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Abstract—Deployment of unmanned aerial vehicles (UAVs)
performing as flying aerial base stations (BSs) has a great
potential of adaptively serving ground users during temporary
events, such as major disasters and massive events. However,
planning an efficient, dynamic, and 3D deployment of UAVs in
adaptation to dynamically and spatially varying ground users is
a highly complicated problem due to the complexity in air-to-
ground channels and interference among UAVs. In this paper,
we propose a novel distributed 3D deployment method for UAV-
BSs in a downlink network for on-demand coverage. Our method
consists mainly of the following two parts: sensing-aided crowd
density estimation and distributed push-sum algorithm. The first
part estimates the ground user density from its observation
through on-ground sensors, thereby allowing us to avoid the
computationally intensive process of obtaining the positions of all
the ground users. On the basis of the estimated user density, in
the second part, each UAV dynamically updates its 3D position in
collaboration with its neighboring UAVs for maximizing the total
coverage. We prove the convergence of our distributed algorithm
by employing a distributed push-sum algorithm framework.
Simulation results demonstrate that our method can improve the
overall coverage with a limited number of ground sensors. We
also demonstrate that our method can be applied to a dynamic
network in which the density of ground users varies temporally.

I. INTRODUCTION

Unmanned aerial vehicle (UAV)-enabled networks have
been gaining substantial attention because of their wide variety
of applications including surveillance, military, and rescue
operations [1]. In particular, deployment of UAVs performing
as flying aerial base stations (BSs) to support existing cellular
networks is a key application [2]. Typically, UAV-BSs can
establish a line-of-sight (LoS) connection to on-ground users
with high probability owing to their high altitudes. Thus, the
user coverage can be improved significantly in an efficient
manner [3]. In addition, since UAVs have high autonomous
mobility, UAV-BSs can provide connections to on-ground
users in disaster areas (e.g., flood- and earthquake-affected
areas), or rural areas more robustly and cost-effectively than
ground BSs of cellular networks [4]. Furthermore, rapid and
flexible deployment of UAV-BSs can enable them to respond
to the occurrence of hotspots in sports events and open-air
concerts and can help achieve on-demand coverage for these.

Despite the potential benefits of UAV-BSs, determining the
most effective deployment of UAVs poses several research
challenges [2]. First, owing to the flexible mobility of UAVs,
the 3D deployment problem of UAVs exhibits a higher degree

of freedom and is more complicated than that of ground
BSs. Furthermore, air-to-ground (A2G) channels have different
characteristics from a terrestrial one because they are highly
dependent on the altitudes of the UAVs and the blockage effect
of obstacles (e.g., buildings) [5], [6]. Moreover, the deploy-
ment of multiple UAV-BSs induces an inter-cell interference
problem, which may degrade the communication quality of
users. Since the interference received from each UAV depends
additionally on the A2G channel condition, the overall char-
acteristics of interference and the signal-to-interference-plus-
noise-ratio (SINR) of users are also exceedingly complicated.
As a result, the optimal 3D deployment of UAVs considering
the above factors is a significantly challenging problem.

Owing to the importance of the UAV deployment problem,
there has been an increasing number of studies that address
the aforementioned challenges [2], [7], [8]. However, there are
few studies that consider the spatial and temporal variations of
ground users. For example, the works [5], [8] proposed optimal
UAV deployment methods that maximize the coverage area.
However, in general, the density of users is spatially varied
for several reasons, such as the higher densities at stations
and sports events. Therefore, to maximize the user coverage,
it is insufficient to maximize the coverage area, and the spatial
inhomogeneous density of users must be considered.

Furthermore, the density of ground users varies temporally
because they may leave and join the network at any time
and move dynamically at each moment. Although several
studies [4], [7] proposed optimal UAV deployment methods
assuming that the specific positions of all the users are known,
these positions may change temporally, and tracking all the
user movements is unrealistic. In addition, these methods were
fundamentally centralized approaches, which are unsuitable
for a more dynamic network. This is because the computa-
tional expense is likely to escalate with an increase in the
number of users or in the total area. Therefore, it is crucial to
develop an efficient 3D deployment method for UAV-BSs that
can respond to the spatial and temporal dynamics of users.

In this paper, we propose a novel distributed 3D deployment
method for UAV-BSs in a downlink network. In our method,
each UAV dynamically updates its 3D position by collaborat-
ing with neighboring UAVs so that the overall coverage of
users is maximized in an on-demand manner. The distributed
nature and incremental updates of our method enable it to be
applied to spatially and temporally varying networks.
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Our proposed method consists mainly of two key parts that
address the above challenges in spatially and temporally vary-
ing ground users: i) sensing-aided crowd density estimation;
and ii) distributed push-sum algorithm. The first part is used
to estimate the density of users based on the information from
ground sensors deployed in the network. As it is computation-
ally intensive to obtain all the positions of ground users at each
moment in time, we assume that ground users are distributed
by a spatial point process. However, its intensity (density)
function is also generally unavailable. For this problem, we
assume that the ground sensors can detect users nearby them,
and estimate the number of users, e.g., by a video surveillance
system with human detection/tracking methods [9] and Wi-Fi
access points with received signal strength indicator (RSSI)- or
channel state information (CSI)-based sensing methods [10],
[11]. Since the intensity of users is typically considered to
be spatially correlated (e.g., road system), we infer the entire
intensity function from periodically gathered sensing results.

In the second step, the UAVs dynamically optimize their
positions in a distributed manner. Fundamentally, the challenge
posed by distributed 3D UAV deployment is additional to the
present problems such as the A2G channel characteristics. This
is because the SINR of a user served by a UAV is affected
by interference from other UAVs. Thus, to control the SINR
of the user, each UAV needs to consider the positions of all
the other UAVs and update its position so that the SINR of all
users are improved, and not only its serving users is imporved.
To address this problem, we apply a distributed push-sum
algorithm framework [12], [13]. With this framework, UAVs
incrementally optimize their 3D positions by collaborating
with their neighbor UAVs. We also prove that the algorithm
converges to a consensus among the UAVs. To the best of
our knowledge, this is the first study to develop a distributed
3D UAV deployment method with guaranteed convergence.
Regarding the performance metric of a UAV deployment, we
adopt the total coverage of users, i.e., the total expected
number of users whose SINR exceeds a certain threshold.
By expressing the coverage probability of a user theoretically
and analyzing the total coverage, we apply this performance
metric to the distributed push-sum algorithm framework. Fur-
thermore, we evaluate our method with extensive simulations.
The results reveal that our method can successfully improve
the overall coverage with a limited number of ground sensors.
We also apply our method to a dynamic network scenario
and demonstrate that it can respond to moving hotspots and
provide coverage to users in an on-demand manner.

The remaining part of this paper is organized as follows.
Section II summarizes related studies. In Section III, we
describe our network model in detail. Section IV presents the
proposed method. In Section V, we provide several simulation
results. Finally, Section VI concludes our paper.

II. RELATED WORK

Since UAV-BSs can be potentially used for demanding
future networks, several deployment methods have been pro-
posed. In particular, several studies considered an optimal 3D-

deployment of a single UAV. Al-Hourani et al. [5] presented
the optimal altitude of a UAV that maximizes the coverage
area. They also developed a closed-form expression of the
LoS probability of a UAV based on a probabilistic LoS model
provided by the International Telecommunication Union (ITU-
R) [14]. Bor-Yaliniz et al. [4] proposed an efficient deployment
method that maximizes the number of covered users. Alzenad
et al. [15] further considered a scenario where users have
heterogeneous quality of service (QoS) requirements.

In contrast to the single-UAV cases, multiple-UAV scenarios
lead to an inter-cell interference problem. Mozaffari et al. [16]
considered the interference among two UAVs and proposed an
optimal placement method that maximizes the covered area.
Moreover, the authors extended this method to a multiple-UAV
scenario in [8]. Kalantari et al. [7] proposed a meta-heuristic-
based optimal 3D placement algorithm that maximizes the user
coverage using the minimum number of UAVs. Furthermore,
the work [17] proposed a Q-learning-based 3D deployment
method for maximizing the data rate of ground users. However,
the above methods are fundamentally centralized and offline
approaches. Since the 3D placement optimization problem of
UAVs has a high degree of freedom and the computational cost
increases with the number of users or deployment area, they
are not applicable to dynamic scenarios in which the density
of users changes temporally.

Despite the importance of the dynamic scenarios, dynamic
and distributed UAV-BSs deployment problems have not been
extensively studied. Several recently proposed dynamic de-
ployment methods focused on constructing a desired formation
for relay networks [18] or target tracking [19], [20]. Thus, they
are not for UAV-BS networks, i.e., did not consider ground
users or backbone networks. Zhao et al. [21] proposed a
heuristic-based distributed motion-control method for UAV-
BSs. However, they focused on the connectivity among UAVs
and only UAVs’ horizontal movements. They did not consider
the probabilistic characteristics of the SINR of users including
A2G channel and interference. In contrast, we theoretically
formulate the distributed UAV 3D deployment problem by
considering interference among UAVs and the coverage prob-
ability of users. We also demonstrate that by controlling the
UAV altitudes, the total coverage can be efficiently improved.

III. MODEL DESCRIPTION

A. Network modeling

In this paper, we consider a downlink network in which
UAVs act as flying BSs and aim to enhance the communication
quality of users. We first provide an overview of the network
model. As shown in Fig. 1, the network consists mainly of
four types of elements: UAVs, on-ground user equipments
(UEs), on-ground sensors (GSs), and a remote gateway (RG).
UAVs provide internet connections to the UEs by connecting
to the RG, which also provides UAVs connections to back-
bone networks (e.g., satellites and larger UAVs [21]). GSs are
assumed to be capable of detecting UEs nearby the GSs and
estimating their (average) number (e.g., Wi-Fi access points
with RSSI- or CSI-based sensing methods [10], [11]). The
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Fig. 1. Illustration of UAV network model.

sensing results observed at GSs are periodically reported to
a central server through a wired or wireless link. Then, the
central server estimates the entire intensity of the UEs and
distributes it among the UAVs through the RG.

We now describe our model in detail. Table I summarizes
the notations used in this paper. We assume that time is slotted
as t ∈ {0, 1, . . . } , Z+. Each time slot corresponds to the
time at which the UAV positions are updated. We assume that
the UAVs can move anywhere in a certain closed convex set
Ω3 ⊂ R2 × R+ where R+ = [0,∞) and that the UEs are
in a closed convex set Ω2 ⊆ P(Ω3) on the ground. Here,
P : R3 → R2 represents the projection from the 3D space
to the plane (ground). Let ui(t) = [ui0(t), ui1(t), ui2(t)]> ∈
Ω3 (i ∈ {1, . . . , U} , U) denote the position of the i-th
UAV at time t ∈ Z+. Here, U denotes the total number of
UAVs. We also write u(t) = [u>1 (t), . . . ,u>U (t)]> ∈ (Ω3)U .
Furthermore, we assume that the UEs are distributed according
to a certain (inhomogeneous) spatial point process with an
intensity function λ(y) (y ∈ Ω2). Although λ(·) depends on t
due to the dynamics of UEs, we omit the index for simplicity.

Next, we describe the activities of GSs. Let gn ∈ Ω2 (n =
1, . . . , N) denote the positions of GSs. Here, N represents the
total number of the GSs. The GSs are assumed to be capable
of detecting and estimating the number of UEs around them
by sensing and report their sensing results periodically at time
Tk , kT (k ∈ Z+). Here, T denotes the sensing period and is
assumed to be larger than UAVs’ update interval (i.e., T � 1)
due to the computational time of sensing or crowd density
estimation. Furthermore, let xn(Tk) ∈ R+ (n = 1, . . . , N)
denote the sensing result reported from the n-th GS at time
Tk, i.e., the (average) expected number of UEs per unit space
in the neighborhood of gn. Thus, it can be regarded as an
observation of λ(gn) at time Tk. We also express x(Tk) =
[x1(Tk), . . . , xN (Tk)]> ∈ (R+)N . Using x(Tk), the crowd
density estimation part infers the entire intensity function as
λ̃k(y) (y ∈ Ω2). Note that we can easily consider the scenario
where UAVs are equipped with sensors by taking into account
sensing results at ui(t)’s. However, in this study, we assume
that only GSs can perform sensing, for simplicity.

B. Channel modeling and UAV-cell definition

We consider the following radio propagation model for
UAV–UE channels. Due to the blockage effect in the A2G

TABLE I
LIST OF NOTATIONS

ui(t), u(t) positions of i-th UAV and all UAVs at time t
U total number of UAVs
gn position of n-th GS
N total number of GSs
λ(y), λ̃(y) true and estimated intensity of UEs at y
T , Tk sensing period and k-th sensing time
xn(Tk), x(Tk) sensing result at time Tk from n-th or all GSs
θi,y(t) elevation angle from y to i-th UAV at time t
di,y(t) distance between i-th UAV and UE at y at time t
Vi(u) UAV cell of i-th UAV
Ni(t) neighborhood of i-th UAV
hi,y(t) fading gain corresponding to i-th UAV and UE at y
Ii,y(t) interference at UE at y served by i-th UAV
σ normalized thermal noise power
Θ SINR threshold

link, the link conditions can be divided into LoS and non-
LoS (NLoS) conditions. We adopt a probabilistic LoS model
similar to that in [5], [23], wherein a link condition (L : LoS,
N : NLoS) is determined by the following probability:

P(L; θi,y(t)) =
1

1 + b1 exp(−b0( 180
π θi,y(t)− b1))

, (1)

P(N; θi,y(t)) = 1− P(L; θi,y(t)), (2)

where b0 and b1 are constants dependent on the environments
(e.g., urban and rural) and are provided in [5], and θi,y(t) ∈
[0, π/2] is the elevation angle from a UE at y ∈ Ω2 to the i-th
UAV. Thus, if we denote di,y(t) as the distance between the
i-th UAV and a UE at y, θi,y(t) = sin−1(ui2(t)/di,y(t)). For
simplicity, we assume that all the UAVs and UEs are equipped
with omni-directional antennas. Although the channel con-
dition is spatially and temporally correlated in general, for
simplicity, we assume that they are independently determined
at each time and position. We assume a distance-dependent
path-loss model [23], [24] such that, for a distance d,

`q(d) = βq(ε0 + d)−αq for q ∈ {L,N},

where αq > 2 is a path-loss exponent, ε0 > 0 denotes a
constant to avoid a singularity at d = 0, and βq > 0 is a
constant that depends on the environment. Furthermore, we
model the small-scale fading effect in UAV-UE channels with
the independent Nakagami-m fading similar to that in [24]. Let
hi,y(t) denote the small-scale fading gain corresponding to the
channel between the i-th UAV and a UE at y. Then, hi,y(t)
is distributed according to the normalized gamma distribution
with a parameter mq (q ∈ {L,N}). For simplicity, we assume
mq to be an integer throughout this paper. In addition, we omit
the effects of shadowing and Doppler shift for mathematical
tractability. The transmission power of each UAV is identical
and is assumed to be normalized to one.

We next define the serving area of each UAV, i.e., a UAV-
cell. In this paper, we assume that each UAV has a capacity
sufficient for serving UEs. Moreover, each UE is assumed to
associate with the UAV that provides the strongest average



signal power. By definition, the average signal power from
the i-th UAV to a UE at y is expressed as

Si,y(t) =
∑

q∈{L,N}

P(q; θi,y(t))`q(di,y(t)). (3)

The UAV-cell is then defined as a signal-weighted Voronoi
cell, i.e., for the i-th UAV,

Vi(u(t)) = {y ∈ Ω2 | Si,y(t) ≥ Sj,y(t),∀j ∈ U\{i}} . (4)

From this expression, we can construct an associated signal-
weighted Delaunay graph G(t) by choosing the set of vertices
as U and the set of edges as pairs of UAVs whose signal-
weighted Voronoi cells are adjacent. Let Ni(t) denote the set
of neighboring UAVs of the i-th UAV on the graph G(t). We
assume that the i-th UAV can communicate with only Ni(t)
in our distributed collaborative deployment method.

C. Problem description

In this paper, we consider the total coverage of UEs, i.e.,
the total expected number of covered UEs, as the performance
metric of UAV deployment. We assume that a UE is covered if
the SINR at the UE exceeds a threshold Θ. By considering a
random channel condition and fading, the coverage probability
of a UE at y served by the i-th UAV is expressed as

Ci,y(u(t)) := Ci,y(u(t); Θ) = P(SINRi,y(t) > Θ). (5)

Here, SINRi,y(t) is expressed as

SINRi,y(t) =
hi,y(t)`q(di,y(t))

Ii,y(t) + σ
, (6)

where Ii,y(t) is the total interference power defined as

Ii,y(t) =
∑

j∈U\{i}

hj,y(t)`q(di,y(t)), (7)

and σ denotes the thermal noise power and is assumed to
be constant. By considering the coverage probability, we can
characterize the communication quality of UEs more flexibly
than the existing performance metrics based on mean path-loss
[4], [15] or average SINR [7], [21]. By taking the expectation
of the number of covered UEs on Ω2 and applying Campbell’s
theorem [26], the total coverage can be expressed as∫

Ω2

E[1(UE at y is covered)]λ(y)dy

=
∑
i∈U

∫
Vi(u)

Ci,y(u)λ(y)dy, (8)

where 1(·) denotes the indicator function.
We are now prepared to state our optimization problem.

Our objective is to determine an optimal 3D deployment of
UAVs that maximizes (8) in a distributed manner. Since the
true intensity λ(y) cannot be obtained in general, we use an
estimated intensity for the deployment optimization instead.

Problem 1 Assume that i) each UAV i (i ∈ U) can commu-
nicate only with its neighborhood Ni(t) on G(t) and ii) the

estimated intensity at Tk (k ∈ Z+) based on sensing result
x(Tk) is given by λ̃k(y). For each sensing period k, determine
the optimal UAV deployment u ∈ (Ω3)U that maximizes the
estimated total coverage F (u | x(Tk)) defined as

F (u | x(Tk)) =
∑
i∈U

∫
Vi(u)

Ci,y(u)λ̃k(y)dy. (9)

IV. DISTRIBUTED UAV 3D DEPLOYMENT METHOD

In this section, we present the distributed collaborative
UAV 3D deployment method. Our method mainly consists of
two parts: i) sensing-aided crowd density estimation; and ii)
distributed push-sum algorithm. At each sensing time Tk, GSs
send x(Tk) to a central server. The crowd estimation part then
estimates λ(y). During the k-th sensing period, UAVs update
their 3D positions by using λ̃k(y) via the distributed push-sum
algorithm, which is aimed at solving Problem 1.

This section is organized as follows. We first analyze
our performance metrics, namely the coverage probability
and total coverage in Section IV-A. We then describe the
crowd density estimation part in Section IV-B and present the
distributed push-sum algorithm part in Section IV-C. Finally,
we prove the convergence of the distributed algorithm in
Section IV-D.

A. Coverage analysis

Since our distributed optimization method is gradient-based,
we analyze the total coverage and derive its gradient in this
section. We omit the index t in this section because a fixed
time is being considered. We start by deriving the theoretical
expression of the coverage probability of UEs. By using the
expressions of (5) and (6), we can obtain the following result.
A sketch of the proof is provided in Appendix A.

Lemma 1 If the deployment of UAVs is u ∈ (Ω3)U , the
coverage probability Ci,y(u) can be approximated by

Ci,y(u) ≈ C̃i,y(u) ,
∑

q0∈{L,N}

P(q0; θi,y)

mq0∑
k=1

(−1)k+1

×
(
mq

k

)
e−kσγq0,i,yLIi,y (kγq0,i,y), (10)

where γq,i,y =
ηqΘ

`q(di,y) with ηq = mq(mq!)
− 1
mq for q ∈

{L,N}, and LIi,y (s) is given by

LIi,y (s) =
∏

j∈U\{i}

∑
qj∈{N,L}

P(qj ; θj,y)

(
1 +

s`qj (dj,y)

mqj

)−mqj
.

On the basis of Lemma 1, we aim to solve Problem 1 through
C̃i,y(u) in what follows. In other words, we replace Ci,y(u)

in the objective function in (9) by C̃i,y(u) and consider the
optimization problem of the following function:

F̃ (u | x(Tk)) =
∑
i∈U

∫
Vi(u)

C̃i,y(u)λ̃k(y)dy. (11)



Furthermore, from (10), we can calculate the derivatives of
C̃i,y(u) with respect to uj , i.e.,

c̃ji,y(u) ,
d

duj
C̃i,y(u), i, j ∈ U .

Since we can conveniently obtain c̃ji,y(u) from Lemma 1, we
omit their explicit expressions due to space limitations.

Next, we demonstrate that the derivative of F̃ (u | x) with
respect to uj can be approximated through c̃ji,y(u). A sketch
of the proof is provided in Appendix B. In what follows, we
simply write F̃ (u) := F̃ (u | x) for readability.

Lemma 2 If the estimated intensity function is λ̃(y) (y ∈ Ω2),

dF̃ (u)

duj
≈
∑
i∈U

∫
Vi(u)

c̃ji,y(u)λ̃(y)dy, j ∈ U . (12)

According to Lemma 2, the gradient of F̃ (u) exhibits
the following useful (approximate) separation property, which
enables us to optimize F̃ (u) in a distributed manner:

∇F̃ (u) ≈
∑
i∈U

f̂ i(u), (13)

where, for i ∈ U ,

f̂ i(u) ,

[∫
Vi(u)

c̃ji,y(u)λ̃(y)dy

]>
j∈U

=

∫
Vi(u)

∇C̃i,y(u)λ̃(y)dy. (14)

The above relationship indicates that there exists F̂ (u) such
that ∇F̂ (u) =

∑
i∈U f̂ i(u) and F̃ (u) ≈ F̂ (u).

B. Crowd density estimation

We next describe the crowd density estimation. The aim of
this part is to estimate the intensity function from the sensing
results at sensing time Tk (k ∈ Z+), i.e., to obtain λ̃k(y) from
x(Tk). Typically, the density of UEs is spatially correlated
owing to geographical factors, such as roads and attractions.
Thus, by modeling this spatial correlation, we infer the entire
intensity function with a limited number of GSs.

For a fixed sensing time, we consider a spatial Gaussian pro-
cess (GP) prior GP(µ, k0(y,y′)) (y,y′ ∈ R2) for λ(y). Here,
the constant µ expresses the mean of GP and corresponds to a
prior expectation of λ(y). Meanwhile, k0(y,y′) is the kernel
function of GP and represents the spatial correlation of λ(y).
In this paper, we adopt a well-accepted Gaussian kernel:

k0(y,y′) = A0 exp

(
−‖y − y

′‖2

A1

)
, y,y′ ∈ R2, (15)

where ‖ · ‖ denotes the Euclidean norm and A0 and A1 are
constants. We assume that the parameters of GP (i.e., µ, A0,
and A1) are obtained from statistical data. GPs are widely used
in modeling various spatial data [27] ranging from geology to
environmental sciences. According to an established property
of a GP, if we regard observations x(Tk) as realizations of

λ(gn) (n = 1, . . . , N ) at Tk, they are distributed with a
multivariate Gaussian distribution. Furthermore, the posterior
distribution of λ(y) given x(Tk) also becomes a Gaussian
(e.g., [27]): as follows:

λ(y) | x(Tk), {gn;n = 1, . . . , N}
∼ N (µy(x(Tk)), k0(y,y)− k>yK

−1
g ky), (16)

where

µy(x(Tk)) = µ+ k>yK
−1
g (x(Tk)− µe), (17)

ky = [k0(g1,y), . . . , k0(gN ,y)]>,

[Kg]n,n′ = k0(gn, g
′
n), n, n′ = 1, . . . , N,

and e denotes a vector of ones with an appropriate dimension.
As a result, UAVs can estimate the entire intensity from the
observations x(Tk) by setting

λ̃k(y) = µy(x(Tk)), y ∈ Ω2. (18)

By substituting (18) into (11), F̃ (u | x(Tk)) in (11) is now
rewritten as

F̃ (u | x(Tk)) =
∑
i∈U

∫
Vi(u)

C̃i,y(u)µy(x(Tk))dy. (19)

C. Distributed push-sum algorithm

In this section, we describe the distributed push-sum algo-
rithm. In this part, UAVs update their positions and maximize
(19) in a distributed manner. Our objective function (19)
depends on the positions of all the UAVs. Therefore, it is not
trivial to solve the problem in a distributed manner. However,
the useful separation property of ∇F̃ (u) in (13) enables us
to apply a distributed push-sum framework. This framework
was first proposed by [12] for average computation. It was
recently extended to a time varying network by [28], and to a
non-convex optimization problem by Tatarenko and Touri [13].

To state the algorithm, we first introduce an extension f̂
∗
i

of f̂ i that is defined on (R3)U and satisfies

f̂
∗
i (u) =

{
f̂ i(u), u ∈ (Ω3)U ,
Jŭ, u ∈ D,

(20)

where D denotes the complement of an open set D ⊂ (R3)U

disjoint with (Ω3)U . In addition, J > 0 is a constant and ŭ
denotes a unit vector directed from u toward its closest point
on the boundary of (Ω3)U . In the next section, we prove the
existence of f̂

∗
i that satisfies several conditions required for

the convergence of the distributed push-sum algorithm.
We now describe the algorithm in detail. The pseudo-code

is given in Algorithm 1. Each UAV i (i.e., the i-th UAV)
maintains a 3U -dimensional vector u[i](t) ∈ (R3)U , which
represents the pseudo positions of the UAVs. Here, pseudo
indicates that this location information is local for the UAV
i and does not always represent the exact positions of the
other UAVs (only u[i]

i (t) expresses the exact position of the
UAV i). This is because each UAV can only communicate
with its neighboring UAVs. They also maintain auxiliary 3U -
dimensional vectors w[i](t), and ξ[i](t), and a scholar variable



Algorithm 1 Distributed push-sum algorithm

1: Initialize: u[i](0), w[i](0), ξ[i](0) and φ[i](0);
2: for t = 0, 1, . . . do
3: for each UAV i do
4: Update Ni and Vi(u) of UAV i;
5: for each neighboring UAV j do
6: Send ξ[i](t) and φ[i](t) to UAV j; and

Receive ξ[j](t) and φ[j](t) from UAV j;
7: end for
8: Update u[i](t), w[i](t), ξ[i](t) and φ[i](t) by (21);
9: Update position of UAV i: ui(t+ 1) := u

[i]
i (t+ 1);

10: end for
11: end for

φ[i](t). In each time step, each UAV i updates its local
variables according to the following rules:

w[i](t+ 1) :=
∑

j∈Ni(t)

ξ[j](t)

dj(t)
, φ[i](t+ 1) :=

∑
j∈Ni(t)

φ[j](t)

dj(t)
,

u[i](t+ 1) :=
w[i](t+ 1)

φ[i](t+ 1)
, (21)

ξ[i](t+ 1) := w[i](t+ 1)

+ a(t+ 1)(f̂
∗
i (u

[i](t+ 1)) + κ[i](t+ 1)),

where κ[i](t) ∈ (R3)U are i.i.d. random vectors whose entries
are independent random variables with zero mean and unit
variance for all t ∈ Z+. Moreover, {a(t)} is a positive non-
increasing step-size sequence such that a(t) = O( 1

tν ) (ν ∈
( 1

2 , 1)) and di(t) is the node degree of the UAV i on G(t).
The update rules in (21) can be interpreted simply as

follows. Each UAV aims to reach a consensus among the UAVs
by exchanging its local information with its neighbors and
calculating their weighted sum. Furthermore, by combining
with a gradient descent based on its local information (i.e.,
f̂
∗
i (u)), the consensus point is steered towards a critical point

of the objective function. In addition, the random perturbation
κ[i](t) ensures the convergence to a local optimum [13].

D. Proof of convergence

In this section, we prove that the distributed push-sum
algorithm given in (21) converges to a local optimum of the
objective function among all the UAVs by employing the
framework in [13]. To do this, we first prove the existence
of an extension f̂

∗
i (u) (i ∈ U) in (20) and the antiderivative

F̂ ∗(u) of
∑
i∈U f̂

∗
i (u) satisfying several regularity properties.

Lemma 3 There exist functions f̂
∗
i (u) (i ∈ U) and F̂ ∗(u)

on (R3)U such that f̂
∗
i (u) = f̂ i(u) and F̂ ∗(u) ≈ F̃ (u) in

(Ω3)U and

(i) f̂
∗
i (u) is bounded on (R3)U for all i ∈ U;

(ii) f̂
∗
i (u) is Lipchitz continuous on (R3)U for all i ∈ U;

(iii) ∇F̂ ∗(u) =
∑
i∈U f̂

∗
i (u); and

(iv) lim‖u‖→∞ F̂ ∗(u) = −∞.

Proof. Due to space limitations, we provide only a summary
of the proof. In what follows, we fix i ∈ U arbitrary. We can
confirm that c̃ji,y(u) (j ∈ U) are all bounded on (Ω3)U . We
can also confirm that µy(x) is bounded on y ∈ Ω2 (see (17))
and Vi(u) is a closed set. It then follows from (14) and (18)
that f̂ i(u) is bounded on (Ω3)U . Furthermore, we can prove
that f̂ i(u) is continuously differentiable in (Ω3)U and the
derivatives are bounded on (Ω3)U , which indicates that f̂ i(u)
is Lipschitz continuous with a certain Lipschitz constant L0.
Thus, if we extend the domain of f̂ i(u) to (Ω3)U∪D similarly
as in (20), f̂ i(u) is bounded and Lipschitz continuous with
L0 on (Ω3)U ∪ D. It thus follows from Tietze’s extension
theorem that there exists a bounded and Lipschitz continuous
function f̂

∗
i (u) on (R3)U with L0 such that f̂

∗
i (u) = f̂ i(u) in

(Ω3)U ∪D. These results indicate that the statements (i) and
(ii) hold. Furthermore, by using

∑
i∈U f̂

∗
i (u) and (13), we

can construct a continuously differentiable function F̂ ∗(u) on
(R3)U such that F̂ ∗(u) ≈ F̃ (u) in (Ω3)U and the statements
(iii) and (iv) hold, which completes the proof. 2

Combining Lemma 3 with the facts that f̂ i(u) is differen-
tiable in (Ω3)U and the sequence {G(t)} is strongly connected,
i.e., the union of their edge sets is strongly connected, we can
apply Theorem 5 in [13] to F̂ ∗(u) (≈ F̃ (u)) and f̂

∗
i (u) in

Lemma 3 and prove the convergence of the algorithm.

Theorem 1 Each u[i](t) (i ∈ U) and the average state
variable 1

U

∑U
i=1 ξ

[i](t) in the distributed push-sum algorithm
in (21) converge to a point in the set of local maxima of F̂ ∗(u)
from any initial state.

V. SIMULATION RESULTS

We evaluate our distributed 3D UAV deployment method
by conducting numerical simulations. In each simulation, we
assume that U = 9 UAVs are deployed over a (5000 m)2 area
(Ω2) with a maximum altitude 1500 m. We adopted values
similar to those in [24], [25] for the parameters of the channel
model associated with the LoS and NLoS conditions. We also
considered sub-urban, urban, and dense-urban scenarios by
selecting the values of b0 and b1 presented in [4]. The other
parameters are listed in Table II unless otherwise stated. In
addition, we randomly generated spatially correlated intensity
by the following procedure. We first divided the whole area
into 50×50 small grids, and then sampled the values of λ(y)
in each grid from a multivariate Gaussian distribution whose
covariance matrix is determined by the kernel function in (15).

TABLE II
SIMULATION PARAMETERS

Parameter Value Parameter Value
b0, b1 0.16, 9.61 (urban) βL, βN 0.092, 0.035

0.43, 4.88 (sub urban) mL, mN 3, 2
0.11, 12.08 (dense urban) αL, αN 2, 3

µ 100 m−2 σ −70 dBm
A0, A1 10, (500)2 length of area 5000 m
Θ 0 dB default altitude 200 m



A. Effectiveness of distributed push sum algorithm

We first focus on the performance of the distributed push-
sum algorithm part and demonstrate its effectiveness. We also
investigate the impacts of several parameters on the perfor-
mance and the resulting UAV deployment. To achieve this, we
focused on a sensing period, i.e., a fixed Tk, and assumed that
all the UAVs knew the true λ(y), i.e., λ(y) ≡ λ̃k(y) (y ∈ Ω2).
We then set artificial hotspots, in which the intensity of UEs
is 10 · µ (see Fig. 2 (a)). In addition, the initial positions of
the UAVs were uniformly arranged with the equal intervals.

Fig. 2 shows the 3D placement of the UAVs at t = 0, 60
in the urban scenario. We also plotted in Fig. 2 (c) the case
where the altitudes of the UAVs were fixed at the default
altitude by controlling only their horizontal movements. The
triangles in the graphs express the positions of the UAVs,
and their altitudes are represented by their color depth. Each
cell corresponds to each UAV-cell. The background color
depth expresses the intensity of UEs, and the dark ellipses
correspond to the artificially added hotspots. We also illustrate
the process of the total coverage (i.e., the objective function)
in Fig. 3. Fig. 2 (a) and (b) reveal that the 3D positions of
the UAVs and associated shapes of the UAV-cells dynamically
adjusted to the hotspots so that each hotspot was fitted in a
UAV-cell to avoid interference. As a result, the total cover-
age was significantly improved from the initial deployment
(approximately 35 % higher). On the other hand, the total
coverage was less improved in the fixed altitude scenario.
Fig. 2 (b) also shows that the altitudes of the UAVs serving
hotspots were higher than those of the other UAVs. Moreover,
the altitudes of the UAVs changed more aggressively than their
horizontal positions. This is because as the altitude of a UAV
increases, the LoS probability increases, and thus the UAV-
cell and the coverage probability also increase. These results
indicate that the total coverage is more sensitive to the vertical
movements of the UAVs than to their horizontal ones. Thus,
their 3D position must be considered for an efficient UAV
deployment optimization.

Fig. 4 shows the process of the total coverage in sub-urban,
urban, and dense urban scenarios. Although the total coverage
increased in all cases, their improvements varied depending
on the scenarios. The reason for this can be considered as
follows. Since the coverage area of a UAV is larger in the
sub-urban scenario than the other scenarios [4], [5], the whole
area was sufficiently covered even with an initial placement.
Thus, the benefit of our method was smaller in the sub-urban
scenario than the urban one. On the other hand, in the dense-
urban scenario, ground UEs could not be covered by U = 9
UAV-BSs due to the small coverage area.

We next investigate the impacts of the SINR threshold Θ.
To see the difference more clearly, we calculated the ratio of
the total coverage at each step to that at t = 0. Fig. 5 expresses
the processes of the ratio with different Θ. The graph shows
that the improvement with higher Θ becomes larger, whereas
that with Θ = −5 dB was highly limited. This is because
with low Θ, the total coverage was already sufficient even in

the initial step, and thus the objective function did not exhibit
much potential for improvement. Meanwhile, when Θ = 10
dB, the total coverage became approximately two times of that
in the initial step. This result indicates that our optimization
method is highly efficient for a high SINR regime. We also
illustrate the 3D deployment of the UAVs in Fig. 6 in each
case. The deployment with Θ = 10 dB was similar to that with
Θ = 0 dB, whereas the altitudes of the UAVs with Θ = −5
dB were much lower than the other cases.

Finally, we demonstrate the impact of the initial positions
of the UAVs. Fig. 7 shows the 3D deployment of the UAVs
at t = 0, 100 when their initial positions were gathered at the
center. The figures show that as the time elapsed, the positions
of the UAVs adjusted to the hotspots and the UAVs maintained
certain distances among themselves to reduce interference. In
addition, the altitudes of the UAVs serving the hotspots became
high again, whereas the resulting deployment was different
from that in the previous scenario.

B. Effect of crowd density estimation

We next focus on the effect of the crowd density esti-
mation part. Unlike the previous scenario, we assumed that
the intensity function is available only at randomly generated
GSs (grids where GSs exist). The entire intensity was cal-
culated by the crowd density estimation method described in
Section IV-B. Since the number of GSs is likely to impact
the performance, we evaluated it by considering the GS
deployment ratio rGS ∈ [0, 1]. This is defined as the ratio
of the grids where GSs exist to the total grids. We regarded
each grid as the sensing range of a GS1 and assumed that
the intensity in each GS’s grid was obtained correctly. To
evaluate the impact of rGS, we consider the coverage gain,
which was calculated as the difference between the total
coverage at t = 0 and 30. We first calculated the coverage
gain in the case with complete information of true intensity,
(i.e., rGS = 1) as a baseline. We then calculated the ratio
of the coverage gain with each rGS to the baseline. Fig. 8
illustrates the result of the ratio of coverage gain. For each
rGS, we generated 10 samples of the GS placement. The figure
shows that as expected, as rGS increases, the performance of
of our method also increases. This is because the proposed
algorithm optimizes the positions of UAVs by using λ̃(y) (see
(11)). Thus, if the intensity function was incorrectly estimated,
the proposed method failed to update the UAV placement
effectively for improving the objective function. However, the
simulation results demonstrate that even a small rGS (e.g.,
rGS = 0.03, 3 GS/km2) achieved 98% of the baseline in the
urban scenario. This indicates that our method could improve
the total coverage even with a limited number of GSs.

C. Dynamic network scenario

We next apply our algorithm to a more dynamic network,
in which the positions of hotspots change dynamically. Unlike
the previous examples, we consider multiple sensing periods

1In our example, the area of each grid is 100 m2 (2500 grids).



Fig. 2. 3D UAV deployment in urban scenario (a) t = 0 and (b) t = 60, and (c) fixed altitude scenario
t = 60. Triangles represent horizontal positions of UAVs and their color depth represent altitudes. Depth
of background color expresses intensity of UEs and dark ellipses represent artificially added hotspots.

Fig. 3. Comparison of process of total coverage
with 3D deployment and fixed altitude scenarios.

Fig. 4. Comparison of process of total
coverage with different scenarios.

Fig. 5. Comparison of process of ratio
of coverages with different Θ.

Fig. 6. 3D UAV deployment in urban scenario at t = 60.

Fig. 7. 3D UAV deployment starting from centered positions with Θ = 0
dB at (a) t = 0 and (b) t = 100.

and assume that hotspots move at each sensing time. We first
artificially set hotspots on Ω2 similarly as those in Fig. 2.
We then moved each of them in a predefined direction at Tk
(k = 1, 2, 3) with T = 30. The initial deployment of UAVs
(T0 = 0) was also the same as Fig. 2 (a). Fig. 9 illustrates
the 3D deployment of UAVs at the end of each sensing period
(e.g., (b) shows t = 59, the end of the first sensing period (k =
1)). We also show the process of the total coverage in Fig. 10.
As the figures show, at each sensing time, the total coverage
temporarily decreased due to the movement of the hotspots.

Fig. 8. Ratio of coverage gain to baseline versus GS deployments ratio rGS .
Error bars represent 95 % confidence interval.

However, as shown in Fig. 9, the UAVs adjusted their positions
to the hotspot locations and successfully increased the total
coverage. For example, in Fig. 9 (b) and (d), (i.e., k = 1, 3), the
left hotspot moved to a position on the borders of UAV-cells.
However, the UAVs changed their 3D positions and the shapes
of the UAV-cells to reduce interference. Note that, at t = 59
(b), the right hotspot is on the border of UAV cells. This is
because our algorithm could not sufficiently optimize the UAV
placement during a sensing period. However, the total coverage
was successfully improved as shown in Fig. 10. Consequently,
our method could respond to hotspots and provide coverage
to UEs in a dynamic network in an on-demand manner.

VI. CONCLUSION

In this paper, we proposed a distributed UAV-BS 3D deploy-
ment method for on-demand coverage. Since the specific posi-
tions of ground users may not be obtained in real networks, we
proposed the sensing-aided crowd density estimation method.
Furthermore, by adopting total coverage as the performance
metric, we developed a push-sum-based distributed UAV 3D
deployment algorithm. Several simulation results revealed that
our method can improve the overall coverage of ground users
with the aid of a limited number of sensors and can be applied
to a dynamic network.

In our problem setting, we assumed that the UAVs exhibit
identical transmission power. Thus, the joint optimization of
3D UAV deployment and energy consumption are topics for
our future work. Furthermore, other physical constraints, such
as the capacity of UAVs [7], and obstacle avoidance [21]
should be considered while applying our method to a real



Fig. 9. 3D UAV deployment process in dynamic network scenario at (a) t = 29 (k = 0); (b) t = 59 (k = 1); (c) t = 89 (k = 2) and (d) t = 119 (k = 3).
Initial deployment of UAVs was the same as that in Fig. 2 (a). Hotspots are represented as dark ellipses, and arrows represent their moving directions.

Fig. 10. Process of total coverage. Vertical lines represent sensing times.

network. Moreover, simulations considering more realistic user
density, such as road constraints, remain for future work.
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APPENDIX A: PROOF OF LEMMA 1

By conditioning on the status of the desired channel between
ui and y, Ci,y(u) can be rewritten as

Ci,y(u) =
∑

q0∈{L,N}

P(q0; θi,y)P(SINRi,y > Θ | q0). (22)

Since small-scale fading gain is distributed according to the
normalized gamma distribution with the parameter mq0 , by
using (6), we obtain, for q0 ∈ {L,N}

P(SINRi,y > Θ | q0) = P

(
hi,y >

Θ(Ii,y + σ)

`q0(di,y)

∣∣∣∣ q0

)
(a)
≈ 1− EIi,y

[(
1− exp

(
−ηq0Θ(Ii,y + σ)

`q0(di,y)

))mq0]
=

mq0∑
k=1

(−1)k+1

(
mq0

k

)
e−kσγq0,i,yEIi,y

[
e−γq0,i,yIi,y

]
(b)
=

mq0∑
k=1

(−1)k+1

(
mq0

k

)
e−kσγq0,i,yLIi,y (kγq0,i,y), (23)

where we approximate the tail probability of the normalized
gamma distribution in (a) by using the same method as in [24],
[25], and we use the Laplace transform of Ii,y in (b). Since

the small-scale fading gain and channel condition are i.i.d. for
each UAV–UE channel, LIi,y (s) can be calculated by

LIi,y (s) = E

exp

−s ∑
j∈U\{i}

hj,y`qj (dj,y)


=

∏
j∈U\{i}

E [exp (−shj,y`q(‖uj − y‖))]

=
∏

j∈U\{i}

∑
qj∈{L,N}

P(qj ; θj,y)E
[
e−shj,y`qj (dj,y) | qj

]
,

=
∏

j∈U\{i}

∑
q∈{LoS,NLoS}

P(q; θj,y)

(
1 +

s`q(dj,y)

mq

)−mq
,

where the last equality follows from the Laplace transform of a
gamma distribution with a parameter mq . Finally, combining
the above with (23) and substituting it into (22), we obtain
(10).

APPENDIX B: PROOF OF LEMMA 2

In this appendix, we provide an outline of the proof due to
space limitations. First, for each UAV j ∈ U , the boundary
of Vj(u) is determined by only UAV j and its neighbors Nj
according to the definition of Vj(u). Thus, by differentiating
F̃ (u) with respect to uj , we obtain

dF̃ (u)

duj
=

∑
i∈Nj∪{j}

d

duj

∫
Vi(u)

C̃i,y(u)λ̃(y)dy

+
∑
i/∈Nj

∫
Vi(u)

c̃ji,y(u)λ̃(y)dy.

Therefore, it suffices to prove that∑
i∈Nj∪{j}

d

duj

∫
Vi(u)

C̃i,y(u)λ̃(y)dy

≈
∑

i∈Nj∪{j}

∫
Vi(u)

c̃ji,y(u)λ̃(y)dy. (24)

Note that C̃i,y(u)λ̃(y) is continuously differentiable at any
u ∈ (Ω3)U because C̃i,y(u) is continuously differentiable in
(Ω3)U and λ̃(y) is bounded on Vi(u). Furthermore, for any
fixed u′ ∈ (Ω3)U , C̃i,y(u′)λ̃(y) and c̃ji,y(u′)λ̃(y) are both



integrable on Ω2 because C̃i,y(u), cji,y(u) and λ̃(y) are all
bounded on Ω2. Furthermore, according to (3) and (4), we
can demonstrate that each Vi(u) (i ∈ U) can be represented
as a set difference of certain strictly star-shaped sets. This
is because Ω2 is a convex set and the average signal power
Si,y(t) is a monotonic decreasing and convex function of
di,y(t) (see (3)). Therefore, we can apply Proposition A.1 in
[29] (see also Remark A.2 therein) to each integral on the left
side of (24). As a result,

∫
Vi(u)

C̃i,y(u)λ̃(y)dy (i ∈ Nj∪{j})
is continuously differentiable in (Ω3)U .

Moreover, we can approximate SINRi,y(t) ≈ SINRj,y(t)
for neighboring UAVs i, j ∈ U and a UE at y on the border
of their UAV cells Vi and Vj (see also (4) and (6)). Thus, by
proceeding in the same manner as in the proof of Theorem 2.2
in [29], we can prove that (24) holds, which completes the
proof.
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