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Abstract—Non-orthogonal multiple access (NOMA) has shown
potential for scalable multicast of video data. However, one
key drawback for NOMA-based video multicast is the limited
number of layers allowed by the embedded successive inter-
ference cancellation algorithm, failing to meet satisfaction of
heterogeneous receivers. We propose a novel receiver-driven
superposed video multicast (Supcast) scheme by integrating
Softcast, an analog-like transmission scheme, into the NOMA-
based system to achieve high bandwidth efficiency as well as
gradual decoding quality proportional to channel conditions
at receivers. Although Softcast allows gradual performance by
directly transmitting power-scaled transformation coefficients of
frames, it suffers performance degradation due to discarding
coefficients under insufficient bandwidth and its power allocation
strategy cannot be directly applied in NOMA due to interference.
In Supcast, coefficients are grouped into chunks, which are
basic units for power allocation and superposition scheduling.
By bisecting chunks into base-layer chunks and enhanced-layer
chunks, the joint power allocation and chunk scheduling is
formulated as a distortion minimization problem. A two-stage
power allocation strategy and a near-optimal low-complexity
algorithm for chunk scheduling based on the matching theory
are proposed. Simulation results have shown the advantage of
Supcast against Softcast as well as the reference scheme in NOMA
under various practical scenarios.

Index Terms—Non-orthogonal multiple access, Video multi-
cast, Chunk scheduling, Heterogeneous receivers.

I. INTRODUCTION

Non-orthogonal multiple access (NOMA) has been con-
sidered as a promising technology to improve bandwidth
efficiency in the 5G systems [1], [2], [3], by leveraging super-
position coding (SC) and successive interference cancellation
(SIC). Considering that video traffic will be dominant in
growing mobile traffic [4], it is desirable to exploit NOMA for
high-volume video services. For video unicast, it has shown
that NOMA can provide improved visual satisfaction com-
pared with orthogonal multiple access (OMA) [5]. Meanwhile,
multicast is an effective way to enhance bandwidth efficiency
for high-volume video services. With SC, NOMA has the
potential to enable scalable data multicast [6], [7]. In the
NOMA-based multicast schemes, data is encoded into base-
layer (BL) signal and enhanced-layer (EL) signal, which are
transmitted simultaneously through SC. With SIC, near users
with strong channel gains can decode both BL and EL signals,
while far users with weak channel gains may only decode BL
signals.
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Fig. 1. Multcast performance to heterogeneous receivers in NOMA systems
under insufficient bandwidth.

However, these NOMA-based multicast scheme cannot
easily meet satisfaction of all receivers with heterogeneous
channel conditions. Since SIC implies that all other superposed
signals have to be decoded in order before decoding the
required signal, the complexity of SIC scales with the number
of superposed signals and severe error propagation would
occur in incorrect SIC decoding. Thus, existing NOMA-based
multicast schemes generally cluster users to allow only two
layer signals to be superposed, as Fig. 1 shows, the BL signal
is pessimistically encoded at a bit rate decided by the decoding
ability of the far user with worst channel quality [8]. It means
other far users cannot receive better video quality proportional
to their channel quality. Similar drawback would also occur
when encoding the EL signal for near users.

In contrast, the potential to satisfy heterogeneous users has
been provided through a recent proposed analog-like video
transmission scheme named Softcast [9] and its derivative
schemes [10], [11], [12], [13], [14]. Under Softcast, each
receiver can receive video quality proportional to its channel
quality. It achieves such robustness by skipping non-linear
processes in digital transmission, e.g., quantization, entropy
coding and forward error correction. Instead, coefficients,
which are linearly transformed from video frames with discrete
cosine transformation (DCT), are power-scaled and directly
transmitted. Consequently, the perturbation caused by channel
noise is linearly added to original video pixels. This enables
that the encoded video signal can provided video quality
adapted to channel quality of heterogeneous, not discrete
quality levels pre-determined by scalable video coding (SVC)
at the sender. However, the compression efficiency of Softcast
is inferior to digital systems, and it has to discard certain co-
efficients when bandwidth is inadequate, causing performance
degradation due to nonrecoverable distortion of discarding [9],
[10], [15], as Fig. 1 shows.

ar
X

iv
:1

81
2.

06
71

3v
2 

 [
cs

.M
M

] 
 2

8 
D

ec
 2

01
8



To address the aforementioned dilemma, we develop a
receiver-driven scheme called Supcast (superposed video
multicast) in NOMA systems, attempting to cater for all
receivers with heterogeneous channel conditions as well as
enhance performance in Softcast in the case of insufficient
bandwidth. In Supcast, BL and EL signals are distinguished
across DCT chunks, which are generated by grouping nearby
DCT coefficients. Specifically, DCT chunks are bisected into
EL chunks and BL chunks, based on chunk characteristics.
One EL chunk and one BL chunk compose the superposed
signal in a physical packet. Since decoding performance of
each chunk is proportional to channel quality, each receiver
can obtain satisfied video quality. Owing to SC, more informa-
tion can be conveyed compared with Softcast when bandwidth
is limited.

It should be emphasized that there exist two critical chal-
lenges in the design of Supcast. First, existing power allocation
principles in Softcast cannot be directly adopted for Supcast
due to interference caused by SC. Second, existing NOMA
optimization focuses on user scheduling to decide which users
are to be superposed [19], [20], [21]. However, in Supcast,
user scheduling has been handled by grouping users requesting
the same video contents. In Supcast, DCT chunks are basic
units for signal scheduling. With SIC, superposed chunks
would be regarded as noise when decoding other chunks.
In this case, decoding performance would be determined by
assigned superposed chunks, whose allocated power reflects
interference strength. Therefore, chunk scheduling, coupled
with power allocation, will be the key to ensure the desired
video reception quality proportional to channel quality. The
solutions to these challenges constitute the main contributions
of this paper, which are summarized as follows.

• In Supcast, we combines the linear video processing
of Softcast and the SC operation of NOMA into one
framework. By doing so, Supcast can implement receiver-
driven video transmission, where received quality is scal-
able to the heterogeneous channel conditions. Compared
with Softcast developed for OMA systems, Supcast can
achieve better bandwidth efficiency due to SC.

• In Supcast, we investigate the joint power allocation
and chunk scheduling problem, and formulate it as a
distortion minimization problem taking into account the
characteristics of video contents in these chunks. This
formulated problem is a mixed integer non-linear pro-
gramming (MINLP) problem, which is an intractable NP-
hard problem.

• To tackle the MINLP problem, we decompose it into two
subproblems. For power allocation, a two-stage strategy
is developed. For chunk scheduling, we reformulate it as
a one-to-one two-sided matching game. EL chunks and
BL chunks are viewed as two disjoint player sets, which
are matched with each other. A near-optimal and low-
complexity matching algorithm is proposed. The stability,
convergence, complexity and optimality of the proposed
algorithm are analyzed thoroughly.

Extensive simulations have been carried out to validate the
advantages of the proposed Supcast. The results demonstrate
that SupCast outperforms Softcast as well as the reference
scheme in NOMA under different scenarios. Considering the
complexity of the practical NOMA implementation, only two
layers are used in Supcast, the same as that in existing
NOMA-based multicast schemes. However, Supcast can be
easily extended to one BL and multiple fine-grained ELs, by
modeling the chunk scheduling as a one-to-many matching or
multi-step two-sided one-to-one matching.

The rest of the paper is organized as follows. In Section
II, we present an overview of the framework of Supcast. In
Section III, we formulate the joint power allocation and chunk
scheduling problem in Supcast using distortion as a metric.
Both two-stage power allocation strategy and matching game
formulation for chunk scheduling are presented. In Section IV,
we present the matching algorithm with detailed analysis of its
stability, convergence, complexity and optimality. Performance
evaluations are presented in Section V. In Section VI, we
conclude this paper with a summary.

II. SYSTEM DESCRIPTION

In this section, we present the framework of the proposed
Supcast over the NOMA system, as shown in Fig. 2. We shall
also elaborate the video encoding process and reconstruction
process, which integrate technologies of Softcast and NOMA.

As illustrated in Fig. 2, we consider the downlink video
transmission from a base station (BS) to multiple users in a
single cell. For practical implementation where the complexity
should be carefully considered, multicast users are divided
into near users and far users according to their distances to
the BS, as that in existing NOMA-based multicast schemes.
Since Supcast can provide fine-grained reconstruction quality
proportional to channel quality, we only need to take one
near user denoted by n and one far user denoted by f into
consideration. Note that user n and user f have worst channel
quality among near and far users, respectively, to ensure that
optimized signals can be decoded by other users. Define hn,t
and hf,t as the channel gain at the time slot t from the BS to
user n and f , respectively. Specifically, hn,t = rn,t/

√
1 + dηn

and hf,t = rf,t/
√

1 + dηf , where dn and df are the distance
from the BS to user n and user f , respectively, η is the path-
loss exponent, and rn,t, rf,t ∼ CN (0, 1) are the Rayleigh
fading coefficient at the time slot t. In addition, we consider
that the channel does not vary within a time slot, and assume
that the channel state information (CSI) is available at the BS.

The video sequence is encoded into EL signals and BL
signals with different transmission priorities. In the down-
link NOMA system, each physical packet can simultaneously
transmit EL and BL signals with SC. Based on the CSI, the
BS assigns different power levels to the superposed signals
to distinguish them in the power domain. According to the
NOMA principle [1], [6], more power would be allocated
to BL signals. In this case, user f can only decode the BL
signal, regarding the EL signal as interference. For user n, the
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Fig. 2. Architecture of Supcast over NOMA networks.

deployed SIC algorithm enables that it can correctly decode
the BL signal and subtract it before decoding the EL signal.
Therefore, it can decode both BL and EL signals to achieve
better reconstruction quality. Generally, the basic unit for video
coding is a group of pictures (GOP), which is composed with
several successive video frames. Without loss of generality,
we assume that transmission of a GOP occupies one time
slot. Thus, the processing of video sequences and optimization
of transmission are considered with the GOP interval. In the
following subsection, we will give a detailed description of
how these BL and EL signals are generated and processed.

A. Softcast-based Video Encoding with SC

In Supcast, video sequences are first encoded based on
the linear processing in Softcast. Specifically, a video se-
quence is divided into GOPs, and then 3D-DCT (three di-
mensional DCT) is performed over each GOP. The DCT
coefficients are divided into equal-sized rectangular-shaped
chunks, where coefficients in each chunk are treated as ran-
dom variables drawn from the zero-mean Gaussian distri-
bution. As Fig. 2 shows, DCT makes the energy distribu-
tion much more compact. Since more energy reflects more
importance, we partition each chunk into BL or EL signal
according to its variance, which represents the mean energy
of contained coefficients. Specifically, the chunks are first
sorted in the descend order of variances, and then the sorted
chunks are bisected into two sets. M chunks, denoted by
SB = {SBL,1, · · · , SBL,M}, form the BL signal with larger
variances [λBL,1, λBL,2, · · · , λBL,M ]. The other M chunks,
denoted by SE = {SEL,1, · · · , SEL,M}, form the EL signal
with smaller variances [λEL,1, λEL,2, · · · , λEL,M ].

Without loss of generality, one BL chunk together with one
EL chunk is assumed to fit into one physical packet via SC
in NOMA. Besides, we assume that the bandwidth of a time
slot is enough for transmission of a GOP. If the bandwidth is
insufficient, Supcast would take the dropping strategy similar
to that in Softcast. Specifically, the least important chunks
would be discarded to achieve bandwidth compaction. The
remaining chunks are bisected into M ′ BL chunks and M ′ EL
chunks, where M ′ < M . Before transmission, the BS selects

one BL chunk and one EL chunk, e.g., SBL,i and SEL,j , for
superposition into a NOMA packet, i, j = {1 · · ·M}. This
procedure is called chunk scheduling, implemented by the BS
according to the available CSI.

Note that each modulated symbol in physical layer contains
the I (in-phase) component and Q (quadrature) component. We
use ScBL,i and ScEL,j to denote the complex source of SBL,i
and SEL,j , respectively:

ScBL,i =
SoBL,i + iz · SeBL,i√

2
, ScEL,j =

SoEL,j + iz · SeEL,j√
2

,

(1)
where SoBL,i, S

o
EL,j are the odd-index part of SBL,i, SEL,j ,

and SeBL,i, S
e
EL,j are the even-index part of SBL,i, SEL,j ,

respectively. iz is the imaginary unit.
Before transmission, coefficients in each BL chunk or EL

chunk are scaled by the same scaling factor, denoted by gBL,i
or gEL,j , ∀i, j = {1 · · ·M}. In Supcast, according to the
principle of NOMA [1], [6], BL chunks should be allocated
more power than EL chunks, which guarantees decoding
performance of user f with interference of the EL signal.
Fortunately, such power allocation principle is coincident with
the principle of optimal power allocation in Softcast, which
suggests chunks with larger variances should be allocated
more power. However, the existed interference and coupled
relationship with chunk scheduling, make it unrealistic to
directly adopt power allocation results of Softcast into Supcast.

B. Video Reconstruction with SIC and LLSE

Throughout the paper, the processing of video sequences
and optimization are carried out within a GOP duration,
corresponding to a time slot as assumed above. Therefore, we
omit the time slot index t for brevity in the following paper.
Supposing that SBL,i and SEL,j are paired to be conveyed in
a packet, the received signals at user n and user f are:

Yn,i,j = hn(gBL,iS
c
BL,i + gEL,jS

c
EL,j) +Wn,

Yf,i,j = hf (gBL,iS
c
BL,i + gEL,jS

c
EL,j) +Wf ,

(2)

where Wn,Wf ∼ CN (0, σ2
w) are additive white Gausssian

noise (AWGN) for user n and f , and σ2
w is the noise variance.



At the receiver side, user n adopts SIC to decode the
superposed signals. With perfect SIC, user n can cancel the
interference of BL signals [3], [6], [20], which are allocated
with more power. Specifically, it first correctly decodes the
BL signal with SIC, then it subtracts this signal from the
received signal and decodes the EL signal without interference.
In Supcast, the linear least square estimator (LLSE) is used
for the signal decoding. Then inverse 3D-DCT is implemented
on the decoded EL chunks to obtain a reconstructed video
sequence with superior quality. In this case with perfect SIC,
distortion of user n comes from decoding errors of the LLSE
of EL chunks. As derived in [9], such distortion in terms of
mean square error (MSE) is

dn,j =
λEL,jσ

2
w

|hn|2g2EL,jλEL,j + σ2
w

. (3)

For use f , it decodes BL chunks by regarding EL chunks as
interference according to NOMA. Thus, based on Eq. (3), its
MSE of decoding is

df,i,j =
λBL,i(|hf |2g2EL,jλEL,j + σ2

w)

|hf |2g2BL,iλBL,i + |hf |2g2EL,jλEL,j + σ2
w

. (4)

Thus, overall distortion of transmitting SBL,i and SEL,j is

Di,j = dn,j + df,i,j +

M∑
j=1

λEL,j , (5)

where
∑M
j=1 λEL,j is the MSE distortion caused by user

f completely failing to decode EL chunks. Since this part
of distortion is constant, it need not be considered in the
following optimization.

III. PROBLEM FORMULATION AND ANALYSIS

In this section, we formulate the power allocation and chunk
scheduling problem as a distortion minimization problem. To
develop low-complexity and near-optimal solution for this NP-
hard problem, we decompose it into two subproblems. For
power allocation, we analyze it in two stages with considera-
tion of chunk diversity and interference. For chunk scheduling,
we reformulate it by utilizing the matching theory.

A. Problem Statement and Formulation

The objective of the joint power allocation and chunk
scheduling problem is to minimize overall transmission dis-
tortion, which is measured by the MSE. Define the binary
variable µi,j as the indicator for chunk scheduling:

µi,j =

{
1, SBL,i is paired with SEL,j ,

0, otherwise.
(6)

When µi,j = 1, SBL,i and SEL,j are simultaneously transmit-
ted via SC, which brings transmission distortion as expressed

in Eq. (5). Hence, the optimization problem can be formulated
as:

min
µ,gBL,gEL

M∑
i=1

M∑
j=1

µi,jDi,j (7a)

s.t.
M∑
i=1

M∑
j=1

µi,j(g
2
BL,iλBL,i+g

2
EL,jλEL,j)≤P t, (7b)

g2EL,jλEL,j ≤ g2BL,iλBL,i, if µi,j = 1, (7c)
M∑
i=1

µi,j=1,

M∑
j=1

µi,j=1, ∀i, j = {1 · · ·M}, (7d)

µi,j ∈ {0, 1}, ∀i, j = {1 · · ·M}. (7e)

Note that the optimization variable µ is the chunk scheduling
matrix with entries µi,j . The optimization variables gBL and
gEL are the M -dimensional power scaling vectors for BL
and EL chunks, respectively. Constraint (7b) ensures that the
total transmitted power for a GOP does not exceed the budget
P t. Constraint (7c) guarantees the SIC decoding according to
NOMA power allocation principle. Constraint (7d) and (7e)
indicate that each BL chunk can only be superposed with one
EL chunk and vice verse.

Since the optimization problem in (7) involves both con-
tinuous variables gBL, gEL and binary variable µ, it is an
NP-hard MINLP problem [22], [23]. It is unrealistic to find
the global optimal solution. To tackle this coupled problem
with low-complexity yet near-optimal solution, we divide it
into two subproblems. One is the power allocation problem,
which can be handled in two stages. The other is the chunk
scheduling problem which can be reformulated as a one-to-one
two-sided matching problem.

B. Two-stage Power Allocation

Given chunk scheduling is determined, that is the two-tuple
set for chunk superposition is given as Tc. Then problem (7)
can be rewritten as

min
gBL,gEL

∑
{i,j}∈Tc

Di,j (8a)

s.t.
∑

{i,j}∈Tc

(g2BL,iλBL,i+g
2
EL,jλEL,j)≤P t, (8b)

g2EL,jλEL,j ≤ g2BL,iλBL,i, ∀{i, j} ∈ Tc. (8c)

However, due to the existence of interference in the objec-
tive function in (8a), it is not trivial to convert such nonlinear
optimization problem into a convex optimization problem.

Actually, the problem in (8) belongs to the class of the
sum of generalized polynomial fractional functions (SGPFF)
problem. The study in [24] has shown that global optimal
solution can be obtained with a branch and bound algorithm.
This algorithm works by solving an equivalent problem, which
is further systematically converted into a series of linear
programming (LP) problems. However, the number of con-
verted LP problems is related to the dimension of optimization
variables. Thus, it is not practical to implement this algorithm
to globally optimize the problem in (8), since the dimension



of variables is 2M , which is always large for DCT chunk
division. To handle this problem efficiently, we propose a two-
stage power allocation strategy with high tractability.

At the first stage, we pre-allocate power across chunks
according to their importance to reconstruction, without con-
sideration of the channel gain diversity and interference. In
this case, the power pre-allocation problem can be solved by
the method of Largrange multiplier. Power allocated to BL
and EL chunks at this stage can be derived as

PBL,i =

√
λBL,i∑

k∈M(
√
λBL,k+

√
λEL,k)

P t,

PEL,j =

√
λEL,j∑

k∈M(
√
λBL,k+

√
λEL,k)

P t.
(9)

The derivation process of such power distortion optimization
can be traced from [9]. As Eq. (9) shows, power allocated to
the BL (EL) chunk is proportional to its energy λBL,i (λEL,j),
which reflects the chunk importance.

At the second stage, we re-allocate power within each super-
posed EL-BL chunk pair, given the power pre-allocation result
obtained in the first stage. If {i, j} ∈ Tc, the optimization
problem for paired SBL,i and SEL,j is formulated as follows.

min
gBL,i,gEL,j

Di,j (10a)

s.t. g2BL,iλBL,i+g
2
EL,jλEL,j≤P ti,j , (10b)

g2EL,jλEL,j ≤ g2BL,iλBL,i, (10c)

where P ti,j = PBL,i + PEL,j . Since gBL,i and gEL,i are
non-negative, it can be proven that problem (10) has unique
solution. Substituting Eq. (3)-(5) and Eq. (9) into the objective
(10a), we can derive the optimal solution as
g∗EL,j=min([gυEL,j ]

+, 1
2

√
λBL,i+

√
λEL,j∑

k∈M(
√
λBL,k+

√
λEL,k)

P t),

g∗BL,i=(
(
√
λBL,i+

√
λEL,j)P

t∑
k∈M

(
√
λBL,k+

√
λEL,k)

−(g∗EL,j)
2λEL,j)

1
2

1√
λBL,i

,

(11)

where gυEL,j = ( σw

hnhf

√
h2
fP

t
i,j+σ

2
w

λBL,iλEL,j
− σ2

w

h2
nλEL,j

)
1
2 , and [x]+

means max(x, 0). The solution is generated by finding the
stationary point. Due to space limits, the detailed derivation is
omitted.

C. Two-sided Matching Formulation for Chunk Scheduling

Now we utilize the matching theory to formulate the chunk
scheduling problem in (7) under given power allocation. Some
definitions and notations are given in the following content.

1) Definition: To describe the mutual relationship between
BL chunks and EL chunks, we consider chunk scheduling as
a one-to-one two-sided matching process between the set of
M BL chunks and the set of M EL chunks. The BS considers
these two disjoint sets of chunks as selfish and rational players.
Since perfect CSI is available at the BS, these players have
complete information of each other when matching. We say
SBL,i and SEL,j are matched together and form a matching
pair, if SBL,i and SEL,j are superposed for transmission
through a NOMA packet. Based on these, we can formulate

the chunk scheduling problem as a typical matching problem,
presented as

Definition 1 (One-to-One Two-sided Matching): Consider
BL chunks and EL chunks as two disjoint sets, SB =
{SBL,1, · · · , SBL,M} and SE = {SEL,1, · · · , SEL,M}, re-
spectively. A one-to-one, two-sided matching Φ is a mapping
from the set of BL chunks SB into the EL chunks set SE ,
such that for every SBL,i ∈ SB and SEL,j ∈ SE satisfying

1) Φ(SBL,i) ∈ SE ,
2) Φ(SEL,j) ∈ SB ,
3) |Φ(SBL,i)| = 1, |Φ(SEL,j)|=1,
4) SEL,j = Φ(SBL,i)⇔ SBL,i = Φ(SEL,j),

where Φ(SBL,i) represents SBL,i’s partner in Φ and Φ(SEL,j)
represents SEL,j’s partner in Φ. Conditions 1), 2) and 3) state
that each BL chunk is matched with one EL chunk, and vise
verse. Such one-to-one setting is due to the complexity of SIC
decoding in NOMA. Condition 4) implies SBL,i and SEL,j are
matched with each other.

2) Preference Lists: It should be emphasized that the
result of such matching game is greatly influenced by the
competition and decision process among players [25]. To
better characterize these dynamic interactions, each player
has own preferences over the players in the other set. It has
been studied that different settings of preferences would have
various properties, which may lead to different designs of
matching algorithms [26], [27]. In this paper, we take the sum-
distortion in Eq. (5) to directly decide the order of preferences.

The BS can set the preference list for each player, which is
ranked in a descending order by the value calculated in Eq.
(5) paired with the player in other set. For example, for any
SBL,i ∈ SB and SEL,j , SEL,k ∈ SE :

SEL,j �SBL,i
SEL,k ⇔ Di,j < Di,k (12)

implies that SBL,i prefers SEL,j to SEL,k since the former
can provide lower sum-distortion, i.e., higher utility.

With the above matching model and preference lists for-
mulation, we propose an algorithm to solve the formulated
matching problem in the next section.

IV. MATCHING ALGORITHM FOR CHUNK SCHEDULING

In this section, we propose a near-optimal algorithm for
chunk scheduling by utilizing the matching theory to reduce
computational complexity. Furthermore, thorough analysis of
the proposed algorithm is provided.

A. Design and Description of Algorithm

Inspired by the matching theory [26], [27], [28], we propose
the BL-EL chunk matching algorithm (BECMA) for chunk
scheduling. Considering the competition behaviour as men-
tioned in Sec. III-C, the basic idea of BECMA is allowing the
BL chunk to make a proposal to an EL chunk selected from
its preference list, and the proposed EL chunk has the right to
accept or reject the proposal.

Obviously, the conflict would occur when an EL chunk is so
“popular” that it receives more than one proposal. Since this is



a one-to-one matching, an intuitive question would arise that
it should accept which proposal and reject others. To answer
it, we first introduce the concept of blocking pair as follows.

Definition 2 (Blocking Pair): A BL-EL chunk pair
(SBL,i, SEL,j) is a blocking pair in Φ if it satisfies
SEL,j �SBL,i

Φ(SBL,i) and SBL,i �SEL,j
Φ(SEL,j), where

Φ(SBL,i) represents SBL,i’s partner in Φ and Φ(SEL,j)
represents SEL,j’s partner in Φ.

According to the above definition and Eq. (12), a blocking
pair implies higher utility than the original matching pair.
Thus, if a matched EL chunk receives another proposal, it
will accept the proposing BL chunk only when they can form
a blocking pair.

Now we can elaborate the matching process in BECMA, as
presented in Algorithm 1. Each BL chunk makes proposals to
the EL chunk in order of its preference list. The BL chunk
would pause the process if an EL chunk temporarily accepts its
proposal, but continue proposing if it is rejected. Meanwhile,
for the proposed EL chunk, it will reject the BL chunk if
they cannot form a blocking pair, otherwise it will accept
the proposal for consideration. This process ends until no BL
chunk needs to propose.

Algorithm 1: BL-EL Chunk Matching Algorithm
(BECMA)

Input: Set of BL chunks SB and set of EL chunks SE .
Output: Stable matching Φ

1 Set up BL chunks’ preference lists.
2 Set up EL chunks’ preference lists.
3 Set up a set of unmatched BL chunks SUB to record BL

chunks who have not been paired with any EL chunk.
4 while SUB is not empty do
5 SBL,i proposes to its currently most preferred

available EL chunk SEL,j .
6 if SEL,j already has a partner SBL,k and

(SBL,i, SEL,j) is not a blocking pair then
7 SEL,j rejects SBL,i and continues holding SBL,k.
8 SBL,i removes SEL,j from its preference lists.
9 else

10 SEL,j accepts SBL,i and rejects SBL,k.
11 SBL,k removes SEL,j from its preference lists.
12 SBL,i is removed from SUB and SBL,k is added

into SUB .
13 end
14 end
15 Output the matching Φ.

B. Analysis of Algorithm

1) Complexity: In BECMA, the computational complexity
comes from two phases. One is the sorting phase of establish-
ing preference lists, which requires complexity of O(2M2).
The other is the matching phase, where each BL chunk will
propose at most M times. In the worst case, the complexity

of matching is O(M2). Thus, the complexity of BECMA is
O(3M2).

For comparison, we analyze two other matching schemes
as shown follows.

• Optimal Exhaustive Matching: It generates the optimal
result by searching all possible M ! combinations, where
! denotes factorial. Thus, its complexity is O(M !).

• Random Matching: BL chunks and EL chunks are ran-
domly matched with each other. Therefore, the complex-
ity is O(M).

With above analysis, we can see that the complexity of
BECMA is much less than the optimal exhaustive scheme.
However, as shown in Sec. V-A, the performance degradation
of BECMA compared with the optimal scheme is negligible.

2) Stability and Convergence: We first give the definition
of stability for matching as below.

Definition 3 (Stable Matching): A matching Φ is stable, if
there exists no blocking pair (SBL,i, SEL,j) in Φ.

With Definition 2 and 3, we now can prove the stability and
convergence of BECMA.

Theorem 1. The proposed BECMA converges to a stable
matching Φ∗ with limited iterations.

Proof. First we prove the convergence. In each iteration in
Algorithm 1 (Lines 5-13), each SBL,i ∈ SB makes a proposal
to its currently most preferred EL chunk, which has not
rejected it in previous iterations. Since the total number of
EL chunks is M , each BL chunk cannot make more than M
proposals. In other word, the total number of iterations is less
than M . Besides, the iteration would end until every BL chunk
has been matched. Therefore, BECMA can converge to a final
matching Φ∗ after a limited number of iterations.

Next we prove that Φ∗ is stable. With the detail in Algorithm
1, in the final matching Φ∗, there is no any SBL,i ∈ SB can
find a SEL,j ∈ SE to form a blocking pair. Thus, according
to Definition 3, Φ∗ is a stable matching. �

3) Optimality: Here, we give a Theorem to state whether
an optimal matching can be achieved by Algorithm 1.

Theorem 2. The stable matching Φ∗ converged in BECMA
is Pareto optimal for BL chunks.

The proof can be completed similar to that in [28]. Since
BL chunks are allowed to make proposals in Algorithm 1,
we can refer it as a BL-driven matching algorithm. If we
allow EL chunks to propose, we can similarly form an EL-
driven matching algorithm, which generally produces different
performance. According to [28], proposing players would be
better off than proposed players, and achieve Pareto optimality.
However, in the proposed BECMA, we can conclude the
following remark.

Remark 1. The BL-chunk optimal BL-driven matching algo-
rithm can have quite similar distortion performance, compared
with the EL-chunk optimal EL-driven matching algorithm.



This property as described above is due to the formulated
preference list in Sec. III-C2 is mutual, since the preferences
of BL chunks and EL chunks are consistent in terms of
sum-distortion. In Sec. V-A, we will conduct performance
comparison between these two algorithms and validate our
conclusion.

V. PERFORMANCE EVALUATION

We carry out simulations to evaluate performance of the pro-
posed Supcast under various scenarios. For a comprehensive
evaluation over videos with different spatial-temporal content
complexities, we take multiple standard reference video se-
quences from the Xiph [29] as our test sequences, including
’Bus’, ’Coastguard’, ’Crew’, ’Foreman’, ’Harbour’, ’Husky’
and ’Ice’. For fair comparison with Softcast, the luminance
component of these video sequences is also extracted to
generate monochrome versions in the simulation. For color
versions, we can process chrominance components as the
same as luminance components. Same as Softcast, the used
video sequences are with common intermediate format (CIF)
resolution and the frame rate of 30 fps (frame per second).
In this case, the source bandwidth BWs = 1.52 MHz (in
complex symbols). The GOP size is set as 4 and the default
equal chunk division after 3D-DCT is set as 8× 8 chunks per
frame. The peak signal-to-noise ratio (PSNR) is adopted as
the performance metric, which can be expressed as

PSNR = 10 log10(2552/MSE), (13)

where the distortion MSE is averaged over all pixels in a
frame. Besides, the PSNR of each video sequence is the
average PSNR of frames.

In simulations, a single-cell NOMA system is considered
with one BS located in the cell center, and ten heterogeneous
multicast users equally partitioned into two distinct zones.
Five near users are deployed within a ring between radius
100 meters and 500 meters, while another five far users are
deployed within a ring between radius 500 meters and 900
meters. In each zone, all users are uniformly and randomly
distributed. The average power budget for transmitting each
chunk is set as P = 1 W. The path-loss exponent is set
as η = 2. As discussed in Sec. II-B, the AWGN of the
fading channel for each user has the variance σ2

w. Hence,
the average channel signal-to-noise ration (SNR) is defined
as 10 log10(P/σ2

w). I-Q modulation is adopted in the physical
layer, which means each channel use can convey one symbol
as I component and one symbol as Q component. These two
symbols compose a complex symbol. We define the bandwidth
compression ratio as β = BWc/BWs, where BWc is the
channel bandwidth (in complex symbols), i.e., the number of
available channel use. Without specific instructions, the default
setting of β is 0.5.

A. Performance Comparison

We first compare performance of the proposed Supcast
against two reference schemes. One is Softcast developed
in OMA which discards chunks with smallest variances in

the case of insufficient bandwidth. This implies that half
chunks will not be transmitted when bandwidth compression
ratio β = 0.5. Another scheme is referred as NOMA-RA,
where BL chunks and EL chunks are randomly scheduled for
superposition in NOMA. In this scheme, power of each chunk
is allocated in the way the same as in Softcast.
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Fig. 3. Average PSNR performance comparison among different schemes,
β = 0.5, GOP = 4, 64 chunks/frame.

As mentioned in Sec. IV-B, the BECMA expressed in Al-
gorithm 1 is actually a BL-driven chunk scheduling algorithm,
where BL chunks make the proposal. By setting EL chunks
as the proposer, we can generate an EL-driven algorithm. In
simulations, we implement Supcast with both two BECMA al-
gorithms. For these schemes, system performance is evaluated
by averaging PSNR over all test sequences, as Fig. 3 shows.
Note that performance of Supcast with BL-driven BECMA
is similar to that with EL-driven BECMA. This result is
consistent with the conclusion in Remark 1, since formulated
preferences of BL chunks and EL chunks are consistent in
terms of sum-distortion.

As shown in Fig. 3, Supcast outperforms Softcast and
NOMA-RA over the entire range of SNR, and achieves gains
up to 3 dB in terms of average PSNR. When SNR is low at
5 dB, performance of Supcast is similar with Softcast. This is
due to the fact that the poor channel condition can only support
transmission of all BL chunks and very few EL chunks with
SC. In this case, most EL chunks are allocated with no power
in the power re-allocation stage according to Eq. (11). In con-
trast, without two-stage power allocation, NOMA-RA has poor
performance, since reconstruction performance of BL chunks
degrades with severe interference of randomly superposed
EL chunks. At medium and high SNR, performance gains
of Supcast enlarge accordingly, while both NOMA-RA and
Softcast start the effect of performance saturation. However,
saturation reasons of two schemes are totally different. The
former is due to severe interference of SC cannot be well
alleviated in NOMA-RA with random scheduling and simple
power allocation strategy. The latter is because distortion of
discarding half chunks in Softcast is nonrecoverable.

Table I provides PSNR performance of each video sequence
under different schemes. Due to space limits, we only show
results when SNR is 15 dB and 25 dB. The results show that
Supcast can achieve performance gains over all test sequences.



TABLE I
PSNR OF EACH VIDEO SEQUENCE UNDER DIFFERENT SCHEMES.

Video
SNR Supcast Softcast NOMA-RA

15dB 25dB 15dB 25dB 15dB 25dB
Bus 38.77 42.85 37.03 38.62 37.08 37.89

Coastguard 43.68 47.72 42.05 43.69 41.89 42.69
Crew 45.96 50.26 44.54 46.38 43.67 44.59

Foreman 43.77 47.80 42.13 43.82 41.17 41.99
Harbour 41.80 45.88 40.28 42.00 40.01 40.76
Husky 32.26 35.48 28.88 29.46 28.55 29.04

Ice 43.62 47.78 42.21 44.12 41.9 42.79
Average 41.41 45.39 39.59 41.16 39.18 39.96

For the integrity of evaluation, we also compare the proposed
BECMA scheduling with the optimal user scheduling through
exhaustive search, as Fig. 4 shows. Since the computational
complexity of the optimal exhaustive search is O(M !), we
perform the simulation by setting the GOP size as 1 and
dividing coefficients into 16 chunks. The results in Fig. 4
illustrate that the performance of the BECMA approaches the
upper bound generated from exhaustive search.
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Fig. 4. PSNR comparison between the BECMA scheduling and the optimal
exhaustive search scheduling, β = 0.5, GOP = 1, 16 chunks/frame.

B. Impacts of Bandwidth Compression Ratio β

Although Supcast has the ability to delivery twice chunks
than Softcast owing to SC in NOMA, it has to discard some
least important chunks before bisecting BL and EL chunks
when bandwidth is severely insufficient. This leads to varying
variance disparities between BL chunks and EL chunks in dif-
ferent bandwidth compression cases, which would accordingly
affect the results of power allocation and chunk scheduling.
Hence, we conduct simulations under different values of β, as
illustrated in Fig. 5.

From Fig. 5 we can observe that Supcast at β = 0.5
shows graceful degradation with varying SNR settings, while
performance of Supcast at β = 0.25 and performance of
Softcast begin saturating at high SNR. This can be explained
as follows. At β = 0.5, all chunks can be transmitted and
decoded by near users in Supcast. However, half chunks would
be dropped in Softcast when β = 0.5 and in Supcast when
β = 0.25, especially only quarter chunks can be transmitted
in Softcast at β = 0.25. Distortion of discarding information

cannot be recovered at receivers. Thus, performance of these
schemes is bounded at better channel conditions.
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Fig. 5. PSNR performance at different settings of bandwidth compression
ratio β, GOP = 4, 64 chunks/frame.

Another interesting observation is compared with Softcast,
Supcast can obtain higher performance gains at β = 0.25
than β = 0.5, when channel SNR is low. The reason can be
expressed as follows. At β = 0.5, poor channel condition can
only support transmission of BL chunks and few superposed
EL chunks. Thus the advantage of NOMA cannot be fully
utilized, which induces Supcast and Softcast have similar
performance. However, at β = 0.25, power is intensively
allocated among transmitted chunks by sacrificing the trans-
mission opportunity of some least important chunks. In this
case, more EL chunks can be superposed and decoded by near
users, even when channel condition is poor. This brings about
remarkable gains for Supcast.

C. Impacts of Chunk Size

We also investigate impacts of chunk size on performance of
the proposed Supcast, since power allocation and scheduling
are both carried out over chunks. DCT coefficients of each
frame are divided into Nc×Nc chunks. In the simulation, we
set Nc as 4, 8 and 16, which produce a total number of chunks
per frame as 16, 64 and 256, respectively. The results are
depicted in Fig. 6. Obviously, performance improves gradually
with the increasing number of divided chunks. This is due
to the fine-grained power allocation and chunk scheduling,
which can accordingly produce more power scaling gains and
superposition gains. Besides, the marginal effect would occur,
which means the performance gap between the division of
256 chunks and 64 chunks is far less than the gap between
the division of 64 chunks and 16 chunks.

The above observations can provide guidelines for chunk
division in Supcast, which implies the division of 64 chunks
per frame can strike a good balance between performance
and complexity. Too fine division would cause heavy com-
putational burden for chunk scheduling, according to the
analysis in Sec. IV-B. Moreover, the huge overhead for
transmitting meta data, including power scaling vectors and
chunk scheduling vectors, is undesired when the number of
chunks is too large. In this case, improved performance is
not worthy due to the marginal effect. It is worth noting that
the choice of appropriate chunk division should be adaptively
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Fig. 6. PSNR performance of Supcast under various settings of chunk
division, β = 0.5, GOP = 4.

adjusted according to the GOP size and the resolution of video
sequences.

VI. CONCLUSIONS

In this paper, we presented Supcast, a novel receiver-driven
scheme for video multicast in NOMA systems with heteroge-
neous channel conditions. The design of Supcast is motivated
jointly by high spectral efficiency achieved with NOAM and
robustness transmission of Softcast in heterogeneous environ-
ments. By grouping DCT coefficients into BL chunks and EL
chunks for superposition, Supcast enables near users to decode
both BL and EL chunks while far users to decode only BL
chunks. Furthermore, inspired by Softcast, Supcast allows each
heterogeneous user to obtain video with quality proportional
to its channel quality. The key features of Supcast include
power allocation and chunk scheduling to minimize video
transmission distortion. Based on characteristics of chunks and
interference formulation in decoding, we proposed a two-stage
power allocation strategy. By reformulating chunk scheduling
problem as a one-to-one two-sided matching problem, a near-
optimal and low-complexity BECMA scheduling algorithm is
proposed. Simulation results have shown remarkable perfor-
mance improvements of Supcast over existing schemes.
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