
Linear Block Coding for Efficient Beam Discovery
in Millimeter Wave Communication Networks

Yahia Shabara, C. Emre Koksal and Eylem Ekici
Department of Electrical and Computer Engineering
The Ohio State University, Columbus, Ohio 43210

Email: {shabara.1, koksal.2, ekici.2}@osu.edu

Abstract—The surge in mobile broadband data demands is
expected to surpass the available spectrum capacity below 6 GHz.
This expectation has prompted the exploration of millimeter wave
(mm-wave) frequency bands as a candidate technology for next
generation wireless networks. However, numerous challenges to
deploying mm-wave communication systems, including channel
estimation, need to be met before practical deployments are
possible. This work addresses the mm-wave channel estimation
problem and treats it as a beam discovery problem in which
locating beams with strong path reflectors is analogous to locating
errors in linear block codes. We show that a significantly small
number of measurements (compared to the original dimensions of
the channel matrix) is sufficient to reliably estimate the channel.
We also show that this can be achieved using a simple and energy-
efficient transceiver architecture.

I. INTRODUCTION

We investigate the problem of channel estimation in mil-
limeter wave (mm-wave) wireless communication networks.
Mm-wave refers to the wavelength of electromagnetic signals
at 30-300 GHz frequency bands. At these high frequencies,
channel measurement campaigns revealed that wireless com-
munication channels exhibit very limited number of scattering
clusters in the angular domain [1]–[3]. A cluster refers to
a propagation path or continuum of paths that span a small
interval of transmit Angles of Departure (AoD) and receive
Angles of Arrival (AoA). Moreover, signal attenuation is very
significant at mm-wave frequencies. This motivates the use of
large antenna arrays at the transmitter (TX) and receiver (RX)
to provide high antenna gains that compensate for high path
losses [4]. Nevertheless, due to the high power consumption of
mixed signal components, e.g., Analog to Digital Converters
(ADCs) [5], conventional digital transceiver architectures that
employ a complete RF chain per antenna is not practical.
Hence, alternate architectures have been proposed for mm-
wave radios with the objective of maintaining a close perfor-
mance to channel capacity. Among the proposed solutions are
the use of i) hybrid analog/digital beamforming [6]–[8] and ii)
fully digital beamforming with low resolution ADCs [9]–[11].

For all proposed solutions, channel estimation remains one
of the most critical determinants of performance in communi-
cation. Due to the large number of antennas at TX and RX,
estimation of the full channel gain matrix may require a large
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number of measurements, proportional to the product of the
number of transmit and receive antennas. This imposes a great
burden on the estimation process. To address this issue, various
methods have been used, the most prevalent among them, is
compressed sensing [6], [11]–[14], which leverages channel
sparsity. Performance of compressed sensing based approaches
is heavily dependent on the design of system (sensing) matri-
ces. For instance, while random sensing matrices are known to
perform well, in practice, sensing matrices involve the design
of transmit and receive beamforming vectors and the choice of
dictionary matrices1. Hence, purely random matrices have not
been used in practice [15]. On the other hand, no design that
involves deterministic sensing matrices has been considered
for sparse channel estimation.

Despite the efforts, we do not have a full understanding
of the dependence of channel estimation performance on the
channel parameters and number of measurements. In an effort
to understand this relationship, the study in [16] proposed
a multi-user mm-wave downlink framework based on com-
pressed sensing in which the authors evaluate the achievable
rate performance against the number of measurements.

In this work, we follow a different approach. We propose
a systematic method in which we use sequences of error
correction codes chosen in a way to control the channel estima-
tion performance. To demonstrate our approach, consider the
following simple example. Let a point to point communication
channel be such that, there exists 3 possible receive AoA
directions, only one of which may have a strong path to TX.
We need to obtain the correct AoA at RX, if it exists. Instead
of exhaustively searching all 3 possible AoA directions, we
alternatively measure signals from combined directions. For
instance, by combining directions 1&2 in one measurement
and 2&3 in the next measurement, we can find the AoA in just
two measurements. Specifically, four different scenarios might
occur, namely, i) only the 1st, or ii) only the 2nd measurement
contains a strong path, iii) both 1st and 2nd measurements
contain a strong path, and finally, iv) neither measurement
reveals a strong path. Interpretation of those cases is: AoA is
in i) direction 1, ii) direction 3, iii) direction 2, and iv) none
exists. Therefore, only 2 measurements are sufficient for beam
detection instead of 3 that are needed for exhaustive search.

We will generalize this idea to develop a systematic method

1A dictionary matrix is used to express the channel in a sparse form.

ar
X

iv
:1

71
2.

07
16

1v
1 

 [
cs

.I
T

] 
 1

9 
D

ec
 2

01
7



for beam detection, inspired by linear block coding. Specifi-
cally, we show that linear block error correcting codes (LBC)
possess favorable properties that fit in with the desirable
behavior of sparse channel estimation. As a result, we are
able to i) provide rigorous criteria for solving the channel
estimation problem, ii) significantly decrease the number
of required measurements, and iii) utilize a fairly simple
and energy-efficient transceiver architecture. We design the
system using LBCs that leverage the fact that transmission
errors are typically sparse in transmitted data streams, and
hence, only a few number of erroneous bits need to be cor-
rected per transmitted codeword. Similarly, mm-wave channels
are also sparse, i.e., only a small number of AoAs/AoDs carry
strong signals. LBCs can correct sparse transmission errors by
identifying their location in a transmitted sequence (followed
by flipping them). We are inspired by LBC’s ability to locate
erroneous bits and exploit it to identify the AoAs/AoDs that
carry strong signals (and their path gains) among all possible
AoA/AoD values. To this end, we exploit hard decision
decoding of LBCs, in which the receiver obtains an error
syndrome that maps to one of the correctable error patterns. An
obtained error pattern determines the positions where errors
have occurred. Likewise, for channel estimation, the receiver
will be designed to do a sequence of measurements that would
result in a channel syndrome. The resultant channel syndrome
shall identify the positions (and values) of non-zero angular
channel components.

Contributions of this work can be summarized as follows:
• We set an analogy between beam discovery and channel

coding to utilize low-complexity decoding techniques for
efficient beam discovery.

• We provide rigorous criteria for setting the number of
channel measurements based on the size of the channel
and its sparsity level.

• We show that the number of measurements required for
beam discovery is linked to the rate of a used linear block
code. Hence, maximizing the rate of the underlying code
is equivalent to minimizing the number of measurements.

• We develop a simple receiver architecture that enables us
to measure signals arriving from multiple directions.

Related Work: The main objective of mm-wave channel
estimation is to find a mechanism that can reliably estimate the
channel using as few measurements as possible. For instance,
in [6], a compressed sensing based algorithm to estimate
single-path channels is proposed and an upper bound on
its estimation error is derived. Further, the authors propose
a multipath channel estimation algorithm based on that of
single-path channels. The proposed algorithms in [6] use an
adaptive approach with a hierarchical codebook2 of increasing
resolution. Similarly, the work in [13] proposes an adaptive
compressive sensing channel estimation algorithm that ac-
counts for off-the-grid AoAs and AoDs by using continuous
basis pursuit [17] dictionaries. Such adaptive algorithms divide
the estimation process into stages and demand frequent feed

2A codebook refers to the set of all possible beamforming vectors.

back to the TX after each stage. Hence, while the number of
required measurements are shown to decrease, these methods
may add a considerable overhead.

Other works like [18], [19] and [20] have proposed channel
estimation algorithms using overlapped beam patterns. For
instance, the algorithm in [20] can estimate multipath channel
components by sequentially estimating each path gain using an
algorithm designed to estimate single-path channels followed
by recursively removing the estimated paths’ effect from
subsequent measurements. Similar to [6], [13] adaptive beams
with increasing resolution that require feedback to TX are used
to refine the AoA/AoD estimates.

On the other hand, in [18], [19] beam alignment algorithms
are proposed assuming a multipath mm-wave channel. The
presented algorithms, with a high probability, can find the
best beam in a logarithmic number of measurements (with
respect to the total number of available AoA directions).
Nonetheless, despite the possible existence of multiple paths,
those algorithms are designed to find one path to TX.

Most research efforts in the field of mm-wave channel
estimation use the magnitude and phase information of the
acquired channel measurements. Nevertheless, if a carrier fre-
quency offset (CFO) error occurs in the transceiver hardware,
the phase information might be unreliable. Hence, the work in
[18], [19], [21] tackle this problem by ignoring the obtained
phase information. Similar to [18], [19], the solution in [21]
can only obtain one (dominant) path between TX and RX,
but it uses a compressed sensing based technique. The CFO
problem is tackled in [22] by considering it as a variable to
be estimated. Specifically, a third-order tensor is formulated
in which two dimensions account for AoA/AoD and the third
one is for CFO. The formulated tensor is shown to be sparse
and is estimated using compressed sensing techniques.

While the power consumption problem is commonly alle-
viated using analog or hybrid beamforming transceivers, the
work in [9]–[11], [23] consider using low resolution (single-
bit) ADCs in a fully digital architecture. The work in [14], [24]
study the channel estimation problem using such architectures.

Notations: A vector and a matrix are denoted by x and X ,
respectively, while x denotes a scalar or a complex number
depending on the context. The transpose, conjugate transpose
and frobenius norm of X are given by XT , XH and ‖X‖F ,
respectively. The sets of real and complex numbers are R and
C. The k×k identity matrix is Ik. A set is denoted by X , while
|X | is its cardinality. Finally, 1() is the indicator function.

II. MOTIVATING EXAMPLE

To elaborate, we present the following example: consider a
point to point communication link between a TX with single
antenna (nt = 1) and RX with nr = 15 antennas. Therefore,
the vector of channel gains3, q, is a 15×1 vector, and its
corresponding angular (virtual) channel, qa, is a vector of the
same size and can be derived using the DFT matrix Ur as
qa = UH

r q [25] (this is merely a linear transformation that

3Let all the channels have one single significant tap.
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Fig. 1: Beam patterns of all possible angular directions

maps the sequence of channel gains into a sequence of gains
from different AoAs. This mapping will be presented in more
detail in Section III). Assume a single-path channel, i.e., the
channel has only one cluster with a single path in it. Let the
path gain be denoted by α. For simplicity assume α = 1.
Further, let us assume perfect sparsity such that the AoA is
along one of the directions defined in the DFT matrix Ur,
i.e., the channel path will only contribute to one angular bin.
Finally, let us also neglect the channel noise.

Based on the channel description above, we get an angular
channel vector of the form

qa =
(
qa0 qa1 . . . qa14

)T
, (1)

such that qai ∈ {0, 1} and the number of non-zero elements in
qa is 1. Any component of qa can be measured using one of
the beam patterns shown in Fig. 1.

Objective: Suppose the transmitter sends pilot symbols of
the form x=1. Thus, the received vector y of size 15×1 can
be obtained as

y = qx = q ⇐⇒ ya = qa (2)

where ya is the received vector in the angular domain. So, with
change of basis, we can think of qa as a received sequence
with just one non-zero component. To identify the position of
this non-zero component, the receiver performs a sequence of
channel measurements. Let ysi denote the ith measurement
such that

ysi = wH
i y = wH

i q, (3)

where wi denotes the ith receive (rx-)combining vector.
Our aim is to design channel measurements (i.e., wi’s) such

that the correct AoA is identified using the minimum number
of measurements.

Proposed Solution: We consider this non-zero component
to be an anomaly to a normally all-zero 15-bin angular chan-
nel. Hence, the goal of identifying its position is analogous to
finding the most likely 1-bit error pattern of a 15-bit codeword
in a linear block code. Now, we need to identify an error
correction code with codewords of length 15 and with 1-bit
error correction capability [26]. Hence, we can use the binary

TABLE I: Mapping of channel syndromes to angular channels

Channel Syndrome yT
s Angular Channel qaT

[0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[1 0 0 0] [1 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 1 0 0] [0 1 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 1 0] [0 0 1 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 1] [0 0 0 1 0 0 0 0 0 0 0 0 0 0 0]
[1 1 0 0] [0 0 0 0 1 0 0 0 0 0 0 0 0 0 0]
[0 1 1 0] [0 0 0 0 0 1 0 0 0 0 0 0 0 0 0]
[0 0 1 1] [0 0 0 0 0 0 1 0 0 0 0 0 0 0 0]
[1 1 0 1] [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]
[1 0 1 0] [0 0 0 0 0 0 0 0 1 0 0 0 0 0 0]
[0 1 0 1] [0 0 0 0 0 0 0 0 0 1 0 0 0 0 0]
[1 1 1 0] [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]
[0 1 1 1] [0 0 0 0 0 0 0 0 0 0 0 1 0 0 0]
[1 1 1 1] [0 0 0 0 0 0 0 0 0 0 0 0 1 0 0]
[1 0 1 1] [0 0 0 0 0 0 0 0 0 0 0 0 0 1 0]
[1 0 0 1] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 1]

(15, 11, 3) Hamming code with parity check matrix H of size
4×15 and given by

H=


1 0 0 0 1 0 0 1 1 0 1 0 1 1 1
0 1 0 0 1 1 0 1 0 1 1 1 1 0 0
0 0 1 0 0 1 1 0 1 0 1 1 1 1 0
0 0 0 1 0 0 1 1 0 1 0 1 1 1 1


(4)

where hi,j represents the component at the intersection of
row i and column j of H . Using hard decision decoding of
LBCs, error syndrome vectors of length 4 are obtained. Every
possible syndrome vector maps to only one correctable error
pattern4. Similarly, for channel estimation, several measure-
ments should be performed at RX where each measurement
mimics the behavior of a corresponding element in the error
syndrome vector. Each measurement boils down to adding
signals from a subset of the available 15 directions. Since each
measurement can either include the direction of the incoming
strong path of gain α = 1 or no strong paths at all, then the
elements of the channel syndrome vector are in {0, 1}.

For every measurement ysi , we design wi based on the
entries of the ith row of H such that: if hi,j = 1, then we
include the beam pattern that points to direction j in wi. For
example, the 0th row of H is given by [100010011010111].
Hence, w0 should include beam patterns pointing to the set
of directions {0, 4, 7, 8, 10, 12, 13, 14}.

Fig. 2 illustrates this operation for w0. We can see that the
resultant beam pattern of wi combines signals coming from
a set of selected directions dictated by the ith row of H .
We call the obtained measurement vector, ys, the channel
syndrome which is analogous to error syndromes in hard
decision decoding of LBCs. Then, a table that maps every
possible channel syndrome to a unique corresponding channel
can be constructed. Table I shows this mapping.

In this example, we are able to estimate the channel based
on only 4 measurements as opposed to 15, which is the number
of measurements with exhaustive search. Important aspects

4A correctable error pattern of a (15, 11, 3) Hamming code is any 15×1
binary vector that contains only one ’1’ (at the error’s position).



Fig. 2: Beam pattern of receive combining vector w0

of our proposed method include the choice of codes, the
design of precoding and rx-combining measurement vectors,
the effect of variable gains and phases of different paths and
the occurrence of measurement errors.
Remark (Receiver Architecture). Note that, to achieve beam
patterns similar to the one shown in Fig. 2, the receiver
architecture needs to be a bit different from those of clas-
sical analog/hybrid beamforming architectures. Specifically,
in addition to low-noise amplifiers (LNA) typically placed at
the output of each antenna, we will need to add controllable
low-power amplifiers, as well. The resultant architecture is
still quite simple (see Fig. 3). That is, besides the low-power
amplifiers, the proposed architecture is similar to those of
simple analog beamforming. Moreover, low-resolution ADCs
can be used which mitigates the high power consumption
problem associated with high-resolution ADCs.

Motivation for LBC-inspired approach: LBCs are de-
signed to discover and correct a certain maximum number
of errors in a codeword of a specified length. This objective is
achieved by adding redundant parity check bits to the original
information sequence. What makes our devised approach at-
tractive is that the number of measurements needed for channel
estimation can be shown to be equal to the number of parity
bits of some corresponding code. Hence, we can control the
estimation performance via appropriate code selection. In this
work, we will propose a method to specify the number of
necessary channel measurements as a function of the rate of
the underlying code.

III. SYSTEM MODEL

Consider a point-to-point millimeter-wave wireless commu-
nication system with a transmitter (TX) equipped with nt
antennas and a receiver (RX) with nr antennas placed at fixed
locations. Uniform Linear Arrays (ULA) are assumed at both
TX and RX where each antenna element is connected to a
phase shifter and a variable gain amplifier. A single RF chain
at the receiver, with in-phase (I) and quadrature (Q) channels,
is fed through a linear combiner (see Fig. 3). Only two mid-
tread ADCs, with 2b+1 quantization levels, are utilized, i.e.,
quantization levels are {−2b−1, . . . ,−1, 0, 1, . . . , 2b−1}.

We adopt a single-tap channel model where Q ∈ Cnr×nt
denotes the channel matrix between TX and RX. Assume that
the channel has L clusters, where each cluster contains a single

Fig. 3: Hardware Block Diagram: Every antenna is connected
to a phase shifter and low-power variable gain amplifier. Then,
all outputs are combined using an adder and passed to an RF
chain with in-phase and quadrature channels.

path with attenuation αl, AoD θl, and AoA φl. The channel
is assumed to be sparse such that L � nt, nr. Let αbl ∈ C
denote the baseband channel gain and is defined as

αbl=αl
√
ntnr e

−j 2πρl
λc (5)

where ρl is the length of path l and λc is the carrier frequency.
The angular cosines of AoD and AoA associated with path l
are denoted by Ωtl and Ωrl, respectively. The transmit and
receive spatial signatures along the direction Ω is given by
et(Ω) and er(Ω) such that

et(Ω)=
1
√
nt


1

e−j2π∆tΩ

e−j2π2∆tΩ

...
e−j2π(nt−1)∆tΩ

 , (6)

where er(Ω) has a similar definition to et(Ω), and ∆t and
∆r are the antenna separations at TX and RX normalized by
the wavelength λc. Thus, Q can be written as

Q =

L∑
l=1

αbl er(Ωrl) e
H
t (Ωtl). (7)

We define Ut and Ur as the unitary Discrete Fourier Trans-
form (DFT) matrices whose columns constitute an orthonor-
mal basis for the transmit and receive signal spaces Cnt and
Cnr , respectively. Ut (and similarly Ur) is given by

Ut =
(
et(0) et(

1
Lt

) . . . et(
nt−1
Lt

)
)
, (8)



where Lt and Lr are the normalized lengths of the transmit and
receive antenna arrays such that Lt = nt∆t and Lr = nr∆r.
Let Qa be the channel matrix in the angular domain [25],
where

Qa = UH
r QUt. (9)

The rows and columns of Qa divide the channel into re-
solvable RX and TX bins, respectively. Further, we assume
a perfect sparsity model in which AoDs θl, and AoA φl, are
along the directions defined in Ut and Ur [6], [14], [20].
Hence, each channel cluster will only contribute to a single
pair of TX and RX bins. Therefore, Qa has a maximum of L
non-zero TX and RX bins.

The baseband channel model is given by

y = Qx + n, (10)

where x ∈ Cnt is the transmitted signal, y ∈ Cnr is the
received signal and n ∼ CN (0, N0Inr ) is an i.i.d. complex
Gaussian noise vector.

Let f ∈ Cnt and w ∈ Cnr be the precoding and rx-
combining vectors, respectively. The transmit signal x is given
by x = fs where s is the transmitted symbol with average
power E(ssH)=P . After the receiver applies the rx-combining
vector w, the resultant symbol ys can be written as

ys = wHQfs+ wHn (11)

where ys constitutes a single unit measurement obtained using
specific f and w vectors. We assume that Q remains fixed
throughput the entire estimation process. The noise component
wHn normalized by ‖w‖ is also a complex gaussian random
variable such that wH

‖w‖n ∼ CN (0, N0). We define the signal
to noise ratio (SNR) on a per path basis such that SNR of path
l is given by

SNRl =
P

N0
|αbl |2. (12)

Note that the actual received SNR depends on all path gains
included in a measurement. Finally, we define a detectable
path as a path l for which |αbl | is such that the received signal
power on that path is above a minimum detectable signal
power (MDS).

IV. PROBLEM STATEMENT

Suppose a maximum number of L clusters need to be
discovered in the channel where L � nt, nr. Under the
prefect sparsity assumption, Qa has a maximum of L non-
zero RX and TX angular bins. Our objective is to identify
the angular positions at which channel clusters exist and
identify their path gain values using the least possible number
of measurements. Let the number of measurements be m
such that each measurement, ysi,j , is obtained using the
precoder fj and rx-combiner wi. Measurements take the
form ysi,j = wi

HQfjs + wi
Hn. Let ξ() be a mapping

function that takes in the measurements {ysi,j}∀i,j as in-
puts and returns the estimated channel Q̂

a
. We stack the

measurements {ysi,j}∀j in a single syndrome vector such
that ysj = [ys0,j ys1,j . . . ysm1−1,j ]

T . Our design variables

are the precoding vectors fj , rx-combining vectors wi, the
number of measurements m, the mapping function ξ(), and
the transmitted symbol power P .

In its essence, solving this problem boils down to finding
the optimal set of measurements {ysi,j}∀i,j and the mapping
function ξ() such that Qa can be estimated using the mini-
mum number of measurements. For ease of explanation, we
first consider a channel with a single transmit antenna and
nr receive antennas. Therefore, no precoding is needed and
the design of measurements is reduced to designing the rx-
combining vectors wi. Recall that in the motivating example
in Section II, we dealt with a special case of nr×1 channels
where we sought to find the direction of arrival of a channel
with a single path of known gain, α = 1. In the general case,
we should consider arbitrary path gains α ∈ C and channels
with multiple paths.

V. BEAM DISCOVERY

In this section, we present our proposed solution. As an
initial step, we solve a simplified version of the problem
where communication channels have a single transmit antenna
and multiple receive antennas. Afterwards, we will build on
it to provide the solution for general channels with multiple
transmit and receive antennas.

A. Beam Detection using LBC-inspired approach

To identify the exact number of measurements and their
corresponding design, we follow a decoding-like approach of
LBC5. First, we need to find an LBC, C, that has an error
correction capability en such that i) the maximum number of
clusters in the channel, L, is equal to en and ii) the length of
its codewords n is equal to the number of antennas nr (nr
is also the number of resolvable directions). The code C has
a parity check matrix H which represents the link between
channel decoding and beam detection problems. Binary codes
deal with data and error sequences defined over the finite field
GF (2), i.e., addition and multiplication operations are defined
over GF (2) with binary inputs and outputs, i.e., 1’s and 0’s.
However, mm-wave channel parameters are defined over the
complex numbers field C. Therefore, to account for arbitrary
path gains, we should be able to extend this concept to C.

Although H is defined over GF (2), we interpret its ′1′
and ′0′ entries as real numbers. Then, similar to channel
decoding, we seek to obtain a channel syndrome, ys, such
that (ys)

T
=(qa)

T
HT =⇒ ys=Hqa. This matrix multipli-

cation can be realized using channel measurements such that
each measurement gives one component in ys. Measurements

5In channel coding, the convention is to use row vectors. Thus, let x and c
be 1×k and 1×n binary row vectors that represent an information sequence
and its corresponding codeword of an LBC, respectively. Also let r=c+e
be a received sequence corrupted by 1×n error pattern e. To decode r, we
calculate an error syndrome vector s, of size 1×n−k, such that s=rHT ,
where H is the parity check matrix of the used LBC. Then, a most likely
error pattern ê can be uniquely identified by s using a look-up table called
the standard array. Finally, the decoded codeword is obtained using ĉ=r−ê.
A decoding error occurs if the number of errors, identified using 1’s in e, is
beyond the error correction capability of the used code, denoted by en. Note
that in this context, all vectors, matrices and math operations are over GF(2).



{ysi}∀i make up the components of the channel syndrome
vector ys. Then, we need to find a mapping function ξ() that
takes in the channel syndrome vector {ys} as an input and
returns the estimated channel q̂a. The position of each non-
zero component in q̂a identifies a path’s AoA, and its value
identifies its baseband path gain. Finally, for this to work, we
need to show that such channel measurements provide one-
to-one mapping to the channel. In other words, ys must be a
sufficient statistic for estimating the channel. In Section V-C,
we will show that our design results in the sufficient statistic
we seek to achieve.
Remark (Number of Measurements). The solution we obtain
is dependent on channel parameters, namely, the number of
antennas and the sparsity level of the channel. That is, at a
fixed sparsity level, i.e., fixed number of clusters L, a larger
number of antennas necessitates more channel measurements.
In other other words, the high resolution realized by large nr
comes at a price of an increased number of measurements.
Similarly, at fixed nr, more channel clusters involve more
measurements for correct channel estimation.

B. Measurements Design

Recall that each component in qa represents a resolvable
angular direction at the receiver. Let each resolvable direction
be given an identification number (dirrx#i). Also let beamrx#i
denote the beam pattern pointing to dirrx#i, i.e., a signal com-
ing from dirrx#i can be individually measured using beamrx#i
(similar to beam patterns in Fig. 1).

Now, we seek to obtain ys=Hqa using careful design of
wi’s (note that we drop the noise terms for clarity), i.e.,

ys =


ys0
ys1

...
ysm−1

 =


wH

0 q
wH

1 q
...

wH
m−1q

 ≡Hqa. (13)

To achieve this, each rx-combining vector wi is designed as a
multi-armed beam, i.e., composed of several sub-beams similar
to the beam pattern in Fig. 2. The sub-beams included in each
wi are identified by the ith row of the matrix H . That is,
only if hi,j , the intersection of the ith row and jth column, is
= 1, do we include beamrx#j as a sub-beam in wi. (also refer
to our discussion in Section II).

The design of rx-combining vectors is a crucial as-
pect of this work. As an initial step towards obtain-
ing proper rx-combining vectors, we consider designing
wi’s using linear summation of all analog beamform-
ers that correspond to beamrx#j’s ∀j : hi,j=1. Let
Ωj= cos(φj)=

j
Lr
∀j∈{0, . . . , nr−1}, such that er(Ωj) is the

spatial signature of beamrx#j. Then, wi can be designed as

wi =

nr−1∑
j=0

1(hi,j=1)er(Ωj) (14)

C. Sufficient Statistic

We will show in this section that each channel syndrome can
only be mapped to a single measurable channel. A measurable

channel in this context refers to nr×1 channels with L non-
zero components such that L ≤ en, where en is the error
correction capability of the underlying code C and nr=n is
its CWs length.

Since each measurement combines signals coming from
multiple directions, each element in the channel syndrome
vector is a linear combination of a subset of the available
paths. In other words, each measurement has the possibility
that one or more paths are included in it. This setting is
rather challenging. To understand why, consider a channel that
has two paths with gains α1, α2 ∈ C. Suppose that α1 and
α2 are of equal magnitudes but are out-of-phase (i.e., phase
shift = 180◦). Hence, if signals coming from both paths are
combined in a single measurement, the resultant value is 0
which is similar to the result we get if no paths exist in the
measured directions. Also each channel measurement can be
a result of endless possibilities for the combined path gain
values. So, a natural question to ask is: does this ambiguity
cause measurement errors? The direct answer to this question
is: No. In the sequel we will show that the resulting channel
syndrome, i.e., the combination of all channel measurements,
is sufficient to correctly estimate the channel.

First, recall our discussion in Footnote 5. Then, consider
all single-bit error patterns e(i) of a code C, with maximum
number of correctable errors =en, such that

e
(i)
k =

{
1, k = i

0, k 6= i

where e
(i)
k is the kth component of e(i). Also let s(i)

be the corresponding error syndrome of e(i). Recall that
s(i)=e(i)HT . Hence, we can see that s(i) is exactly the ith

row of HT , i.e., ith column of H . Now, write any correctable
error pattern e as a linear combination of all single-bit error
patterns over the finite field GF (2) such that

e = ω1e
(1) + ω2e

(2) + · · ·+ ωne
(n) (15)

and its corresponding error syndrome is

s = ω1s
(1) + ω2s

(2) + · · ·+ ωns
(n) (16)

where ωi ∈ {0, 1} and |ωi : ωi = 1| ≤ en.

Lemma 1 . For an error pattern et with number of bit errors
identical to en, its syndrome st is a linear combination of en
linearly independent vectors s(i).

Proof. We are going to prove this lemma by contradiction.
First, assume that st is a linear combination of en linearly
dependent vectors s(i) over GF (2). Therefore, there exists
another error syndrome s∗t composed of only linear combina-
tion of independent vectors s(i) such that st = s∗t . Therefore,
there exists another error patter e∗t with number of errors
strictly less than en such that its syndrome s∗t = st. Since
e∗t has a number of errors less than en, then it is a correctable
error pattern, and since all error syndromes of correctable error
patterns are different, then s∗t should be 6= st. Hence, we arrive
at a contradiction.



It is also easy to see that if et1 and et2 are two different
correctable error patterns, then their error syndromes st1 and
st2 are composed of a linear combination of different sets of
single-bit error syndromes s(i).

Lemma 2 . Any n−dimensional linearly independent vectors
over GF (2), are also linearly independent over Cn.

Proof. Let v1, . . . ,vm be a set of n−dimensional vectors
defined over GF (2). The vectors vi can be made the columns
of an n×m matrix Ψ. Since all vi’s are linearly independent
over GF (2), then Ψ is an invertible matrix. Therefore, there
exists a non-zero (modulo 2) m×m minor of Ψ. Now, suppose
the entries in Ψ are interpreted as real numbers. Therefore, Ψ,
now taken over R, has an m×m sub-matrix whose determinant
is non-zero, which proves that it is invertible. Therefore, the
vectors vi’s, i.e., columns of Ψ, are linearly independent over
R which, using the same argument, can also be shown to be
linearly independent over C.

Suppose that entries of H and e(i) are interpreted as real
numbers, then we can write the channel qa as

(qa)T = α1e
(1) + α2e

(2) + · · ·+ αne
(n) (17)

where αi∈C and
∑n
i=1 1(αi 6=0)≤en. Therefore, each chan-

nel syndrome (ys)
T

=(qa)
T
HT =⇒ ys=Hqa is a linear

combination of independent vectors in Cn−k (columns of
H). Therefore, all possible measurable channels yield unique
channel syndromes which implies that they are sufficient for
the channel estimation problem.

D. Mapping Function ξ()

Now that we have shown that each measurable channel can
be mapped to a unique channel syndrome, we need to find
this mapping function, i.e., ξ:ys → q̂a, where q̂a denotes the
estimated channel. Again, we resolve to a technique used in
hard decision decoding where a look-up table is constructed
that maps every error syndrome to a corresponding error
pattern. Likewise, we construct a look-up table that indicates
which channel corresponds to an obtained channel syndrome.

Since we employ ADCs with finite resolution, only a finite
number of realizable syndromes, ys, exist (and a finite number
of corresponding channels). Therefore, a look-up table method
is feasible. We construct the table by, first, generating all pos-
sible sparse angular channels. Then, we find the corresponding
channel syndromes using ys = Hqa, where qa ∈ Qa such
that Qa is the set of all measurable channels. Let the actual,
arbitrary, noise-corrupted, received channel syndrome be given
by yr

s . Therefore, yr
s might not match exactly one of the

channel syndrome vectors in the look-up table. Hence, we
instead search for the ys table entry that has the closest
distance δ to yr

s , and pick its corresponding channel as the
estimated channel q̂a. We define the distance between the two
complex m−dimensional vectors ys,y

r
s , as follows:

δ(ys,y
r
s ) =

√√√√m−1∑
i=0

|ysi − yrsi |2. (18)

By obtaining q̂a, we not only identify the AoA at the
Rx, but we also obtain the magnitude and phase information
associated with every strong path to the TX.

E. Multiple Transmit and Receive Antennas

So far, we have considered channels with single transmit
antennas and shown how to perform beam discovery at RX. To
extend our approach to a general setting, we consider channels
with nt antennas at TX, and nr antennas at RX. Thus, instead
of the TX just sending signals omnidirectionally, now it can
perform highly directional transmission. Recall that the RX
is able to perform channel measurements using multi-armed
beams. Similarly, the TX can send signals using multi-armed
beams to simultaneously focus on multiple directions using
precoding vectors fj .

The design of precoding vectors can also be obtained using
an LBC approach. Similar to the method of designing rx-
combining vectors wi, we look for an LBC, C2, that has
CWs of length n2=nt and can correct for en=L errors. Let
the parity check matrix of C2 be H2, using which, we will
design the precoding vectors fj . Let beamtx#i denote the ith

TX beam which points to TX direction dirtx #i. Then, just
as before, we envisage H2 as an array whose columns are
associated with resolvable TX directions such that: i) its jth

column corresponds to dirtx#j, and ii) its ith row corresponds
to the ith measurement. We note that no actual measurements
are performed at TX; we use the word measurement to refer
to precoding, consistent with the case of RX. That is, the ith

TX measurement is actually the ith precoder f i. Thereby, we
design the ith precoder as a multi-armed TX beam such that,
only if hi,j , the intersection of the ith row and jth columns of
H2, is = 1, do we include sub-beam beamtx#j in fi. Each TX
measurement provides a component in a TX channel syndrome
vector yTX

s . The total number of TX measurements (i.e.,
precoding vectors), denoted by m2, is equal to the number of
parity check bits of the code C2. That is, m2=n2−k2, where
k2 is the length of C2’s information sequences. To obtain
AoDs of strong paths at TX, we define the function ξ2() as the
mapping function between all possible TX channel syndromes
and their corresponding angular channels denoted by qaTX .
Note that, for every dirrx#i, there exists a corresponding
qaTX(i) which represents the ith row of Qa. Also, since
the maximum number of clusters is L, then, the number of
non-zero vectors qaTX(i) is ≤ L.

To see the whole picture, assume that a code C1, with
CWs of length n1=nr, is an LBC code associated with beam
discovery at RX side. Let the number of RX measurements,
i.e., the number of rx-combining vectors, be m1 such that
m1=n1−k1, where k1 is the length of information sequences
of C1. Also let ξ1() be the mapping function between RX
channel syndromes and its corresponding angular channel.
Under this setting, the beam discovery problem is performed
as follows: i) The TX starts starts sending its training se-
quence using the precoder fj ,∀j ∈ {0, . . . ,m2 − 1}. ii)
The RX performs m1 channel measurements while fi is
being used at TX and obtains a channel syndrome ysj .



Algorithm 1: Beam discovery of multiple TX/RX antennas.

input : {wi}∀i∈{1,...,m1} , {f j},∀j∈{1,...,m2} ,
ξ1() : ys → q̂a , ξ2() : yTX

s → q̂aTX

output: {ysi}∀i∈{1,...,m2}
1 begin
2 j = 0;
3 while j < m2 do
4 i = 0;
5 while i < m1 do
6 ysi,j = wH

i Qf js+wH
i n ; // channel

measurement
7 i← i+ 1
8 end
9 ysj ← {ysi,j}∀i∈{1,...,m1} ; // construct

channel syndrome ysj

10 /* find corresponding channel
qa(j) = [qa1

(j), qa2
(j), . . . , qanr

(j)]T */
11 qa(j) ← ξ1(ysj );
12 for p← 1 to nr do
13 /* construct TX channel

syndromes y
TX(p)
s , where

y
TX(p)
s =

[y
TX(p)
s1 , y

TX(p)
s2 , . . . , y

TX(p)
sm2

]T */

14 y
TX(p)
sj ← qap

(j)

15 end
16 j ← j + 1;
17 end
18 for p← 1 to nr do
19 qaTX(p) ← ξ2(y

TX(p)
s )

20 end
21 Q̂

a
=
(
qaTX(1) qaTX(2) . . . qaTX(nr)

)T
22 end

iii) Based on ysj , the RX obtains a corresponding channel,
qa(j) with path components {qap (j)}∀p∈{1,...,nr}. Notice that
qa(j)’s do not necessarily represent individual path gains,
but rather, combinations of paths accumulating at a single
dirrx#. Therefore, there exists a resemblance to channel syn-
dromes which we exploit. iv) We construct a set of nr
TX channel syndromes, yTX(p)

s where their jth compo-
nent yTX(p)

sj =qap
(j), i.e., [yTX(1)

s ,yTX(2)
s , . . . ,yTX(nr)

s ] =

[qa(1), qa(2), . . . , qa(m2)]T . v) Finally, we find the angular
TX channel for every dirrx #p, i.e., pth row of Qa, using the
mapping function qaTX(p)=ξ2(yTX(p)

s ). Notice that, since
no more than L � nr clusters exist, and since 0 channels
correspond to 0 channel syndromes, we only need to apply
ξ2() a maximum of L times -unless measurement error occurs.
This whole process is highlighted in Algorithm 1.

Remark. The estimated channel Q̂
a

may contain more than L
non-zero components. The reason is that the receiver obtains
a channel qa(j) for every precoder fj which may contain
erroneous component estimates. Incorrect estimates occur as
a result of measurement errors which happen due to i) channel
noise, ii) quantization error. Now every qa(j) may contain a
maximum of L non-zero components, however, some of which
may be due to measurement errors. Afterwards, potentially
noise-corrupted {qa(j)}∀j∈{1,...,nr} are used to obtain TX

channel syndromes as shown in Algorithm 1. That is, for
every dirrx#i we obtain a TX channel syndrome to identify the
corresponding dirtx#j’s that have strong components. Thus, we
may obtain a maximum of L non-zero components per dirrx#i.

VI. PERFORMANCE EVALUATION

A. Performance Metrics
Our performance metrics focus on three basic criteria;

accuracy of beam detection, number of measurements, and
accuracy of path gain value estimates. To that end, we use the
following performance parameters:
i) Number of measurements. An important performance
objective is to achieve a similar performance as the exhaustive
search, yet with a much smaller number of measurements.
ii) Perfect beam detection probability: probability that only
correct AoAs/AoDs of all available detectable paths are identi-
fied (i.e, no incorrect paths are detected along with true ones).
iii) All-beam detection probability: probability of correctly
identifying all true detectable paths (with possibility of other
incorrect paths).
iv) Partial beam detection probability: probability that at
least one correct path is detected (with possibly other incorrect
paths).
v) Number of incorrect beams: the number of incorrect paths
identified between TX and RX.
vi) Normalized mean squared error (MSE): ‖

Qa−Q̂a‖2
F

‖Qa‖2F
.

We assess these performance parameters against different SNR
levels which capture the effect of noise power on performance.

B. Simulation Parameters
Unless otherwise specified, we use the following simulation

parameters. We consider a mm-wave channel with L paths
between TX and RX6. Path gains αbl are generated such that
SNRl lies in a range between SNRmin and (SNRmin+20)
dB for paths that contain strong reflectors. The noise power
is N0=−95dBm. The signal power P is adjusted such that
for the weakest reflector, an SNRmin value is achieved. For
example, at SNR =10dB, the required transmitted power for
a 15×15 channel is P≈43dBm and for an 8×8 channel is
≈46dBm. Further, we use ADCs with 9 quantization levels,
i.e., {−4, . . . , 4}, where the maximum output is adjusted to
the maximum expected received signal power according to the
preset SNR. Note that the maximum received power depends
on the available number of paths. Also negative quantization
levels, e.g. −4, represent signals with the same power level
as 4 but with phase shift = 180◦ where the phase reference
can be set arbitrarily at RX. For every simulation scenario, we
average across 105 runs.

C. SinglePath Channels
Consider a 15×15 mm-wave channel with L=1 path

between TX and RX. Hence, the parity check matrix of

6Note that we always generate L channel paths, however, according to the
preset SNR, some path gains are too weak to be detected at RX (recall that in
Eq. 12, SNR is defined per path). Thus, only paths with enough signal power to
cross the threshold of the 1st level (±1) of the utilized ADCs are considered
as the ground truth to which we evaluate our performance parameters.
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Fig. 4: Performance Evaluation.

Fig. 5: Number of incorrect beams (15×15 channel with L=1)

(15, 11, 3) Hamming code can be used for the design of
both precoders, fj , and rx-combiners, wi, i.e., H1 and H2,
respectively. Hence, we need a number of TX measurements
m1, which is identical to the number of RX measurements
m2=15−11=4. Hence, the total number of measurements is
m=16. On the other hand, the exhaustive search method needs
255 measurements to check every possible TX and RX beam
combination. Thus, our approach results in ∼92.8% reduction
in the number of measurements needed for beam discovery.
We investigate the probability of perfect, all and partial beam
detection at different levels of SNR. Fig. 4a depicts these
probabilities. Note that since there only exists 1 path, both
all and partial beam discoveries are the same.

Further, we investigate the performance in terms of the prob-
ability of obtaining a specific number of incorrect paths/beams.
This is depicted as a histogram plot in Fig. 5. We notice that
the number of incorrect beams decreases with increasing SNR.
For instance, at SNR =− 5dB, the probability of obtaining 0
incorrect paths is ∼0.05. This probability starts to increase
until it peeks at ∼0.3 for 2 incorrect paths. Afterwards it
starts decreasing again and reaches ∼ 0.16 at 4 incorrect
paths. At higher levels of SNR, the probability of obtaining
less number of incorrect paths increases dramatically, e.g., at
SNR =20dB, there is a probability of 0.972 of obtaining no
incorrect paths where the remaining 0.028 is divided between
1, 2 and 3 incorrect paths in a decreasing fashion.

Finally, Fig. 4c depicts the normalized mean squared error
of the channel estimate Q̂

a
. The very high MSE value at

−5dB indicates very poor channel estimates which indicates
that Q̂

a
has large components at truly zero components in

Fig. 6: Number of incorrect beams (8×8 channel with L=2)

Qa. Nevertheless, MSE drops fast at higher values of SNR. We
can see that starting at SNR =10dB, the performance becomes
highly reliable.

D. MultiPath Channels

Consider an 8×8 channel with L=2 paths. Thus, an (8, 2, 5)
code is a proper choice for both H1 and H2. A total number,
36, of measurements is needed for beam discovery. As opposed
to 64 measurements needed for exhaustive search, we achieve
≈43.7% reduction in the number of measurements under
this scenario. Fig. 4b shows the probability of perfect, all,
and partial beam detection. We notice a large gap between
these probability measures at low SNR. However, this gap
becomes quickly narrower as SNR increases. For the number
of incorrect paths, we obtain similar performance trends to the
single-path channel case. However, the maximum number of
incorrect paths experienced is slightly larger. Histograms that
depicts the probabilities of the number of incorrect beams are
shown in Fig. 6. Again, we observe that the reliability of beam
discovery increases significantly with increasing SNR which is
depicted in terms of MSE in Fig. 4c.

VII. CONCLUSION

This work provides a solution for the mm-wave channel es-
timation problem by exploiting its sparse nature in the angular
domain. The proposed solution is a beam discovery technique
that is similar to error discovery in channel coding. We show
that our proposed technique can significantly reduce the num-
ber of measurements required for reliable channel estimation.
Our solution takes into account the size of the channel and its
sparsity level when determining the number of measurements.



As future work, we will investigate more efficient ways of
executing the mapping function ξ(), possible improvements
for designing precoders and rx-combiners, and mitigating the
effect of noise-corrupted channel measurements.
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