Abstract:
Age of information, as a metric measuring the data freshness, has drawn increasing attention due to its importance in many data update applications. Most existing studies...View moreMetadata
Abstract:
Age of information, as a metric measuring the data freshness, has drawn increasing attention due to its importance in many data update applications. Most existing studies have assumed that there is one single channel in the system. In this work, we are motivated by the plethora of multi-channel systems that are being developed, and investigate the following question: how can one exploit multi-channel resources to improve the age performance? We first derive a policy-independent lower bound of the expected long-term average age in a multi-channel system. The lower bound is jointly characterized by the external arrival process and the channel statistics. Since direct analysis of age in multi-channel systems is very difficult, we focus on the asymptotic regime, when the number of users and number of channels both go to infinity. In the many-channel asymptotic regime, we propose a class of Maximum Weighted Matching policies that converge to the lower bound near exponentially fast. In the many-user asymptotic regime, we design a class of Randomized Maximum Weighted Matching policies that achieve a constant competitive ratio compared to the lower bound. Finally, we use simulations to validate the aforementioned results.
Date of Conference: 06-09 July 2020
Date Added to IEEE Xplore: 04 August 2020
ISBN Information: