
Learning the Optimal Synchronization Rates in
Distributed SDN Control Architectures

Konstantinos Poularakis1, Qiaofeng Qin1, Liang Ma2, Sastry Kompella3, Kin K. Leung4, and Leandros Tassiulas1

1Department of Electrical Engineering and Institute for Network Science, Yale University, USA
2IBM T. J. Watson Research Center, Yorktown Heights, NY, USA

3U.S. Naval Research Laboratory, Washington, DC, USA
4Department of Electrical and Electronic Engineering, Imperial College London, UK

Abstract—Since the early development of Software-Defined
Network (SDN) technology, researchers have been concerned
with the idea of physical distribution of the control plane to ad-
dress scalability and reliability challenges of centralized designs.
However, having multiple controllers managing the network
while maintaining a “logically-centralized” network view brings
additional challenges. One such challenge is how to coordinate
the management decisions made by the controllers which is
usually achieved by disseminating synchronization messages in
a peer-to-peer manner. While there exist many architectures
and protocols to ensure synchronized network views and drive
coordination among controllers, there is no systematic method-
ology for deciding the optimal frequency (or rate) of message
dissemination. In this paper, we fill this gap by introducing
the SDN synchronization problem: how often to synchronize the
network views for each controller pair. We consider two different
objectives; first, the maximization of the number of controller
pairs that are synchronized, and second, the maximization of the
performance of applications of interest which may be affected
by the synchronization rate. Using techniques from knapsack
optimization and learning theory, we derive algorithms with
provable performance guarantees for each objective. Evaluation
results demonstrate significant benefits over baseline schemes that
synchronize all controller pairs at equal rate.

I. INTRODUCTION

A. Motivation

Software Defined Networking (SDN) is a rapidly emerging
technology that brings new flexibility to network management
and therefore facilitates the implementation of advanced traffic
engineering mechanisms [1]. The main principle of SDN is to
shift all the network control functions from the data forwarding
devices to a programmable network entity, the controller. To
ensure availability in case of controller failure, typical SDN
systems deploy multiple controllers. The controllers may be
physically distributed across the network, but they should be
“logically-centralized”. This means that the controllers should
coordinate their decisions to ensure their collective behavior
matches the behavior of a single controller.

The coordination among controllers is an active area of
research with several protocols proposed thus far [2]. For
example, OpenDaylight [3] and ONOS [4], two state-of-the-art
controller implementations, rely on RAFT and Anti-entropy

This publication was supported partly by the U.S. Army Research Labora-
tory and the U.K. Ministry of Defence under Agreement Number W911NF-
16-3-0001 and the Army Research Office under Agreement Number W911NF-
18-10-378.

SDN controller

Data plane node

Domain

A B

C

!

Failure

Routing path

Temporary

inconsistency

Fig. 1: Impact of inconsistency among controllers on routing
application performance.

protocols for disseminating coordination messages among
controllers. Typically, each controller is responsible for a part
of the network only, commonly referred to as the controller’s
domain. The messages disseminated by a controller to the
other controllers convey its view on the state of its domain
(e.g., available links and installed flows). The composition of
these messages allow the controllers to synchronize and agree
on the state of the entire network.

While different coordination protocols may generate mes-
sages of different types and at different timescales, there exist
two broad protocol categories [5]. The first category contains
the strongly consistent protocols which strive to maintain all
the controllers synchronized in all times. This is ensured by
disseminating messages each time a network change (e.g., a
node or link failure) happens followed by a consensus proce-
dure. The second category contains the eventually consistent
protocols which omit the consensus procedure, yet converge to
a common state in a timely manner usually through periodic
message dissemination.

Despite its benefits, strong consistency is difficult to ensure
in practice as it is challenged by the unreliable nature of
network communications. In addition, this approach gener-
ates significant overheads for message dissemination among
controllers which may be prohibitively large especially when
applied to wireless networks with in-band control channels
of limited capacity [6], [7], [8]. On the other hand, eventual
consistency, where controllers are permitted to temporarily
have inconsistent views of each other’s state, better suits
the needs of the above networks, and, thus, can be used

ar
X

iv
:1

90
1.

08
93

6v
1

 [
cs

.N
I]

 2
5

Ja
n

20
19

to extend the applicability of distributed controller solutions.
Yet, the inconsistent views of controller states can harm the
performance of network applications.

To illustrate the impact of inconsistency, we consider the
toy example with three controllers (A, B and C) and their
respective domains in Figure 1. Each pair of controllers
synchronize periodically, e.g., every few seconds. At some
time, controller A receives a request for routing a flow to
a destination node inside the domain of B. Controller A will
respond by computing and setting up a routing path based
on its current view on the state (topology, traffic loads) of
its domain and the other domains. However, controller A
is not aware if the links on the routing path outside of its
domain are still available or have failed (e.g., a failed link in
domain B in Figure 1) since the last synchronization period.
If failures happened, the packets of the flow will have to
wait until the next synchronization period, although there
is an alternative directly available routing path through the
domain of C. Similar problems, if not more serious, can be
identified for more advanced traffic engineering applications
where inconsistency hinders the effective load balancing and
distribution across multiple paths.

The eventually consistent model raises new technical chal-
lenges. In particular, it is important to decide how often (at
what period or rate) to synchronize each pair of controllers in
a given network. One might expect that the straightforward
policy where all controller pairs synchronize at the same
rate would work well. However, some may argue that the
synchronization rate should be higher for domains that are
more dynamic (with many changes in topology and flow
configurations) in order to preserve consistency of the rest
domains.

The issue is further complicated by the requirements of
the network applications. Previous works [9], [10] showed
that certain network applications, like load-balancers, can
work around eventual consistency and still deliver acceptable
(although degraded) performance. In such cases, some addi-
tional effort needs to be made to ensure that conflicts such
as forwarding loops, black holes and reachability violation
are avoided [11]. Therefore, synchronization policies that
completely neglect the specific applications of interest in the
network as well as the impact of synchronization rate on their
performance may end-up being highly inefficient.

The above questions remain open since, until now, the inter-
controller traffic has been often neglected in SDN literature
with most of the existing works focusing on the routing and
balancing of the data traffic (e.g., see the survey in [1] and
the discussion of related work in Section V).

B. Methodology and Contributions

Our goal in this paper is to investigate policies for the syn-
chronization among SDN controllers, and focus particularly on
the impact of the rate of synchronization on the performance
of network applications. We begin by introducing a model
of a system with multiple controllers (and domains) that is
general enough to capture different synchronization overhead
costs, as well as network topologies and domain dynamics. We
then utilize this model to derive the optimal synchronization

rate policy under a total overhead constraint. We explicitly
consider two objectives. First, we target the maximization of
the number of controller pairs that are consistent with each
other, referred to as the consistency level (Obj. 1). We show
that for this objective the synchronization problem is NP-
Hard and develop a pseudopolynomial-time optimal as well
as a Fully Polynomial Time Approximation (FPTA) algorithm
using a connection with the multiple-choice knapsack (MCK)
problem [12].

The second objective (Obj. 2) aims to maximize the per-
formance of network applications rather than the overall con-
sistency level of the system. This is a more complex problem
since, in practice, we do not know the function that maps
the synchronization rate to application performance. To obtain
some quantitative insights on this function, we emulate the
performance of two applications of interest, namely shortest
path routing and load balancing, using a commercial platform
(Mininet) [13] and SDN controller (RYU) [14]. While the
results are quite unsteady, the average performance increases
with the synchronization rate and saturates eventually showing
that a diminishing return rule applies. To overcome the un-
known objective challenge, we use elements from the learning
theory, and propose an algorithm that gradually trains the
system and constructs a solution that is with high confidence
close to the optimal. The contributions of this work can be
summarized as follows:

1) We introduce the problem of finding the optimal syn-
chronization rates among SDN controllers in a network,
using a general model and different objectives. To the
best of our knowledge, this is the first work that studies
this problem.

2) For the consistency level maximization objective (Obj.
1), we show that this problem is NP-Hard and provide a
pseudopolynomial-time optimal and a FPTA algorithm.

3) For the application performance maximization objective
(Obj. 2), we emulate the performance of two popular
applications and obtain insights about the impact of
synchronization rates. We use these results to derive an
algorithm that gradually trains the system in order to
learn the optimal policy.

4) We perform evaluations to show the efficiency of our
proposed algorithms. We find that benefits are realized
for both objectives compared with the baseline policy
that synchronizes all controller pairs at equal rate.

The rest of the paper is organized as follows. Section II
formulates and solves the synchronization problem for the con-
sistency level maximization objective (Obj. 1). In Section III,
we present our emulation results and our learning algorithm
for maximizing the network application performance (Obj. 2).
Section IV presents the evaluation of our proposed algorithms,
while Section V reviews our contribution compared to related
works. We conclude our work in Section VI.

II. MAXIMIZING CONSISTENCY LEVEL

In this section, we show how to optimize the first objective,
i.e., the consistency level. We begin by describing the system
model and problem formulation.

A. Model and Problem Formulation

We adopt a general model representing an eventually-
consistent SDN system with a set C of C controllers distributed
in a network, as shown in Figure 1. Each controller is
responsible for managing a subset of the data plane nodes
in the network, referred to as a domain. The controllers are
aware of the current state information inside their domains
(e.g., available links, flow table entries). This can be achieved
by using a SouthBound protocol (e.g., OpenFlow) for signaling
and statistic collection from the data plane nodes.

The domain states may change dynamically as nodes and
links fail or recover and new data flows are generated. To
model such dynamics, we denote by λi the rate of state
changes in the domain of controller i. Specifically, we assume
that the state changes follow an independent Poisson process at
rate λi. This rate can be predicted by the network operator for a
certain time period (e.g., a few hours). The above assumptions,
made for model tractability, will be relaxed in next section.

We divide the time period into slots (e.g., a few tens of
seconds each). To ensure a minimum level of consistency,
in the beginning of each slot every controller disseminates
a synchronization message conveying the current state of its
domain to every other controller. By the end of a slot, the state
of a controller i might change or remain the same. According
to the Poisson process model, the probability that the state
of controller i remains the same is e−λis, where s is the
time slot length. Therefore, with the above probability the
state of controller i remains consistent with the view that any
other controller j has on it. We note that, for a given pair of
controllers (i, j), it might happen that the state of controller
i is consistent with the respective view of j but not the other
way around. In this case, we say that only the controller pair
(i, j) is consistent, but not the controller pair (j, i). Overall,
the expected number of controller pairs that are consistent
(consistency level) is given by:∑

i∈C

∑
j∈C,j 6=i

e−λis (1)

To improve the consistency level, the controllers have the
option to disseminate additional synchronization messages
within each slot, as illustrated in Figure 2. We denote by
xij ∈ {0, 1, . . . , R} the number of such messages sent from
controller i to j, where R represents the maximum possible
synchronization rate. We note that the synchronization rates
may be asymmetric in general, i.e., it may happen that
xij 6= xji. A synchronization policy can be expressed by the
respective vector:

x = (xij ∈ {0, 1, . . . , R} : ∀i, j ∈ C, j 6= i) (2)

The dissemination of synchronization messages is not with-
out cost. It consumes network resources such as bandwidth and
energy that can be significant especially in wireless resource-
constrained environments with in-band control channels of
limited capacity. The system operator has to ensure that certain
resource constraint is met. Specifically, we require that:∑

i∈C

∑
j∈C,j 6=i

xijbij ≤ B (3)

0 s 2s 3s

Decision

Minimum

synchronization points ...

Time

Change rate λi i

Resource cost bij i,j

Additional

synchronization points

x = 2ij

Fig. 2: Overview of synchronization decisions.

where bij is the resource cost of message dissemination
between controllers i and j, which typically depends on the
distance between the two controllers. B is a positive constant
representing the available network resources.

The disseminated synchronization messages will improve
the consistency level of the system. Specifically, by spreading
xij messages uniformly over the slot interval s, we can
effectively reduce the interval length by a factor of xij + 1
(as illustrated in Figure 2). Therefore, the probability that
the controller pair (i, j) is consistent increases from e−λis

to e
− λis

xij+1 . The consistency level will be:

Ω(x) =
∑
i∈C

∑
j∈C,j 6=i

e
− λis

xij+1 (4)

The objective of the system operator is to find the syn-
chronization policy that maximizes the consistency level while
satisfying the resource constraint:

Obj. 1 : max
x

Ω(x) (5)

s.t. constraints: (2), (3)

B. Complexity and Solution

We first prove the intractability of the problem.

Theorem 1. The SDN synchronization problem for Obj. 1 is
NP-Hard.

Proof. We prove the NP-Hardness of our problem by reduc-
tion from the Knapsack problem (which is NP-Hard), defined
as follows: Given a knapsack of capacity W , and a set of L
items with nonnegative weights w1 to wL and values v1 to
vL, the objective is to place in the knapsack the subset of
items such that the total value V is maximized without the
total weight exceeding W .

Every instance of the knapsack problem can be written as a
special case of our problem where: (i) we set B = W , (ii) we
restrict R = 1 and (iii) we create one controller pair (il, jl)
for each item l. Each such controller pair (il, jl) has cost biljl
equal to the weight of the mapped item wl. The λil rate is set

such that the difference e−
λil

s

2 − e−λils is equal to the value
of the mapped item vl. Any other pair of controllers (il, jl′)
where l 6= l′ is excluded by setting bil,jl′ = +∞.

Given a solution to our problem of consistency level V +∑
i∈C
∑
j∈C,j 6=i e

−λis, we can find a solution to the knapsack
problem of total value V by placing in the knapsack the items
corresponding to the pairs of controllers that synchronized
with each other.

Next, we identify a connection of our problem to the
following variant of the knapsack problem:

Definition 1. Multiple-Choice Knapsack (MCK): Given K
classes E1, E2,. . . ,EK of items to pack in a knapsack of
capacity W , where the lth item in class Ek has weight wkl
and value vkl, choose at most one item from each class such
that the total value V is maximized without the total weight
exceeding W .

Specifically, the following lemma holds:

Lemma 1. The SDN synchronization problem for Obj. 1 is
polynomial-time reducible to the problem MCK.

Proof. Given an instance of the synchronization problem, we
construct the equivalent instance of the problem MCK as
follows: We create a knapsack of size equal to B and an item
class Ek for each pair of controllers k = (i, j). Each class
contains R distinct items. The lth item in class k has weight
wkl = bij l and value vkl = e−

λis

l+1 − e−λis.
Each solution of value V to the MCK instance can be

mapped to a solution to the synchronization problem instance
of value V +

∑
i∈C
∑
j∈C,j 6=i e

−λis as follows: If the lth item
in class Ek (where k = (i, j)) is packed in the knapsack, we
synchronize controllers i and j at rate xij = l. Clearly, the
obtained solution spends no more resources than B. The value
of the lth item vkl is equal to the increase in the consistency
level due to the synchronization decision xij = l.

Lemma 1 is very important since it allows us to exploit a
wide range of solution algorithms that have been proposed
for problem MCK to solve our problem. In particular, al-
though MCK is NP-hard, pseudopolynomial-time optimal and
fully-polynomial-time approximation (FPTA) algorithms are
known [12]. By pseudopolynomial we mean that the running
time is polynomial in the input (knapsack capacity and item
weights), but exponential in the length of it (number of digits
required to represent it). The FPTA algorithm ensures that the
performance of the solution is no less than (1 − ε) fraction
of the optimal, while its running time is polynomial to 1

ε ,
ε ∈ (0, 1). Therefore, the running time and performance of
FPTA are adjustable, making it preferable for large problem
instances. Hence, we obtain the following result:

Theorem 2. There exists a pseudopolynomial-time optimal
algorithm and a FPTA algorithm to the SDN synchronization
problem for Obj. 1.

III. MAXIMIZING APPLICATION PERFORMANCE

Our work in the previous section constitutes the first sys-
tematic approach to tackle the SDN synchronization problem.
However, it has two limitations. First, it relies on the as-
sumption that the state dynamics follow a specific distribution
(independent Poisson with known rate λi). Second, while the
consistency level (Obj. 1) is an important indicator of the
performance of network application, it may not be always
accurate. In fact, it is known that certain applications can
tolerate some inconsistency among controllers provided that
conflicts are avoided, while other applications have stricter
requirements [9], [10]. The above motivate us to look for

alternative synchronization methods that (i) are agnostic to
the distribution of state dynamics and (ii) optimize directly the
performance of specific applications of interest rather than the
consistency level. In this section, we describe such a method by
leveraging elements from the learning theory. Before that, we
provide a brief emulation study that will highlight the impact
of synchronization rate on the performance of some popular
network applications.

A. Emulation Study

Below, we describe the emulation setup that will be later
used to test the performance of two network applications,
namely shortest path routing and load balancing.

Emulation setup. We use Mininet [13] to emulate virtual
networks with several nodes and SDN controllers running
on the same CPU machine. Among the set of commercial
controllers that are available online we pick RYU [14] which
is open-source and allows us to develop our own protocols
for the synchronization among controllers. Specifically, we
implement a simple eventually-consistent protocol which peri-
odically disseminates synchronization messages between each
controller pair. Our code is parameterized to allow for any
synchronization period. The disseminated messages convey the
local views of controllers about the topology and installed flow
tables. This information is made available to the controllers by
the OpenFlow protocol.

Emulation results. We first test the performance of a
shortest path routing application. With this application, packets
are routed to their destination following the path of minimum
hop count, calculated by Dijkstra’s algorithm. We generate
the random network of 16 nodes and 3 controllers, depicted
in Figure 3a, where links fail or recover randomly and inde-
pendently every one second with probability 0.05, and nodes
with the same color are managed by the same controller. We
further generate data packets with random source-destination
nodes. Unless the controllers synchronize at the time of packet
generation, the packet is at risk of following a failed routing
path.

The performance of routing application is determined by
the number of packets that are successfully routed (without
traversing any failed link) to their destinations. We emulate
the performance for five different scenarios where all the
controller pairs synchronize at the same rate equal to (i) 0.5,
(ii) 0.25, (iii) 0.125, (iv) 0.063 and (v) 0.031 (messages per
second). This translates to a single message disseminated every
2, 4, 8, 16 or 32 seconds. For each scenario, emulations are
run for multiple times and the results are depicted in Figure
3b. Despite a large extent of randomness, we observe that the
average performance (calculated over 20 minutes) increases
with the synchronization rate and saturates eventually showing
that a diminishing return rule applies.

We perform additional emulations to test the performance of
a load balancing application. We consider a similar setup with
the work in [9], depicted in Figure 3c. That is, we generate a
network with two controllers. Each controller manages two
nodes, a switch and a server. The switches generate flows
uniformly at random. The flows can be routed and queued to
any of the two servers. Each controller is aware of the load of

(a)

0.063 0.125 0.25 0.5

Synchronization Rate (Messages per Second)

70

80

90

S
u

cc
e

ss
fu

lly
 R

o
u

te
d

 P
a

ck
e

ts
 (

%
)

(b)

Domain A Domain B

Flow A Flow B

Controller A Controller B

(c)

0.063 0.125 0.25 0.5

Synchronization Rate (Messages per Second)

0.04

0.06

0.08

0.1

0.12

0.14

T
h

ro
u

g
h

p
u

t
R

M
S

E
 (

M
b

p
s

2
)

(d)

Fig. 3: Emulation results. Topology and impact of synchronization rate on the performance (box plots and average values) of
(a)(b) shortest path routing and (c)(d) load balancing applications.

the server it manages. It also receives periodic synchronization
messages about the load of the other server by the other
controller. Each time a new flow is generated, the responsible
controller routes it to the server with the currently observed
lowest load. However, this may not be the least loaded server
in reality, since the controllers are not synchronized at all
times.

The emulation results are depicted in Figure 3d. The metric
we consider is the root-mean-square deviation (RMSE) of two
servers’ throughputs. The better the two server loads balance,
the lower the value of this metric becomes. Therefore, this met-
ric captures the performance of a load balancing application.
For convenience, we claim it the cost function, and denote
the performance metric the opposite value of cost function.
Then, coinciding with the routing application, we observe
that the performance improves with the synchronization rate
but gradually saturates showing that a diminishing return rule
applies.

B. Learning Framework
Subsequently, we study the objective of maximizing the

performance of a network application (Obj. 2) such as the
applications emulated in the previous subsection. While the
objective function is expected to have a curve shape similar to
those reported in Figure 3, we cannot express in closed-form
how exactly the synchronization rates will affect application
performance. Therefore, the objective function is unknown,
rendering the problem fundamentally different (and more
challenging) than Obj. 1.

To overcome the unknown objective challenge, we propose
to leverage methods from the learning theory. Such meth-
ods typically train the system by trying-out a sequence of
solutions (synchronization rates) over some training period
T = {1, 2, . . . , T} of T time slots, until they can infer a
“sufficiently good” solution. To describe such training process,
we generalize the vector of synchronization rate variables as:

x = (xtij ∈ {0, 1, . . . , R} : ∀i, j ∈ C, j 6= i, t ∈ T) (6)

where xtij indicates the synchronization rate between con-
trollers i and j tried-out in time slot t. We further denote
by the vector xt all the variables in time slot t. We emphasize
that the variable values will be typically different from slot to

slot as different synchronization rates need to be explored in
order to train the system.

Given the synchronization rate vector xt tried-out in a slot t,
the application performance will be Ψt(x

t). Here, Ψt(.) is an
unknown function that governs the application performance
in slot t. While the overall function is unknown, the single
value Ψt(x

t) can be observed by the system operator after
the synchronization rate decision xt is made, in the end of the
slot. For a shortest path routing application, for example, this is
possible by measuring the number of data packets that reached
their destination in time. Such information can be estimated
by the controllers using the TCP acknowledgement packets.
The information can be then passed to the system operator
(e.g., one of the controllers) which can simply aggregate and
sum the respective values.

We emphasize that the function Ψt(.) is time slot-dependent,
meaning that the performance value might change with time
even for the same synchronization rate decision. That is, we
may try-out the same synchronization rate vector xt = xt

′
in

two slots t and t′ but observe different performance values
Ψt(x

t) 6= Ψt′(x
t′). Such uncertainty of observations is

due to the stochastic nature of the network. Intuitively, the
performance value will be large if the network happens to be
stable in a slot but will be much worse in other slots during
which many changes happen.

Despite the uncertainty of observations, the learning method
should be able to infer by the end of the training period T a
“sufficiently good” synchronization rate decision x̂ = (x̂ij :
i, j ∈ C, j 6= i). This should, ideally, maximize the average
performance denoted by an (also unknown) function Ψ̂(.) =
E[Ψt(.)]. While the system operator does not know the average
performance values, we assume that they do not change over
a period of time (e.g., a few hours). Therefore, our second
objective can be written as:

Obj. 2 : max
x̂

Ψ̂(x̂) (7)

s.t.
∑
i∈C
∑
j∈C,j 6=i x̂ijbij ≤ B (8)

where inequality (8) ensures that the inferred synchronization
rate decision will satisfy the resource constraint.

We need to emphasize that the average performance Ψ̂(x̂)
can be in fact the aggregate of many (rather than only one)
applications. Either way, the performance is not the only
criterion that determines the efficiency of a learning method.
Another important criterion in this context is the running (or
training) time T , i.e., how many time slots are required for
training in order to infer the synchronization rate decision x̂.
In the next subsection, we will propose a learning method that
has adjustable average performance and running time.

C. Learning Algorithm

To handle the uncertainty of an observed performance
value Ψt(x

t), a learning method would typically try-out the
same synchronization decision xt multiple times, in different
time slots. Then, the empirical mean of the observations will
be used to estimate the average performance value Ψ̂(xt).
By repeating the above training process for every possible
synchronization decision, an estimate of the entire objective
function Ψ̂(.) can be obtained. However, there exists an
exponential number of possible decisions; (R + 1)C(C−1)

decisions in total. Therefore, this approach would require an
exponential number of time slots for training, which is clearly
not practical.

To overcome the high dimensionality of the synchronization
decision space, we could leverage learning methods proposed
recently that do not require the estimation of the objective
function at every possible decision. For instance, the Exp-
Greedy algorithm proposed in [15] can infer a close-to-optimal
decision in polynomial-time provided that the objective func-
tion follows a diminishing return rule, as the one observed in
the emulation results in Figure 3. Still, however, the running
time of this algorithm may be too large for our problem, as
we will show numerically in the next section, hindering its
application in practical scenarios.

Based on the above, we propose an alternative more-
practical learning algorithm for which we can flexibly adjust
the running time by setting appropriate values to its input
parameters. We refer to this algorithm as Stochastic Greedy
and summarize it in Algorithm 1. To ease presentation, we
have assumed that the resource costs are equal and normal-
ized to one for all the controller pairs, i.e., bij = 1 ∀i, j.
However, the algorithm and analysis can be easily extended
for heterogeneous resource costs.

In a nutshell, the Stochastic Greedy algorithm starts with the
all-zero synchronization decision and then gradually constructs
the decision to be returned by iteratively increasing by 1 the
synchronization rate of a single controller pair. This procedure
will end when the B resource constraint is reached, i.e., after
B iterations. Each iteration requires multiple time slots for
training so as to be confident that the controller pair selected
to increase its rate by 1 will improve the average performance
more than other controller pairs. The length of the training
period can be adjusted by two input parameters σ and τ . The
value of σ is between 1 and C(C − 1), while τ can take any
positive integer value.

Formally, the algorithm maintains a synchronization rate
decision x̂, initially set to the zero vector 0 (line 1). It
spends the first τ time slots trying out the zero synchronization

Algorithm 1: Stochastic Greedy with (σ, τ) input

1 Initialize x̂ = 0;
2 Try out xt = x̂ and observe Ψt(x

t) ∀t ∈ {1, . . . , τ};
3 Estimate Ψ̂(x̂) = 1

τ

∑τ
t=1 Ψt(x

t);
4 for each iteration k from 1 to B do
5 Pick σ random controller pairs p for which x̂p < R;
6 for each picked pair p from 1 to σ do
7 Set x̂′ = x̂ where x̂′p = x̂p + 1;
8 Try out xt = x̂′ and observe Ψt(x

t)
∀t ∈ {(k−1)στ+pτ+1, . . . , (k−1)στ+pτ+τ};

9 Estimate Ψ̂(x̂′) = 1
τ

∑(k−1)στ+pτ+τ
t=(k−1)στ+pτ+1 Ψt(x

t);
10 Set D(x̂, x̂′) = Ψ̂(x̂′)− Ψ̂(x̂);

end
11 Update x̂ = argmaxx̂′D(x̂, x̂′);

end
12 Output: x̂;

decision and uses the τ observations to estimate Ψ̂(0) (lines
2-3). In the next B iterations (lines 4-11), the algorithm will
iteratively select a controller pair and increase the respective
synchronization rate by 1, updating x̂. At each iteration
k = 1, 2, . . . , B, the algorithm will initially pick σ random
pairs of controllers as candidates (line 5). For each such
pair p = 1, 2, . . . , σ, the synchronization decision x̂′ will
be set accordingly (line 7) and τ time slots will be spent to
estimate Ψ̂(x̂′) (lines 8-9). The marginal performance gain of
switching from decision x̂ to x̂′, denoted by D(x̂, x̂′), will be
estimated (line 10). Among the σ candidate controller pairs,
the algorithm will include in the current decision x̂ the pair
with the maximum estimated marginal performance gain (line
11).

The algorithm spends τ time slots to estimate Ψ̂(x̂) for
x̂ = 0, and στ more slots for each iteration. Therefore, the
total running (or training) time is T = τ + στB time slots.
The following theorem describes the average performance of
the algorithm. Since the algorithm makes random decisions,
the average performance bound holds in expectation.

Theorem 3. Algorithm 1 achieves average performance Ψ̂(x̂)
that is in expectation a factor 1− e−(1−ε)µ from the optimal
where ε = e−σ

B
C(C−1)R and µ is the expected fraction of the

observed marginal gain in a slot over the actual marginal
gain.

To facilitate reading, we defer the proof of the theorem
to the appendix. We emphasize that the average performance
bound depends on the value of µ. This value captures the
uncertainty of the observed performance values since the
changes in network state may be unevenly distributed across
the time slots. If µ = 1, it means that the performance value
does not depend on the time slot of observation and hence
the estimated maximum performance will be the actual one.
However, as the µ value goes to 0 the observations become
more uncertain.

Another issue is that the performance bound in Theorem
3 holds in expectation, which means that it may be violated

12 18 24

Resource Constraint B

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

C
on

si
st

en
cy

 L
ev

el
Homogeneous
MCK

(a)

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
State Change Rate

0

0.5

1

1.5

2

2.5

3

C
o

n
s
is

te
n

c
y
 L

e
v
e

l

Homogeneous
MCK

(b)

12 18 24

Resource Constraint B

92

93

94

95

96

O
pt

im
al

ly
 R

ou
te

d
P

ac
ke

ts
 (

%
)

0

200

400

600

800

1000

T
im

e
S

lo
ts

 R
eq

ui
re

d

Homogeneous
Stochastic Greedy
ExpGreedy
Stochastic Greedy (time slots)
ExpGreedy (time slots)

(c)

93.7 93.8 93.9 94 94.1 94.2 94.3 94.4 94.5 94.6

Optimally Routed Packets (%)

0

100

200

300

400

500

600

700

800

T
im

e
S

lo
ts

 R
eq

ui
re

d

Stochastic Greedy
ExpGreedy

(d)

0 20 40 60 80 100 120 140 160
Time Slots

84

86

88

90

92

94

96

98

O
pt

im
al

ly
 R

ou
te

d
P

ac
ke

ts
 (

%
)

Performance in one slot
Average Performance

(e)

1 1.5 2
Ratio of Arrival Rates

1.5

2

2.5

3

3.5

4

4.5

5

5.5

T
hr

ou
gh

pu
t R

M
S

E
 (

M
bp

s2
)

Homogeneous
Stochastic Greedy

(f)

Fig. 4: Consistency level for different (a) resource budgets and (b) rates of network state changes. (c) Performance and training
time for different resource budgets, (d) tradeoff between performance and training time and (e) learning process under the
shortest path routing application. (f) RMSE cost for different ratios of flow arrival rates under the load-balancing application.

in practice. Therefore, it is important to bound the extent to
which this happen, as we show in the following theorem.

Theorem 4. Algorithm 1 achieves average performance Ψ̂(x̂)
that is a factor 1 − e−(1−ε)(1−γ)µ from the optimal with
probability 1− e−

γBτ
2 for any γ ∈ (0, 1).

The average performance bounds of our algorithm can be
better understood through an example. In particular, consider
the system with C = 5 controllers, B = 10 available resources
and s = 30 seconds per time slot. By picking σ = 5 out of the
20 possible controller pairs and τ = 3 time slots per try-out,
the total running (training) time of the algorithm will be about
one hour. Moreover, if the observed marginal performance
gains are 50% or more of the actual ones (µ = 0.5) and R = 1,
the average performance achieved by the algorithm will be in
expectation at least 37% of the optimal. Picking a larger σ
value will increase the average performance (cf. Theorem 3).
Picking a larger τ value will increase the probability that the
performance bound is not violated (cf. Theorem 4).

IV. EVALUATION RESULTS

In this section, we carry out evaluations to show the benefits
of the proposed algorithms. Overall, we find that benefits
are realized for both objectives compared with the baseline
algorithm that synchronizes all the controller pairs at equal
rate (referred to as Homogeneous). Especially for Obj. 2,
our Stochastic Greedy algorithm achieves better performance-
training time tradeoff than a state-of-the-art learning algorithm
(ExpGreedy in [15]).

Evaluation setup. We choose the same network topologies
and applications as in our emulations in Section III-A (16-
node shortest path routing and 2-server load balancing). For
Obj. 1, we compare the optimal algorithm according to our
model (MCK) with the Homogeneous algorithm. For Obj.
2, we compare our Stochastic-Greedy algorithm with both
the Homogeneous and ExpGreedy algorithms. To eliminate
randomness, we run each algorithm 10 times and take the
average value.

Evaluation of Obj. 1. We start with Obj. 1 and focus on
the 16-node network with C = 3 controllers (domains). We set
the rate of changes of the ith domain as λi = niλ, where ni is
the size of domain i, i.e., the number of data plane nodes, and
λ = 0.05. In Figure 4a, we calculate the consistency level of
both MCK and Homogeneous algorithms for different resource
budgets B. While the consistency level increases with B for
both algorithms, Homogeneous cannot reach the same level of
consistency as MCK. Furthermore, in Figure 4b we investigate
the impact of state change rate λ. In accordance with intuition,
the more frequently changes happen, the more enhancement
of consistency we can achieve by optimizing Obj. 1.

Evaluation of Obj. 2: Shortest path routing application.
Next, we study Obj. 2, i.e., the performance of network appli-
cations. We first consider the shortest path routing application
in the 16-node network. A performance metric of interest for
this application is the percentage of packets that are optimally
routed to their destinations, i.e., following paths of the same
number of hops as the optimal path. Figure 4c depicts the
performance for different resource budgets B. We notice that

the proposed Stochastic-Greedy algorithm routes optimally
more packets than Homogeneous and ExpGreedy algorithms.
The training time required by our algorithm increases linearly
with B. On the other hand, the time of ExpGreedy increases
more dramatically, which shows that our algorithm is more
scalable. Specifically, our algorithm requires around 200 time
slots (about an hour and a half) for training while ExpGreedy
may consume more than 800 time slots (6-7 hours), which
may be prohibitively large in practice.

The training time can be reduced for both algorithms by
adjusting the input parameter values they take (σ and τ for
our algorithm). However, this will be at the cost of reduced
performance (as we described in Theorems 3 and 4). Figure 4d
depicts the detailed tradeoff between performance and training
time. It shows that we can flexibly trade the performance
and training time of our algorithm (from 93.9% to 94.5%
optimally routed packets and from 50 to 210 slots). For the
same performance, ExpGreedy typically takes more than twice
the time compared to our algorithm. Figure 4e illustrates the
learning process when Stochastic Greedy is run for B = 18,
σ = 2 and τ = 4. Although in each time slot the algorithm
observes a performance value with large randomness, it is able
to allocate resources to proper pairs and increase the average
performance over time.

Evaluation of Obj. 2: Load balancing application. Fi-
nally, we examine the load balancing application. Similar to
the emulations in Section III-A, we randomly generate flows
at two switches. We define one time slot as 60 seconds.
Under the same B value, we compare the Stochastic Greedy
and Homogeneous algorithms for various flow arrival rates.
When the arrival rates at the two switches are equal, the
Homogeneous algorithm should be optimal because of the
symmetry. In this case, as Figure 4f shows, our algorithm gets
almost the same RMSE cost. Next, we set different arrival
rates at the two switches. As a result, when the ratio of
arrival rates gets larger, our algorithm leads to lower cost than
the Homogeneous algorithm. For example, our algorithm can
decrease the RMSE by around 20% when the ratio of flow
arrival rates at the two switches is equal to 2.

V. RELATED WORK

Distributed SDN controller deployments require a coordina-
tion protocol among controllers, which could easily generate
significant amount of control traffic, e.g., see the measurement
studies in [6] and [7]. However, the control traffic is often
neglected in literature with most of the existing works focusing
on the routing and balancing of the data traffic, e.g., see [16]
and the survey in [1].

Some recent works proposed to reduce the overheads of
control traffic by strategically placing the controllers in the
network [17] or by finding the appropriate forwarding paths
for load balancing on control traffic [8]. Nevertheless, the
above approaches should be considered as complementary
to our work, rather than competitive. On the one hand, the
controller placement decisions are taken in a different (much
slower) timescale than the synchronization. On the other
hand, the control traffic forwarding can be combined with
the synchronization rate decisions we make, since the former

directly impacts the resource cost values bij used as input to
our problem.

Eventual consistency, where the controllers coordinate pe-
riodically rather than on demand basis, is another way to
reduce control overheads. Levin et al. [9] showed that certain
network applications, like load-balancers, can work around
eventual consistency and still deliver acceptable performance.
This would require some additional effort to be made to
ensure that conflicts such as forwarding loops, black holes
and reachability violation are avoided [11].

Few recent works suggested the dynamic adaptation of
synchronization period (or rate) among controllers in an
eventually-consistent system so as to improve the performance
of network applications while maintaining a scalable sys-
tem [18], [19]. While interesting and relevant, the above works
did not provide any mathematical formulation or optimization
framework. To the best of our knowledge our work is the
first to systematically study the synchronization problem and
propose optimization and learning methods.

VI. CONCLUSION

In this paper, we studied the problem of finding the opti-
mal synchronization rates among controllers in a distributed
eventually-consistent SDN system. We considered two differ-
ent objectives, namely, (i) the maximization of the number of
controller pairs that are consistent, and (ii) the maximization
of the performance of applications which may be affected by
the synchronization decisions, as highlighted by emulations
on a commercial SDN controller. For these objectives, we
characterized the complexity of the problem and proposed
algorithms to achieve the optimal synchronization rates. Eval-
uation results demonstrated significant performance benefits
over the baseline policy that synchronizes all controller pairs
at equal rate. Overall, the synchronization problem deserves
more research attention, analogous to other problems in SDN
framework. Our work in this paper can be seen as a kick-off
for systematically studying optimization and learning methods
to tackle this important problem.

REFERENCES

[1] D. Kreutz, F. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg, S.
Azodolmolky, S. Uhlig, “Software-Defined Networking: A Comprehen-
sive Survey”, Proc. of the IEEE, vol. 103, no. 1, pp. 14-76, 2015.

[2] Y.E. Oktian, S. Lee, H. Lee, J. Lam, “Distributed SDN Controller System:
A Survey on Design Choice”, Computer Networks, vol. 121, no. 5, pp.
100-111, 2017.

[3] https://www.opendaylight.org
[4] http://onosproject.org
[5] F. Botelho, T. A. Ribeiro, P. Ferreira, F. M. V. Ramos, A. Bessani, “Design

and Implementation of a Consistent Data Store for a Distributed SDN
Control Plane”, IEEE EDCC, 2016.

[6] A.S. Muqaddas, P. Giaccone, A. Bianco, G. Maier, “Inter-controller
Traffic to Support Consistency in ONOS Clusters”, IEEE Transactions
on Network and Service Management, vol. 14, no. 4, pp. 1018-1031,
2017.

[7] Q. Qin, K. Poularakis, G. Iosifidis, L. Tassiulas, “SDN Controller Place-
ment at the Edge: Optimizing Delay and Overheads”, IEEE Infocom,
2018.

[8] S.-C.- Lin, P. Wang, I.F. Akyildiz, M. Luo, “Towards Optimal Network
Planning for Software-Defined Networks”, IEEE Transactions on Mobile
Computing, 2018.

[9] D. Levin, A. Wundsam, B. Heller, N. Handigol, A. Feldmann, “Log-
ically Centralized? State Distribution Trade-offs in Software Defined
Networks”, ACM HotSDN, 2012.

http://onosproject.org

[10] A. Panda, W. Zheng, X. Hu, A. Krishnamurthy, S. Shenker, “SCL:
Simplifying Distributed SDN Control Planes”, USENIX NSDI, 2017.

[11] Z. Guo, M. Su, Y. Xu, Z. Duan, L. Wang, S. Hui, H. J. Chao, “Improv-
ing the Performance of Load Balancing in Software-Defined Networks
through Load Variance-based Synchronization”, Computer Networks, vol.
68, pp. 95-109, 2014.

[12] M.S. Bansal, V.C. Venkaiah, “Improved Fully Polynomial time Approx-
imation Scheme for the 0-1 Multiple-choice Knapsack Problem”, SIAM
Conference on Discrete Mathematics, 2004.

[13] B. Lantz, B. Heller, N. McKeown, “A Network in a Laptop: Rapid
Prototyping for Software-defined Networks”, ACM HotSDN, 2010.

[14] http://osrg.github.io/ryu
[15] A. Singla, S. Tschiatschek, A. Krause, “Noisy Submodular Maximiza-

tion via Adaptive Sampling with Applications to Crowdsourced Image
Collection Summarization”, AAAI, 2016.

[16] D. Tuncer, M. Charalambides, S. Clayman, and G. Pavlou, “Adaptive
Resource Management and Control in Software Defined Networks”, IEEE
Transactions on Network and Service Management, vol. 12, no. 1, pp. 18-
33, 2015.

[17] Z. Su, M. Hamdi, “MDCP: Measurement-Aware Distributed Controller
Placement for Software Defined Networks”, IEEE ICPADS, 2015.

[18] M. Aslan, A. Matrawy, “Adaptive Consistency for Distributed SDN
Controllers”, IEEE Networks 2016.

[19] E. Sakic, F. Sardis, J.W. Guck, W. Kellerer, “Towards Adaptive State
Consistency in Distributed SDN Control Plane”, IEEE ICC, 2017.

[20] B. Mirzasoleiman, A. Badanidiyuru, A. Karbasi, J. Vondrak,, A. Krause,
“Lazier Than Lazy Greedy”, AAAI, 2015.

APPENDIX
PROOF OF THEOREM 3

To facilitate the presentation of the proof, we describe an
alternative representation of the synchronization rate decisions
using the following set of elements (ground set):

G = {grij : ∀i, j ∈ C, j 6= i, r ∈ {1, . . . , R}} (9)

Here, each of the elements {g1ij , g2ij , . . . , gRij} indicates a
separate message disseminated between controllers i and j.
Each subset of elements X̂ ⊆ G indicates a synchronization
policy x̂ where the synchronization rate x̂ij is equal to the
number of the aforementioned elements included in X̂ .

We denote by the subsets A ⊆ G and O ⊆ G the solution
returned by the Stochastic Greedy approximation algorithm
and the optimal, respectively. We also denote by the subset
Ak = {α1, . . . , αk} ⊆ A the solution returned by the
Stochastic Greedy algorithm after the first 0 ≤ k ≤ B
iterations. Then, similar to the proof in [20], we compute the
probability that the set S of σ elements that is randomly picked
by Stochastic Greedy at iteration k+ 1 does not overlap with
the optimal set O besides of the elements already in Ak:

Pr[S ∩ (O \ Ak) = ∅] =
(

1− |O \ Ak|
|G \ Ak|

)σ
≤ e−σ

|O\Ak|
|G\Ak| ≤ e−σ

|O\Ak|
C(C−1)R (10)

where the first inequality is because (1− x)a ≤ e−ax for any
x ∈ (0, 1). The second inequality is because |G| = C(C−1)R.
Then, we have:

Pr[S ∩ (O \ Ak) 6= ∅] ≥ 1− e−σ
|O\Ak|
C(C−1)R

≥ (1− e−σ
B

C(C−1)R)
|O \ Ak|

B
= (1− ε) |O \ Ak|

B
(11)

where the second inequality is because the function 1 −
e−σ

x
C(C−1)R is concave with respect to x ∈ [0, B]. The last

equality is because of the definition of ε.

At iteration k + 1, Stochastic Greedy adds the element
αk+1 to the solution Ak which is estimated to maximize the
marginal gain Ψ̂(Ak+1) - Ψ̂(Ak). However, the element with
the real maximum marginal gain may be different, namely
α′k+1 6= αk+1. Given that αk+1 is picked after τ try-outs, the
following equation holds:

Ψ̂(Ak ∪ {αk+1})− Ψ̂(Ak) =(τ∑
t=1

µtk+1

τ

)(
Ψ̂(Ak ∪ {α′k+1})− Ψ̂(Ak)

)
(12)

where µtk+1 is the ratio of marginal gains according to try-out
t = 1, 2, . . . , τ . Each µtk+1 value is taken from a distribution
with mean value µ.

By definition, Ψ̂(Ak∪{α′k+1})−Ψ̂(Ak) is at least as much
as the marginal value of an element randomly chosen from the
set S ∩ (O \ Ak) (if non-empty). This is actually an element
randomly chosen from the entire set O \ Ak, since the set S
itself is randomly chosen. Thus, we have:

Ψ̂(Ak ∪ {α′k+1})− Ψ̂(Ak)

≥ Pr[S ∩ (O \ Ak) 6= ∅]
∑
o∈O\Ak(Ψ̂(Ak ∪ {o})− Ψ̂(Ak))

|O \ Ak|

≥ 1− ε
B

∑
o∈O\Ak

(Ψ̂(Ak ∪ {o})− Ψ̂(Ak))

≥ 1− ε
B

(Ψ̂(O)− Ψ̂(Ak)) (13)

where the second inequality is because of (11). The third
inequality is due to the rule of diminishing returns. By
combining (12) and (13) we obtain:

Ψ̂(Ak+1)−Ψ̂(Ak) = Ψ̂(Ak ∪ {αk+1})− Ψ̂(Ak)

≥
(1− ε)

∑τ
t=1 µ

t
k+1

τ

B
(Ψ̂(O)− Ψ̂(Ak)) (14)

By induction, we can show that:

Ψ̂(AB) ≥
(

1−
(
1−

(1− ε)
∑B
k=1

∑τ
t=1 µ

t
k

Bτ

B

)B)
Ψ̂(O)

≥
(
1− e−(1−ε)

∑B
k=1

∑τ
t=1 µ

t
k

Bτ

)
Ψ̂(O) (15)

Since the µtk values are drawn from a distribution with mean
value µ, it will be

∑B
k=1

∑τ
t=1 µ

t
k

Bτ = µ in expectation, which
concludes the proof.

APPENDIX
PROOF OF THEOREM 4

Let µ1
1, . . . , µ

τ
B be the marginal gain ratios associated with

the Bτ try-outs of the Stochastic greedy algorithm. Since µtk ∈
(0, 1), ∀t, k with mean value µ, we can apply the Chernoff
bound and obtain for each γ ∈ (0, 1):

Pr[
1

Bτ

B∑
k=1

τ∑
t=1

µtk < (1− γ)µ] < e−
γµBτ

2 (16)

Therefore, with probability 1 − e−
γµBτ

2 , the empirical mean
value will be at least as much as (1 − γ)µ. With the same
probability, the performance will be at least as much as 1 −
e−(1−ε)(1−γ)µ.

http://osrg.github.io/ryu

	I Introduction
	I-A Motivation
	I-B Methodology and Contributions

	II Maximizing Consistency Level
	II-A Model and Problem Formulation
	II-B Complexity and Solution

	III Maximizing Application Performance
	III-A Emulation Study
	III-B Learning Framework
	III-C Learning Algorithm

	IV Evaluation Results
	V Related work
	VI Conclusion
	References
	Appendix: Proof of Theorem 3
	Appendix: Proof of Theorem 4

