algorithm selects the
arm “close” to arm L(t) and with the maximum index. Next,
we provide the finite time analysis of this algorithm, noting
that the authors in [19, 21] have presented similar results.

Theorem 2. Let fix θ ∈ T ∩U . For all ε, the regret under the
proposed UBA policy and at time T is bounded by:

R(T ) ≤ (1 + ε)
∑

k∈N(k∗)

pk∗θk∗ − pkθk
I (θk, θk∗)

log(T ).

Proof. Proof is provided in Appendix A.

In order to guarantee a finite time running of this algorithm,
we add an additional termination condition in Algorithm 1 and

continue with the data communication phase thereafter. We
use the peak-to-average ratio as the termination condition
in order to detect when the best beam direction is found.
Therefore, as the UBA algorithm proceeds, we evaluate the
ratio of the received energy to the average of previously
received signals energy. If the ratio is higher than a threshold
Ψ, we terminate the UBA algorithm and declare the beam
as the best beam direction. Specifically, at time slot t, we
calculate the peak-to-average ratio as follows:

ψ(t) =
pk(t)

1
t

∑t
n=1 pk(n)

,

in which pk(t) denotes the energy level of beam direction
selected at time t. Therefore, when the condition ψ(t) ≥ Ψ is
satisfied, we declare the beam with index k(t) as the optimal
direction, and the UBA algorithm stops at time t. The authors
in [1] have experimentally evaluated the peak-to-average ratio
for LOS and NLOS situations such that Ψ = 4 is acceptable
for detecting LOS. It should be noted that the proposed UBA
scheme does not rely on the existence of LOS scenarios,
while the threshold Ψ can be different under various envi-
ronmental conditions. In particular, environmental conditions
(e.g., blockage or reflection) alter the success probability of
beam matchings, while the proposed UBA is oblivious to the
underlying “physical layer” condition. In fact, based on the
past observations, the UBA biases the search space towards the
best beam direction. Therefore, the transmitter and receiver are
able to refine the search space through successive rounds of
beam alignment. The pseudocode is provided in Algorithm 1
where γ = 2 is the maximum degree of the graph representing
the relation between arms.

In order to provide a complete beam alignment algorithm,
similar to the IEEE 802.11ad standard, we decouple the
transmitter and receiver steering such that the transmitter starts
with a quasi-omnidirectional beam, while the receiver uses
the UBA algorithm (instead of exhaustive search) to find the
best beam direction. The process is then reversed to have
the transmitter scan the space while keeping the receiver
quasi-omnidirectional. As a result, we enhance the 802.11ad
standard beam alignment by using the UBA algorithm instead
of exhaustive search.

VI. NUMERICAL RESULTS

A. Setup

We compare the performance of the UBA algorithm with
the exhaustive search scheme in which the receiver scans all
different directions and samples the beam in all directions. The
combination of transmitter and receiver beams that delivered
the maximum power is picked as the direction of the signal.
We perform the comparison of the UBA algorithm with the
exhaustive search method under two different scenarios: di-
rectional and quasi-directional. Under directional conditions,
probability of success is either very high or very low (e.g., in
LOS scenarios). On the other hand, quasi-directional scenario
occurs when the variance of success probabilities is smaller
than directional situation (e.g., NLOS conditions). We evaluate
the performance of beam alignment in terms of regret that
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measures the performance loss compared with the optimal
alignment (i.e., an oracle policy). In this case, a lower regret
implies a higher amount of received energy, and thus a higher
accuracy in beam alignment. We also compare the beam
alignment accuracy and delay overhead when the termination
condition of peak-to-average ratio is used. In simulations, we
fix the transmitter beam direction, and the receiver scans the
angular domain to find the optimal beam direction.

B. Regret Performance

We set the vector of success probabilities as follows:

θDirectional = (0.99, 0.98, 0.96, 0.93, 0.9, 0.1, 0.06, 0.04);

θQuasi-directional = (0.95, 0.9, 0.8, 0.65, 0.45, 0.25, 0.15, 0.1).

Figure 6 demonstrates the regret of the UBA method compared
with the exhaustive beam sampling method under the direc-
tional and quasi-directional scenarios with 8 beam directions.
From the results, we observe that the regret increases over time
since compared with an oracle policy, the total performance
loss keeps increasing. However, the regret curve is concave and
its rate of increase, decreases with time (i.e., error decreases).
In addition, exploiting the structural properties using the UBA
algorithm greatly reduces the regret that is equivalent to a
higher amount of received energy. This implies a higher beam
alignment accuracy that is proportional with the received
energy. In addition, both methods achieve a lower regret under
the the directional scenario, as expected.

C. Scaling with the Size of System

Due to recent advances in antenna technologies, large di-
rectional antenna arrays with much smaller form factors can
be deployed in relatively small chip areas. As a result, spatial
resolution and number of the beams can be very large at the
transmitter and receiver. Within this context, we investigate the
effect of number of beam pairs on the performance of UBA.
Figure 7 demonstrates the regret metric for K = 8 and K = 16
beam pairs. From the results, we observe that the performance
of UBA scheme does not degrade with the number of beams
that is a function of the number of antennas at the transmitter
and receiver. This is a crucial property in massive antenna
systems. Similar to Fig. 6, UBA scheme achieves a better
performance compared with the exhaustive beam sampling
method for both K = 8 and K = 16 beam pairs.

D. Beam Alignment Accuracy and Delay Overhead

Next, we investigate the accuracy and delay overhead of
the proposed UBA algorithm combined with the peak-to-
average ratio termination condition. We set the number of
beams to be equal to 8 beams at the receiver, and the
goal is to find the best beam (e.g., misalignment angle of
zero). Using the exhaustive search method, 8 time slots is
needed to examine all beams and pick the one with the
highest received energy. This method is deterministic in a
sense that the output is correct with the guaranteed delay
overhead of 8 slots. On the other hand, our method finds
the optimal beam direction with a high probability while its
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Fig. 6. Regret of UBA and exhaustive beam search with 8 beams.
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Fig. 7. Regret of UBA and the exhaustive beam search with 8 and 16 beams.

delay overhead is smaller than the exhaustive method. We set
Ψ = 4 [1], and consider a scenario in which beam alignment
success probability for the optimal beam is relatively small,
i.e, θ = (0.8, 0.5, 0.35, 0.3, 0.25, 0.2, 0.15, 0.1). In this case,
Fig. 8(a) reports the CDF of the optimal beam detection.
From the results, we observe that in more than 85% of
iterations, we correctly predict the optimal beam direction.
The important point, however, is that our method significantly
reduces the delay overhead. Figure 8(b) depicts the scatter
plot for detecting each beam as the optimal vs. the amount
of time it takes. Size of each scatter point represents density
of data. From the results, we observe that most of the beam
alignment operations lead to beam 1 (i.e., high accuracy) with
delay of less than 5 time slots (i.e., low overhead). Figure 8(c)
also shows the CDF of delay overhead in detecting beam 1 as
the optimal beam. We extend the simulation to 128 receiver
beams. From the results shown in Fig. 9, we observe that
delay overhead is significantly improved at the cost of some
error in detecting the optimal beam direction. In fact, the
delay overhead of 128 time slots (to examine each direction)
is reduced to 12.5 time slots (averaged over 1000 iterations).

VII. CONCLUSION

In this paper, we investigated the beam alignment problem
in mmWave systems where the transmit and receive antenna
arrays require to frequently find the optimal beam pair that
maximizes the received energy from beacon messages. In
order to reduce the overhead of exhaustive search methods,
we investigated an online stochastic optimization problem and
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Fig. 8. Accuracy and delay overhead of the proposed UBA algorithm with the detection threshold Ψ = 4 and 8 beams.
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Fig. 9. Accuracy and delay overhead of the proposed UBA algorithm with the detection threshold Ψ = 4 and 128 beams.

proposed an equivalent structured Multi-Armed bandit model.
In this case, the problem of finding the best beam pair is
reduced to finding the optimal arm at each time slot such
that the overall regret is minimized. We exploit the contextual
information in order to reduce the search space, and thus
the overhead of exhaustive beam selection. Thanks to the
structural properties, we demonstrated that the regret bound
does not depend on the size of decision space that is equal to
the the number of transmit and receive beams multiplied. This
is a crucial property in MIMO settings in which the number of
all combinations of transmit and receive beams grows quickly.
We further proposed an asymptotically optimal algorithm for
the beam alignment problem and demonstrated its performance
via simulations.
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APPENDIX A
PROOF OF THEOREM 2

Proof. Similar to [21, 22], we split the T rounds in two sets:
those rounds in which the best arm k∗ is the leader , i.e.,
L(t) = k∗, and those in which the leader is another arm, i.e.,
L(t) 6= k∗. Therefore:

R(T ) =
∑
k 6=k∗

(µk∗ − µk)E
[ T∑

t=1

1{k(t) = k}
]

=
∑
k 6=k∗

(µk∗ − µk)E
[ T∑

t=1

1{L(t) = k∗ and k(t) = k}
]

+
∑
k 6=k∗

(µk∗ − µk)E
[ T∑

t=1

1{L(t) 6= k∗ and k(t) = k}
]
.

If we consider the first term, the proposed algorithm behaves
like the UCB algorithm restricted to the optimal arm and its
neighborhood, and the regret upper bound is the one presented
in [23], i.e., for every ε > 0:

R1(T ) ≤ (1 + ε)
∑

k∈N(k∗)

µk∗ − µk

I(θk, θk∗)

[
log(T ) + log(log(T ))

]
+ C,

where C is a constant. For the second part, we have:

R2(T ) =
∑
k 6=k∗

(µk∗−µk)E

[
T∑

t=1

1
{
L(t) 6= k∗ and k(t) = k

}]
,

or R2(T ) ≤
∑
k 6=k∗ E[lk(T )]. Next, we provide an upper

bound on the number of times that arm k has been the leader,
i.e., lk(T ), with l̂k(T ) that is the number of rounds spent with
arm k as leader in the case only its neighborhood is considered
during the whole time horizon T . Therefore, we have:
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R2(T ) ≤
∑
k 6=k∗

E[lk(T )] ≤
∑
k 6=k∗

E[l̂k(T )] =
∑
k 6=k∗

T∑
t=1

E[1{L(t) = k}]

=
∑
k 6=k∗

T∑
t=1

E
[
1{µ̂k(t) = max

j∈N(k)
µ̂j(t)}

]
, (10)

where, with an abuse of notations, L(t) denotes the
leader at round t in this modified problem where only
N(k) is considered. Since arm k is the leader, its em-
pirical mean is the maximum in its neighborhood, i.e.,
µ̂k(t) ≥ µ̂k′(t) in which k′ = arg maxi∈N(k) µi. Thus,
we have: R2(T ) ≤

∑
k 6=k∗

∑T
t=1E[1{µ̂k(t) ≥ µ̂k′(t)}] =∑

k 6=k∗
∑T
t=1P

(
µ̂k(t) ≥ µ̂k′(t)

)
. Defining ∆k =

maxk′∈N(k) µ̂k′−µk as the expected loss incurred in choosing
arm k instead of its best adjacent one k′, we have:

R2(T ) ≤
∑
k 6=k∗

T∑
t=1

P
(
µ̂k(t)−µk−

∆k

2
−µ̂k′(t)+µk′−

∆k

2
≥ 0
)

≤
∑
k 6=k∗

[ T∑
t=1

P
(
µ̂k(t)− µk −

∆k

2
≥ 0
)

︸ ︷︷ ︸
Rk2,1(T )

+

T∑
t=1

P
(
µ̂k′(t)− µk′ +

∆k

2

)
≤ 0︸ ︷︷ ︸

Rk2,2(T )

]

For the first term, we have:

Rk
2,1(T ) =

T∑
t=1

P(µ̂k(t) ≥ µk +
∆k

2
)

=

T∑
t=1

t∑
h=1

P(sk(t) = h|µ̂k(t) ≥ µk +
∆k

2
)P(µ̂k(t) ≥ µk +

∆k

2
)

≤
T∑

t=1

t∑
h=1

P(sk(t) = h|µ̂k(t) ≥ µk +
∆k

2
)e−

h∆2
k

2 , (11)

where the last inequality is due to the Chernoff-Hoeffding
inequality expressed as follows:

Lemma 1. (Chernoff-Hoeffding inequality) Let X1, ..., Xn be
random variables with common range [0, 1] and such that
E[Xt|X1, ..., Xt−1] = µ. Let Sn = X1 + ... + Xn. Then for
all a ≥ 0, we have: P(Sn ≥ nµ+ a) ≤ e−2a2/n.

Therefore, we have:

Rk
2,1(T ) ≤

T∑
t=1

( x0∑
h=1

P(sk(t) = h|µ̂k(t) ≥ µk +
∆k

2
)e−

h∆2
k

2

+
2

∆2
k

e
−x0∆2

k
2

)
,

since
∑∞
t=x+1 e

−kt ≤ 1
ke
−kx. Then, we have: Rk2,1(T ) ≤∑T

t=1

(
x0P(sk(t) ≤ x0)e−

h∆2
k

2 + 2
∆2
k
e
−x0∆2

k
2

)
, where we

dropped the conditioning. Since the expected number of times
that the non-optimal arm has been played is bounded and
its variance is bounded as well, using Bernstein’s inequality
(provided below), we have: P

(
sk(t) ≤ x0

)
≤ e−x0/5, and

since x0 is lower bounded, we conclude that R2,k(T ) is
bounded by a constant, i.e., Rk2,1(T ) ≤ C ′.

Lemma 2. (Bernstein inequality) Let X1, ..., Xn

be random variables with range in [0, 1] and∑n
t=1 Var[Xt|Xt−1, ..., X1] = σ2. Let Sn = X1+X2+..+Xn.

Then for all a ≤ 0, we have: P
(
Sn −E[Sn] ≥ a

)
≤ e

−a2/2

σ2+a/2 .

For the Rk2,2(T ) term, we have:

Rk
2,2(T ) =

T∑
t=1

P(µ̂k′(t) ≤ µk′ −
∆k

2
)

=

T∑
t=1

t∑
h=1

P(sk′(t) = h and µ̂k′(t) ≤ µ′k −
∆k

2
)

=

T∑
t=1

tb∑
h=1

P(sk′(t) = h and µ̂k′(t) ≤ µ′k −
∆k

2
)

+

T∑
t=1

t∑
h=tb+1

P(sk′(t) = h|µ̂k′(t) ≤ µ′k−
∆k

2
)P(µ̂k′(t) ≤ µ′k−

∆k

2
)

≤
∞∑
t=1

E[1{sk′(t) ≤ tb}] +

T∑
t=1

t∑
h=tb+1

P(µ̂k′(t) ≤ µ′k −
∆k

2
)

≤ C +

T∑
t=1

t∑
h=tb+1

e−
t∆2
k

2 .

It is straightforward to show that Rk2,2(T ) is bounded by a
constant as well. By considering the three partial results on
R1, Rk2,1, and Rk2,2, we have:

R(T ) ≤ R1(T ) +
∑
k 6=k∗

Rk2,1(T ) +Rk2,2(T ),

and the theorem statement follows.
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