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Abstract—New optical technologies offer the ability to recon-
figure network topologies dynamically, rather than setting them
once and for all. This is true in both optical wide area networks
(optical WANs) and in datacenters, despite the many differences
between these two settings. Because of these new technologies,
there has been a surge of both practical and theoretical research
on algorithms to take advantage of them. In particular, Jia et
al. [INFOCOM ’17] designed online scheduling algorithms for
dynamically reconfigurable topologies for both the makespan and
sum of completion times objectives. In this paper, we work in
the same setting but study an objective that is more meaningful
in an online setting: the sum of flow times. The flow time of
a job is the total amount of time that it spends in the system,
which may be considerably smaller than its completion time if
it is released late. We provide competitive algorithms for the
online setting with speed augmentation, and also give a lower
bound proving that speed augmentation is in fact necessary. As
a side effect of our techniques, we also improve and generalize
the results of Jia et al. on completion times by giving an O(1)-
competitive algorithm for arbitrary sizes and release times even
when nodes have different degree bounds, and moreover allow
for the weighted sum of completion times (or flow times).

Index Terms—Scheduling, Reconfigurable Networks

I. INTRODUCTION

The ever-increasing demand for communication has resulted

in unprecedented need for data transfer in essentially all

settings, from local datacenters to planetary-scale WANs. A

central challenge for network operators is to accommodate

as much traffic as possible and to finish data transfers as

quickly as possible. In order to make networks even more

efficient, new technologies have been developed that allow

for software-reconfigurable networks (usually just called re-

configurable networks). These technologies essentially allow

software control over the network topology, rather than just

over traditional control problems such as routing, scheduling,

congestion control, etc. In other words, we are now able to

dynamically reconfigure the network topology to respond to

network demands in an online fashion.

There has been a significant amount of work on actually

building these technologies and systems: see [17] for such a
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system for optical WANs, and see [13], [14], [23], [19], [9] for

a small sample of reconfigurable datacenter networks (a survey

of reconfigurable datacenters can be found at [12]). However,

there has been less attention paid to the algorithmic problems

raised by these technologies: we have the ability to dynam-

ically reconfigure the network topology, but what should we

reconfigure it to? How should we react to changing transfer

and traffic demands? Most systems use a variety of heuristics,

ranging from matching-based algorithms (maximum or stable)

to simulated annealing.

The theoretical study of the algorithmic challenges arising

from reconfigurable networks (particularly optical WANs) was

recently initiated by Jia et al. [16], and this remains the

state of the art on the theory of scheduling reconfigurable

networks. In their setting, they assume a centralized controller

that can dynamically reconfigure the network topology, with

the only restriction being a degree constraint at every node

(which could be different for different nodes, depending on

the underlying machine represented by the node)1. There is

a stream of transfer requests arriving at the system, where

each request has a source, a destination, a transfer size, and

a release time (the earliest time by which the transfer can

start). The goal is to design a scheduling algorithm that

decides, at each time slot, what topology to build and what

jobs to transfer using that topology (under the additional

restriction that multihop paths are not allowed). They provided

both offline and (more interestingly) online algorithm for the

makespan objective (minimizing the time at which all transfers

are finished) and the sum of completion times (minimizing the

sum over all jobs of the time at which they finished).

We work in the same model, but extend and improve the

results of [16]. Most importantly, we provide online algorithms

and prove their competitive ratio for a more natural objective

function: the (weighted) sum of flow times. The flow time of

a job (also sometimes called the sojourn time, waiting time,

or response time) is simply the time that it is in the system,

i.e., its completion time minus its release time. If all release

1Clearly this is not a fully realistic setting, as in optical WANs there are
optical restrictions on the topology which need to be accounted for and in
the datacenter setting there is still an underlying fixed network in addition to
some reconfigurable links. But as discussed in [16], it is a reasonable starting
point for developing algorithms.
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times are 0, then flow times and completion times are the

same. But if jobs are released online, then not only are they

extremely different, but moreover approximation guarantees

on the completion times are not particularly meaningful.

While both problems have the same optimal solution, in an

approximation analysis one can make a job wait proportional

to its release date with little penalty. When the time horizon

is large, then undesirable schedulers can have a small (e.g.

constant) approximation ratio.

Completion Time Versus Flow Time. To see the difference

between completion time and flow time consider an extremely

simple example, suppose that there are only two jobs, each

of which has size 1. Job 1 is released at time 1, and job 2 is

released at time 1000. Then consider the schedule which which

schedules job 1 at time 999 and job 2 at time 1000. Clearly

this is an undesirable schedule – we should have scheduled job

1 at time 1 and job 2 at time 1000. But if we look at the sum

of completion times, the optimal solution has cost 1001, while

this horrible schedule has cost 1999. So this horrible schedule

looks pretty good with respect to completion times, since it

is a 2-approximation! This is clearly ridiculous; we “cheated”

by allowing job 1 to have terrible performance but it balanced

out with job 2’s release date. On the other hand, if we look

at the sum of flow times, the horrible schedule has cost 1000
(since job 1 is in the system for 999 time units while job 2 is

only in the system for 1 time unit) while the optimal solution

has cost 2 (since jobs do not have to wait to be scheduled).

Thus, the flow time objective will rule out such a schedule

and accurately reflects the quality of a schedule.

Results: In this paper we initiate the study of reconfigurable

network scheduling under the weighted flow time objective.

In more detail, we prove the following results.

• In the most general setting of [16] (arbitrary degree

constraints, arbitrary job sizes, arbitrary release dates),

and in addition where every job has a weight which

multiplies its flow time in the objective, we give an

algorithm which is O(1/ǫ2)-competitive as long as the

algorithm is allowed to have speed 2 + ǫ, for any ǫ > 0.

Informally, this is a form of resource augmentation: we

allow the algorithm to complete jobs at a rate that is

2 + ǫ faster than the optimal solution is allowed. From

a networking perspective, this is equivalent to allowing

higher throughput edges as resource augmentation. So,

for example, our algorithm will have weighted flow time

with (2 + ǫ)100 Gbps links that is only O(1/ǫ) times

worse than the optimal solution with 100 Gbps links.

This can also be thought of as overprovisioning: if we

want performance that is comparable to the optimum but

without knowing in advance what the jobs will look like,

then we can just overprovision by a 2 + ǫ factor.

• We justify our previous results by showing that speed

augmentation is necessary: we prove a polynomial lower

bound on any online algorithm without speed augmenta-

tion. In particular, we prove that any online randomized

algorithm without speed augmentation can have compet-

itive ratio that is at best Ω(
√
n). This is a terrible lower

bound, showing that without resource augmentation all

algorithms perform poorly in the worst case. In settings

like this, resource augmentation has been used so theory

can differentiate between the performance of algorithms

[20].

• As a side effect of our techniques, we are also able

to extend the results of [16] on completion times to a

more general setting. While this work provided many

algorithms and O(1)-competitive analyses, they did not

give an O(1)-competitive algorithm for the most general

case: general degree constraints, general job sizes, and

general release times. They also did not give bounds on

weighted completion times. A simple modification of our

flow time algorithm gives an O(1) approximation without

speed augmentation for the completion time objective in

the most general setting.

Outline. In Section II we describe related work for both

reconfigurable networks and flow time scheduling in other

settings. In Section III we formally describe the problem

setting. Section IV has our main upper bounds. We begin with

a warm-up in Section IV-A where we assume that all weights

are 1, all job sizes are 1, and all degree bounds are the same.

This simplified setting allows us to demonstrate the intuition

behind our more general techniques. We then prove give our

algorithm and analysis for the general setting in Section IV-B,

and show how this can be modified to give a bound on

completion times in Section IV-C. Finally, in Section V we

prove our lower bound implying that speed augmentation is

necessary.

II. RELATED WORK

A. Reconfigurable Networks

As discussed in the introduction, there has been a signif-

icant amount of work in the last decade on reconfigurable

datacenters. For overviews, see a recent tutorial from SIG-

METRICS 2019 [8] and the related survey on reconfigurable

datacenters [12]. These have been enabled by a variety of

technologies, including optical circuit switching [9], [21],

60GHz wireless [19], and free space optics [14], [13].

From an algorithmic point of view, these systems gener-

ally use a variety of heuristics without provable guarantees.

The main line of work on understanding the theory behind

reconfigurable datacenters is in the form of demand-aware

networks [5], [4], [2], [3]. In this setting, we assume that

we are given a traffic matrix, and are trying to design a

network topology which will have good performance on that

traffic matrix (i.e., since the network is reconfigurable we

can measure demand and then build an appropriate network

topology). Usually the notion of quality involves the (average)

lengths of paths. Scheduling problems are not considered in

this setting.

For non-datacenter contexts, reconfigurable optical WANs

were introduced by [17]. The scheduling algorithms used

in [17] were based on heuristics (simulated annealing in



particular), so in followup work, Jia et al. [16] introduced the

theoretical study of scheduling algorithms for reconfigurable

optical WANs. They worked in a model which is not a perfect

match for optical WANs, but is close enough to be useful. We

adopt this model, and extend [16] to a better objective function

and slightly more general setting. Moreover, since their model

ignores many of the real-world difficulties of optical WANs,

it applies to more general reconfigurable networking settings.

We note that while WANs and datacenters are obviously

extremely different settings, our goal is to understand the

scheduling problems that arise from the power of reconfigura-

tion. Hence we abstract out to a level which encompasses both

of these settings, at the price of not being extremely realistic

for either of them. However, this is the level of abstraction used

in [16], so it is perhaps a reasonable setting for optical WANs.

For datacenters, the main difference between our model and

reality is the existence of an underlying fixed network: in our

model we assume that the entire network is reconfigurable,

while in most reconfigurable datacenter systems only a fraction

of the links can be reconfigured. Analyzing this combined

setting is an interesting future line of research, which was

recently initiated in the context of routing [10], [11] but which

is still entirely unexplored for scheduling.

B. Flow Time Scheduling

Optimizing total weighted flow time is the most popular

objective in online scheduling theory. We discuss related work

on the problem of scheduling n preemptive jobs that arrive

over time on a single machine with the objective of optimizing

the total weighted flow time. For a (slightly dated) survey

see [20], and further pointers to relevant work can be found

in [15]. It is folklore that the algorithm Shortest-Remaining-

Processing-Time (SRPT) is optimal for scheduling unweighted

jobs on a single machine. When jobs have weights, it is known

that no online algorithm can have a constant competitive ratio

[6].

When there are non-constant lower bounds the competitive

ratio of any online algorithm, prior work has focused on

a resource augmentation analysis. A s-speed c-competitive

algorithm is one where the algorithm achieves a competitive

ratio of c and the algorithm is given a machine that is a

factor s faster than the optimal solution. The consensus in the

community is that the best positive theoretical result one can

show is an algorithm that is (1+ǫ)-speed f(ǫ)-competitive for

any constant ǫ > 0 where f(·) is a function only depending

on ǫ [18]. In particular, the competitive ratio is independent

of n, e.g., O(1ǫ ). Such an algorithm is known as scalable.

Showing an algorithm is scalable gives strong evidence that

the algorithm will work well in practice.

The most natural algorithm is highest-density-first when

jobs have weights. This algorithm prioritizes jobs in order of

their weight over processing time. This algorithm is known to

be (1+ǫ)-speed O(1ǫ )-competitive for total weighted flow time

on a single machine [7]. The algorithm has been generalized

to many environments [1].

III. DEFINITIONS AND PRELIMINARIES

As discussed, we will be studying the same model as [16].

The main difference is the objective function.

a) Model and Scheduling Definition: There is a set of

nodes V , each representing a node in our network. Each vertex

v ∈ V comes with a degree bound dv. A request (job) is a

tuple (ui, vi, ℓi, ri, wi), where ui, vi ∈ V are the source and

destination respectively, ℓi ∈ N is the size, ri ∈ N is the

release time, and wi ∈ R is the weight. Note that without loss

of generality we assume sizes and release times are natural

numbers, since we can always adjust the scale of a time slot.

In each round t, we can create a graph Gt with vertex set V
which satisfies the degree constraints, and where each edge

{u, v} ∈ E(Gt) is labeled with a request i such that {u, v} =
{ui, vi} and t ≥ ri. The request is completed once it has

appeared in at least ℓi of these graphs. Note that as in [16]

we are allowing only direct links (we do not allow data to be

transferred over longer paths) and allow preemption. See [16]

for more justification of this model.

b) Online vs Offline: Clearly scheduling problems in this

context make sense both on- and offline. We will be concerned

with the competitive ratio (the worst case cost of the algorithm

divided by the optimal solution) of scheduling in the online

setting. This the same as the approximation ratio, except we

require the algorithm to be online.

c) Objective Function and Speed Augmentation: As dis-

cussed, Jia et al. [16] considered two objective functions: the

makespan and the sum of completion times. We will mostly

be concerned with a different measure of quality: the weighted

sum of flow times. The flow time of a request i is the time

c(i) at which it completes minus its release time ri. That is,

the flow time of a job is simply how long it is in the system

before being completed. This is a more natural objective than

the sum of completion times, but is also more difficulty to

optimize. We will consider the objective of the weighted flow

time, where our goal is to minimize
∑

i wi(c(i)− ri).
Unfortunately, as we show in Section V, it is not possible

to provide O(1)-competitive algorithm for the total flow time,

even when all weights and sizes are unit. In the face of strong

lower bounds we adopt the most popular form of analysis

known as a resource augmentation analysis. Here we give the

algorithm extra speed. An algorithm running with speed s ≥ 1
is able to process jobs at a rate that is s times faster than the

optimal solution. As discussed in Section I, this can be thought

of as overprovisioning the network, and will allow us to design

competitive algorithms for the flow time objective. Moreover,

as discussed in Section II, this notion of speedup is relatively

standard in the scheduling literature.

IV. UPPER BOUNDS

In this section we give our algorithms and corresponding

upper bound results. We begin in Section IV-A with a simple

setting that serves to demonstrate most of the main ideas

behind our algorithm and analysis. In Section IV-B we move

to the most general online setting to prove our main results.



A. Simple setting

We will begin with the simplest possible setting: when all

degree bounds are equal to 1, all job sizes are 1, and all weights

are 1. Note that, in particular, since all degree bounds are 1
the set of jobs scheduled at any time form a matching.

1) Algorithm: At time t, let G(t) be the (multi)graph of

all jobs that are in the system at time t (i.e., all requests

with release times at most t which have not already been

completed). Order the jobs by release time (breaking ties

arbitrarily but consistently), and then construct a maximal

matching Et using this ordering. These are the jobs scheduled

at time t. For each job i, let Ci be the completion time of job

i (the time at which it is scheduled by this algorithm).

2) Analysis: While the algorithm itself is simple and com-

binatorial, we will analyze it through an LP relaxation, and in

particular through the technique of dual fitting. Let S denote

the set of all jobs. Consider the following linear program.

min
∑

i∈S

∑

t≥ri

(t− ri)xi,t

s.t.
∑

t≥ri

xi,t ≥ 1 ∀i ∈ S
∑

i∈S:|{ui,vi}∩{w}|=1

xi,t ≤ 1 ∀w ∈ V, ∀t ∈ N

xi,t ≥ 0 ∀i ∈ S, ∀t ∈ N

While technically this LP has infinite size (since we did not

put an upper bound on t), it is easy to see that we can put an

upper bound on t of n ·maxi∈S ri, so this LP has finite size.

It is easy to show that this is a feasible LP relaxation.

Lemma IV.1. If there is a schedule with sum of flow times at

most F , then there is a solution to the LP of cost at most F .

Proof. Consider a schedule {Et}t∈N with sum of flow times

F . Since this is a feasible schedule, each Et is a matching. We

create an LP solution as follows: if job i is scheduled at time

t, then we set xi,t = 1, otherwise we set xi,t = 0. Since the

original schedule is feasible, every job is scheduled in some t
so the first LP constraint is satisfied, and similarly since each

Et is a matching the second LP constraint is satisfied. Thus

this is a feasible LP solution. By the definition of the x’s, the

flow time in the schedule is precisely
∑

t≥ri
(t− ri)xi,t, and

thus the LP objective is the sum of the flow times, F .

The dual of this LP is the following.

max
∑

i∈S

αi −
∑

u∈V

∑

t∈N

βu,t

s.t. αi − βui,t − βvi,t ≤ t− ri ∀i ∈ S, ∀t ∈ N

αi ≥ 0 ∀u ∈ S
βi,t ≥ 0 ∀i ∈ S, ∀t ∈ N

We will analyze our algorithm by finding a feasible dual

solution and relating this to the cost of the algorithm. However,

due to the lower bound in Section V, we will need to allow

resource augmentation. Let ALG(s) denote the total flow time

of the algorithm when run with speedup s, i.e., when the

algorithm processes jobs at a speed of s.

Let’s now define our dual solution. But first we need a little

bit of notation: for every node v ∈ V and time t, let dv(t)
denote the degree of v in G(t). Then for every i ∈ S, we let

αi =
dui

(ri)+dvi
(ri)

2s . Similarly, we will set βu,t = du(t)/(2s).
We first show that this is a feasible dual solution.

Lemma IV.2. αi − βui,t − βvi,t ≤ t − ri for all i ∈ S and

t ≥ ri.

Proof. We prove this by induction on t. For the base case, let

t = ri. Then

αi − βui,t − βvi,t =
dui

(ri) + dvi(ri)

2s
− dui

(ri)

2s
− dvi(ri)

2s
= 0 = t− ri,

as claimed. Now consider some t > ri. Note that since we

allow speedup s, the number of jobs scheduled at one time

that have some fixed node as an endpoint is at most s (rather

than at most 1). Thus

αi − βui,t − βvi,t = αi −
dui

(t)

2s
− dvi(t)

2s

≤ αi −
dui

(t− 1)− s

2s
− dvi(t− 1)− s

2s

= αi − βui,t−1 +
1

2
− βvi,t−1 +

1

2
≤ (t− 1− ri) + 1 = t− ri.

We will now prove two lemmas which will allow us to

bound the cost of this dual solution.

Lemma IV.3.
∑

i∈S αi ≥ 1
2 · ALG(s).

Proof. We first claim that in the algorithms (with speedup s),

the flow time of job i is at most
dui

(ri)+dvi
(ri)

s . To see this, let

Si be the set of jobs j with rj < ri and {uj, vj}∩{ui, vi} 6= ∅
that have not been completed by time ri. Note that |Si| =
dui

(ri)+dvi (ri) by definition. Now consider some time t after

job i has been released. If job i has not yet been completed,

and is not scheduled at time t, then some job j ∈ Si must

be scheduled at time t. This is because the algorithm sorts by

release time and constructs a greedy maximal matching in this

order. In particular, if no job j in Si is scheduled at time t,
then we will schedule job i. Thus the time that i spends in the

system before being scheduled is at most dui
(ri) + dvi(ri).

Since we have speedup s, the flow time of job i is at most
dui

(ri)+dvi
(ri)

s .

This now allows us to analyze the α variables. We get that

∑

i∈S

αi =
∑

i∈S

dui
(ri) + dvi(ri)

2s
=

1

2

∑

i∈S

dui
(ri) + dvi(ri)

s

≥ 1

2

∑

i∈S

(Ci − ri) =
1

2
·ALG(s).

Lemma IV.4.
∑

w∈V

∑

t∈N
βw,t ≤ 1

s · ALG(s).



Proof. This is essentially a straightforward calculation using

the fact that the flow time of a job is equal (by definition) to

the number of time steps in which the job is in the system.

So we have that
∑

w∈V

∑

t∈N

βw,t =
1

2s

∑

t∈N

∑

w∈V

du(t) =
1

s

∑

t∈N

|E(G(t))|

=
1

s

∑

i∈S

(Ci − ri) =
1

s
·ALG(s),

as claimed.

We can now prove our main theorem (about this simple

setting).

Theorem IV.5. ALG(2 + ǫ) ≤ 2(2+ǫ)
ǫ · OPT for any ǫ > 0.

Proof. Let s = 2 + ǫ. Combining Lemmas IV.3 and IV.4
implies that

∑

i∈S
αi −

∑

w∈V

∑

t∈N

βw,t ≥
1

2
·ALG(2 + ǫ)− 1

2 + ǫ
· ALG(2 + ǫ)

=
ǫ

2(2 + ǫ)
·ALG(2 + ǫ).

We know from Lemma IV.2 that (α, β) is a feasible dual

solution, so by weak duality we get that

ALG(2 + ǫ) ≤ 2(2 + ǫ)

ǫ
·
(

∑

i∈S

αi −
∑

w∈V

∑

t∈N

βw,t

)

≤ 2(2 + ǫ)

ǫ
·OPT.

B. General Online Model

This section considers the most general model. In this case

each node v has a degree bound dv denoting the maximum

number of jobs involving v that can be scheduled at any point

in time. A job i has size ℓi and a weight wi. We will assume

there is no restriction on how much a job is scheduled, so long

as the degree constraints are satisfied at the vertices. We will

let hi =
wi

ℓi
be the density of job i. The goal is to optimize

the total weighted flow time
∑

i∈[n]wi(c(i)− ri).
This section is organized as follows. We first give our

algorithm, which is simple and natural (highest-density-first).

We then spend most of the section analyzing it. To do this,

we show that we can focus on a different objective called

weighted fractional flow time. We will call the original ob-

jective weighted integral flow to differentiate them. We show

that if the algorithm performs well for the fractional objective

then the algorithm performs well for the integral objective with

slightly more speed up. Once we focus on the fractional flow

objective, we can further show that we may assume all jobs

are unit time in the analysis after scaling the weights. We note

that both of these reductions are done to simplify the analysis

– the algorithm itself does not change or make any of these

assumptions, and could be analyzed directly (although doing

so is more technical and complicated).

With these simplifications and reductions in place we per-

form a dual-fitting analysis of the algorithm. As in the simple

case of Section IV-A, the intuition is that the dual variables

correspond to the “extra cost” to the algorithm incurred by

a job when it arrives. This is more complicated than in the

simple setting due to the addition of weights and job size (or

just weights after the reductions), but the ideas are the same.

1) Algorithm: Highest-Density-First: Recall that S(t) is

the set of released but uncompleted jobs at time t. When

scheduling, we say a node u is saturated if it schedules du jobs

adjacent to it. Order the jobs in S(t) in decreasing order of

their density. In this order, schedule job i if the two endpoints

for i are not saturated. We note that we schedule job i as must

as possible if its endpoints are not saturated, that is, we will

create parallel links between the endpoints until one of them

is saturated or the job is completely scheduled.

2) Reduction to the Unit Time Case: This section is devoted

to proving the following lemma, stating that we may assume

in the analysis that each job is restricted to only being unit

size but arbitrary weight. This transformation is done only to

simplify the analysis; the algorithm itself is unaffected.

Lemma IV.6. If highest-density-first is s-speed c-competitive

on unit size instances, then highest-density-first is (1 + ǫ)s-

speed
(1+ǫ)c

ǫ -competitive for arbitrary size and arbitrary

weight instances.

To prove the lemma first consider a different objective

called weighted fractional flow time. To make the distinc-

tion between these objectives, we call the original objective

weighted integral flow time. Recall that S(t) is the released

but uncompleted jobs at time t. For each job i ∈ S(t)
let 0 ≤ ℓi(t) ≤ ℓi be the remaining size of job i at

time t. Then we define the weighted fractional flow time to

be
∑

t∈N

∑

i∈S(t) wi
ℓi(t)
ℓi

. In this objective, each job i pays

wi
ℓi(t)
ℓi

at each time t it is alive and unsatisfied. Note that the

original weighted integral flow time objective is equivalent

to
∑

t∈N

∑

i∈S(t) wi, and hence the difference between the

two objectives is that in the fractional objective the weight of

a job is scaled by
ℓi(t)
ℓi

(the fraction of the job size that is

uncompleted).

We now show that we can convert any algorithm for

fractional flow to one for integral flow time (and thus in

particular the highest-density-first algorithm).

Lemma IV.7. Given any online algorithm A with s-speed that

is c-competitive for fractional flow time, for any ǫ > 0 there is

an online algorithm B that is (1+ǫ)s-speed
(1+ǫ)c

ǫ -competitive

for integral flow time. Further if A is highest-density-first, so

is B.

Proof. Consider the algorithm A for fractional flow time.

Each time A schedules a job i with speed s the algorithm

B processes the same job with speed (1 + ǫ)s. If the job has

already been completed in B then B can either be idle or work

on some other job (e.g., the remaining with highest density).

Clearly the schedule produced by algorithm B is feasible if

the schedule produced by algorithm A is feasible, since no

job is scheduled by B before it is released. Notice that if



A is highest-density-first then B can be highest-density-first.

This is because highest-density-first has the property that if the

algorithm is given more speed then the algorithm will either

process the same job as the slower schedule or the algorithm

will have completed the job.

Fix any job i. Consider the first time ti where a 1
1+ǫ fraction

of i is completed in A. So
ℓi(t)
ℓi

≥ ǫ
1+ǫ for all t ≤ ti. Thus

every t with ri ≤ t ≤ ti contributes ǫwi

1+ǫ or more to the

objective. Since B schedules job i at the same times or earlier

as A with speed a (1+ǫ) factor faster, B will complete the job

by time ti. So B pays at most wi for each t with ri ≤ t ≤ ti,
while A pays at least ǫwi

1+ǫ . Hence the ratio between the two

costs is at most 1+ǫ
ǫ .

This holds for all jobs. Further, the fractional optimal

objective is only less than the integral optimal objective. This

gives the lemma.

The previous lemma shows that we may focus on the

weighted fractional flow time objective. The next lemma

shows that we can further restrict the instance to unit size

jobs. Combining these two lemmas will allow us to focus on

the unit size case.

Lemma IV.8. For the fractional flow time objective, any in-

stance can be transformed to a different problem instance such

that (1) the objective for the highest-density-first algorithm is

the same on both instances, (2) the optimal objective is only

less on the new instance, and (3) in the transformed instance

all jobs are unit size.

Proof. Fix any instance. Consider transforming any job i into

ℓi new jobs i′1, i
′
2, . . . , i

′
ℓi

. Each new job i′ has size 1 and

weight wi

ℓi
. Note that the density of the jobs i′j are the same

as i for all j.

Consider any schedule A for the original instance. We create

the analogous schedule B for the new instance. Whenever

a job i is processed by A for k units at some time t, jobs

{i′j, i′j+1, . . . i
′
j+k} are processed by B such that j is the lowest

index possible among unsatisfied jobs. Both schedules then are

intuitively working on the same job at the same times. Notice

that A is highest-density-first on the original instance if and

only if B is the highest-density-first algorithm on the new

instance, since the density of the jobs in I ′i are the same as i.
The fractional flow time objective is the same for A and B

because each time ℓi(t) decreases by 1, the weight of i in A

changes from wi
ℓi(t)
ℓi

to wi
ℓi(t)−1

ℓi
. Similarly in B, there are

ℓi(t) jobs alive in I ′i and this decreases by 1. Their weight

was |I ′i|wi

ℓi
= wi

ℓi(t)
ℓi

and this decreases to (|I ′i | − 1)wi

ℓi
=

wi
ℓi(t)−1

ℓi
.

Lemmas IV.7 and IV.8 imply that if highest-density-first

is s-speed c-competitive for unit-size jobs with respect to

weighted fractional flow time, then for any ǫ > 0, highest-

density-first is (1 + ǫ)s-speed
(1+ǫ)c

ǫ -competitive for general

size jobs with respect to weighted integral flow time. But for

unit-size jobs, the fractional flow time is equal to the integral

flow time. Thus we have proved Lemma IV.6.

3) Analysis: As in the simple setting of Section IV-A, we

perform a dual fitting argument. Lemma IV.6 ensures that it is

sufficient for us to analyze highest-density-first on instances

where all jobs have unit size. Notice that in this case, highest-

density-first simply prioritizes jobs in order of largest weight.

Consider the following linear program, where xi,t is a variable

denoting how much i is processed at time t (in a true solution

this will be either 0 or 1).

min
∑

i∈S

∑

t≥ri

wi(t− ri)xi,t

s.t.
∑

t≥ri

xi,t ≥ 1 ∀i ∈ S
∑

i∈S:|{ui,vi}∩{w}|=1

xi,t ≤ dw ∀w ∈ V, ∀t ∈ N

xi,t ≥ 0 ∀i ∈ S, ∀t ∈ N

As before we do not solve this LP, but rather use it only

for analysis purposes. Note that the objective is the integral

flow time. The first set of constraints ensures each job is

fully scheduled. The second set of constraints ensures that

the degree constraints are satisfied.

Lemma IV.9. If there is a schedule with weighted sum of flow

times at most F , then there is a solution to the LP of cost at

most F .

Proof. Consider a schedule {Et}t∈N with weighted sum of

flow times F . Since this is a feasible schedule, each Et

satisfies the degree constraint at each vertex. We create an

LP solution as follows: if job i is scheduled at time t then

we set xi,t = 1, otherwise we set xi,t = 0. Since the original

schedule is feasible, every job is scheduled at some point and

thus the first LP constraint is satisfied. Similarly, since each Et

satisfies the degree constraints, the second set of LP constraints

are satisfied. Thus this is a feasible LP solution. The objective

is the weighted flow time of the resulting schedule.

The dual of this LP is the following.

max
∑

i∈S

αi −
∑

u∈V

∑

t∈N

βu,t

s.t. αi −
βui,t

dui

− βvi,t

dvi
≤ wi(t− ri) ∀i ∈ S, ∀t ≥ ri

αi ≥ 0 ∀u ∈ S
βi,t ≥ 0 ∀i ∈ S, ∀t ∈ N

We will analyze our algorithm (highest-density-first, equiva-

lent to highest-weight-first) by finding a feasible dual solution

and relating this to the cost of the algorithm using resource

augmentation. Let ALG(s) denote the total flow time of the

algorithm when run with speedup s.

Let’s now define our dual solution. But first we need a little

bit of notation: for every node k ∈ V and time t, let ωk(t) =
∑

i∈S(t):k∈{ui,vi}
wi denote the total weight of jobs adjacent

to k that have been released but are unsatisfied at time t. Let

Ui(t) (resp. Vi(t)) be the jobs alive at time t that share the



end point ui (resp. vi) with i. Then for every i ∈ S, we set

the α variables as follows.

αi :=
1

2s

(

1

dui



wi

∑

j∈Ui(ri):wi<wj

1 +
∑

j∈Ui(ri):wi>wj

wj





+
1

dvi



wi

∑

j∈Vi(ri):wi<wj

1 +
∑

j∈Vi(ri):wi>wj

wj





)

It is not hard to see that, as in the simple setting of Sec-

tion IV-A, these dual variables correspond to an upper bound

on the increase in the algorithm’s cost due to the existence of

job i. Indeed, consider the first two terms depending on jobs

Ui. The first term states that job i will wait on all jobs in

Ui(t) that have higher weight, and pay wi for each such time

step. The second term states that all lower weight jobs than i
will now need to wait on job i before they are completed. The

last two terms are the same, but for jobs in Vi(t). Note that

this expression is more complicated than in the simple setting

since now we order by weights rather than by release time, so

earlier jobs can be “pushed back” due to job i (unlike in the

simple case).

Similarly, we will set βu,t = ωu(t)/(2s), which is es-

sentially the weighted version of the same dual variable in

Section IV-A.

We first show that this is a feasible dual solution. Clearly

all variables are nonnegative, so we just need to show the

following lemma.

Lemma IV.10. αi − βui,t

dui

− βvi,t

dvi

≤ wi(t− ri) for all i ∈ S
and t ≥ ri.

Proof. Consider any time t ≥ ri. We have the following.

αi −
βui,t

dui

− βvi,t

dvi
=

1

2s

(

1

dui

(

wi

∑

j∈Ui(ri),wi<wj

1 +
∑

j∈Ui(ri),wi>wj

wj

)

+
1

dvi

(

wi

∑

j∈Vi(ri),wi<wj

1 +
∑

j∈Vi(ri),wi>wj

wj

)

)

− ωui
(t)

2sdui

− ωvi(t)

2sdvi
(1)

We now bound the first and third term by 1
2wi(t− ri), this

is, half of the right hand side of the constraint. The second

and fourth will behave similarly. Together, this will show the

constraint is satisfied.

We have the following.

1

2sdui



wi

∑

j∈Ui(ri),wi<wj

1 +
∑

j∈Ui(ri),wi>wj

wj





−ωui
(t)

2sdui

=
1

2sdui



wi

∑

j∈Ui(ri),wi<wj

1 +
∑

j∈Ui(ri),wi>wj

wj





− 1

2sdui

∑

j∈Ui(t)

wj [ def. of ωui
] (2)

Consider the last term. Let Pi(t) = Ui(ri) \ Ui(t) denote

the set of jobs in Ui(ri) that are completed (processed) by

time t. Then (2) is at most the following, with equality if no

jobs arrive during [ri, t].

≤ 1

2sdui



wi

∑

j∈Ui(ri),wi<wj

1 +
∑

j∈Ui(ri),wi>wj

wj





− 1

2sdui

∑

j∈Ui(ri)\Pi(t)

wj

Now we can use some of the jobs which appear in the
the last term to cancel out the same jobs in the second term,
and then use the relationship in the summations between the
weights of jobs j and i to rewrite everything in terms of wi.
This gives that (3) is

=
1

2sdui



wi

∑

j∈Ui(ri),wi<wj

1





− 1

2sdui

∑

j∈Ui(ri)\Pi(t),wi<wj

wj +
1

2sdui

∑

j∈Pi(t),wi>wj

wj

≤ 1

2sdui



wi

∑

j∈Ui(ri),wi<wj

1





− 1

2sdui

∑

j∈Ui(ri)\Pi(t),wi<wj

wi

+
1

2sdui

∑

j∈Pi(t),wi>wj

wi. (3)

Now we combine the first term with the second to get that

(3) is equal to

=
1

2sdui

∑

j∈Pi(t),wi<wj

wi +
1

2sdui

∑

j∈Pi(t),wi>wj

wi

=
wi

2sdui

|Pi(t)|. (4)

We know that 1
sdui

|Pi(t)| ≤ t − ri because the algorithm

can processes at most s ·dui
jobs at each time step adjacent to

ui and Pi(t) are jobs processed at ui during [ri, t]. Thus (5)

is at most 1
2wi(t− ri). Putting this all together, we have that

1

2sdui



wi

∑

j∈Ui(ri),wi<wj

1 +
∑

j∈Ui(ri),wi>wj

wj



− ωui
(t)

2sdui

≤ 1

2
wi(t− ri)

This bounds the first and third term of equation (1). The

second and fourth have the exact same analysis bounding

them by 1
2wi(t− ri). Putting them together implies that (1) is

bounded by wi(t− ri), proving the lemma.

We will now prove two lemmas which will allow us to

bound the cost of this dual solution. Let ALG(s) denote the

total weighted flow time of the online algorithm.



Lemma IV.11.
∑

i∈S αi ≥ 1
2 · ALG(s).

Proof. Recall that Ui(t) denotes all jobs that have not yet been
processed by time t which have ui as one endpoint (including
job i itself), and similarly for Vi(t). Then we have that

∑

i∈S
(2αi) =

1

s

∑

i∈S

(

1

dui



wi

∑

j∈Ui(ri):wi<wj

1 +
∑

j∈Ui(ri):wi>wj

wj





+
1

dvi



wi

∑

j∈Vi(ri):wi<wj

1 +
∑

j∈Vi(ri):wi>wj

wj





)

=
∑

i∈S
wi

(

1

sdui

|{j ∈ Ui(ri) : wi < wj}|

+
1

sdui

|{j : i ∈ Ui(rj), wi < wj}|)

+
1

sdvi
|{j ∈ Vi(ri) : wi < wj}|

+
1

sdvi
|{j : i ∈ Vi(rj), wi < wj}|

)

(5)

≥
∑

i∈S
wi(Ci − ri) = ALG(s).

The second equality has arranged terms as follows. Fix job i.
The first term counts jobs j that require node ui, have higher

weight than i, and are released and unsatisfied when i arrives;

this term comes from αi. The second term counts jobs j with

higher weight than i, that require node ui, and arrive during

when i is released at unsatisfied; this term comes from each

such αj . The last two terms are analogous for node vi.

The final inequality is because the i’th term in the sum of

(5) is an upper bound on the weighted flow time of job i. This

is because the only jobs which can prevent job i from finished

are either higher-weight jobs that show up earlier than ri at ui

(the first term), higher-weight jobs which show up at ui after

ri before job i has finished (the second term), and similarly

for jobs which show up at vi (the third and fourth terms). Then

we multiply these jobs by the rate at which they are processed

( 1
sdui

or 1
sdvi

).

Next we bound the contribution of the β variables.

Lemma IV.12.
∑

w∈V

∑

t∈N
βw,t ≤ 1

s · ALG(s).

Proof. This is essentially a straightforward calculation using

the definition of weighted flow time and the fact that each job

has two endpoints. Let c(i) be the completion time of i in

highest-density-first’s schedule. We have the following.

∑

a∈V

∑

t∈N

βa,t =
1

2s

∑

t∈N

∑

a∈V

∑

i∈S(t):a∈{ui,vi}

wi

=
1

s

∑

i∈S

∑

ri≤t≤c(i)

wi =
1

s
· ALG(s).

We can now prove our main theorem. In the following, let

OPT be the optimal solution (without speedup).

Lemma IV.13. ALG(2 + ǫ) ≤ 2ǫ+4
ǫ ·OPT for any ǫ > 0.

Proof. Let s = 2 + ǫ. Combining Lemmas IV.11 and IV.12
implies that
∑

i∈S
αi −

∑

w∈V

∑

t∈N

βw,t

≥ 1

2
·ALG(2 + ǫ)− 1

2 + ǫ
· ALG(2 + ǫ) ≥ ǫ

2ǫ + 4
·ALG(2 + ǫ).

We know from Lemma IV.10 that (α, β) is a feasible dual

solution, so by weak duality we get that

ALG(2 + ǫ)

≤ 2ǫ+ 4

ǫ
·
(

∑

i∈S

αi −
∑

w∈V

∑

t∈N

βw,t

)

≤ 2ǫ+ 4

ǫ
·OPT.

Finally we get our main theorem by combining the pre-

vious lemma with the reduction to the unit time instance

in Lemma IV.6. Note that by setting ǫ to any appropriate

constant (say, 1/2), Theorem IV.14 gives an O(1)-competitive

algorithm with O(1)-speedup.

Theorem IV.14. Highest-density-first is (2+ ǫ)-speed O( 1
ǫ2 )-

competitive for the total flow time objective when jobs have

arbitrary sizes and weights and the degree bounds are arbi-

trary for any 0 < ǫ ≤ 1.

C. Completion Times

We now claim that Theorem IV.14 implies there is a O(1)-
competitive for the total (weighted) completion time objective

function, even without any speedup. To see this, we argue

that we can simulate speed-up s for the total completion

time objective by losing a factor s in the competitive ratio.

Given any online schedule A using s-speed, construct a online

schedule B using 1-speed as follows. Each job scheduled

with s speed at time t in A is scheduled during the interval

(st, s(t+1)] in B. This ensures a job i completed at time c(i)
in A is completed at time s ·c(i) in B. Thus, each job pays an

extra factor of at most s in the completion time, so this extra

factor goes directly into the competitive ratio.

More formally, we prove the following (where we make no

attempt to optimize the constant).

Theorem IV.15. There is a O(1)-competitive for the total

completion time objective when jobs have arbitrary sizes and

weights and the degree bounds are arbitrary.

Proof. Let OPTc denote the cost of the optimal schedule with

respect to weighted completion times, and let c∗(i) denote the

completion time of job i in this schedule. Note that the total

weighted flow time of this schedule is F =
∑

iwi(c
∗(i) −

ri) =
∑

iwic
∗(i)−∑i wiri.

Let cf (i) denote the completion time of job i when we

run highest-density-first with 3-speed. Then Theorem IV.14

implies that
∑

i wi(cf (i)− ri) ≤ O(1) ·F = O(1) · (OPTc −
∑

i wiri). Now by stretching out time as described earlier, we

get a new schedule where job i completes at time at most

c(i) ≤ 3 · cf (i). Putting this together, we get that

∑

i

wic(i) ≤ 3
∑

i

wicf (i)



= 3

(

∑

i

wicf (i)−
∑

i

wiri

)

+ 3
∑

i

wiri

≤ 3

(

O(1) ·
(

OPTc −
∑

i

wiri

))

+ 3
∑

i

wiri

≤ O(1) ·OPTc.

Despite the wide variety of algorithms and analyses they

provided for the sum of completion times, the existence of

such an algorithm for this general setting was not given in [16].

They did not give bounds on weighted completion times in

any setting, and even for unweighted completion times they

did not provide a O(1)-competitive algorithm for arbitrary

sizes, degree bounds, and release times. Thus this shows that

designing algorithms for flow times, even with speedup, can

yield improvements for completion times.

V. LOWER BOUND

In this section we will prove the following theorem.

Theorem V.1. Every randomized algorithm has expected

competitive ratio at least Ω(
√
n), where n is the total number

of jobs, even on instances in which all job sizes are 1 and all

degrees are 1.

To prove this, we first apply Yao’s principle [22]: it is

sufficient to provide a distribution over inputs such that any

deterministic algorithm has expected competitive ratio of at

least Ω(
√
n). So consider the following distribution.

Let V = {v1, v2, v3, v4}, and set all degree bounds to 1. Let

L be some large even value (eventually n will be Θ(L)). Let

S1 be a set of
√
L identical jobs, each of the form (v1, v2, 1, 1),

and similarly let S2 be a set of
√
L identical jobs each of the

form (v3, v2, 1, 1). (Note that both of these sets consist of jobs

which are released at time 1). Let S3 = {(v3, v4, 1,
√
L+ i) :

i ∈ [L]} (so one job released at each time in [
√
L+1, L+

√
L]),

and let S4 = {(v1, v4, 1,
√
L + i) : i ∈ [L]}. Our distribution

of instances is the following: with probability 1/2 the set of

jobs is T1 = S1 ∪ S2 ∪ S3, and with probability 1/2 the set

of jobs is T2 = S1 ∪ S2 ∪ S4. Note that in both cases, n =
L+ 2

√
L = Θ(L).

Lemma V.2. OPT ≤ O(n) with probability 1

Proof. If the actual instance is T1, then for every t ∈ [
√
L],

OPT could schedule a job in S2 (since they are all released

at time 1). Then after time
√
L, all jobs from S2 have been

completed. Then for the next
√
L rounds, OPT can schedule

one job from S1 and one job from S3 simultaneously (since

they do not share any endpoints, and one new job from S3

arrives in each round). Then after round 2
√
L all jobs in S1

have been completed, so OPT will continue to schedule the

jobs in S3 as they arrive. In this schedule, every job in S1

has flow time at most
√
L, every job in S2 has flow time

at most 2
√
L, and every job in S3 has flow time 1. Thus

OPT ≤
√
L ·

√
L+

√
L · 2

√
L+ L = O(L).

Similarly, if the actual instance is T2, then for every t ∈
[
√
L], OPT could schedule a job in S1. Then after time

√
L,

all jobs from S1 have been completed. Then for the next
√
L

rounds, OPT can schedule one job from S2 and one job from

S4 simultaneously. Then after round 2
√
L all jobs in S2 have

been completed, so OPT will continue to schedule the jobs

in S4 as they arrive. As in the T1 case, the total flow time

achieved by OPT is at most O(L) = O(n).

Now we analyze an arbitrary deterministic online algorithm

A. We begin with the following claim.

Lemma V.3. With probability at least 1/2, for all t ∈ {
√
L+

1,
√
L+ 2, . . . , L+

√
L}, there are at least

√
L/2 unfinished

jobs at time t that have already been released.

Proof. Both of the possible instances are the same up until

time
√
L, and by time

√
L, A has completed at most

√
L

jobs from S1 ∪S2 (since they all share at least one endpoint).

This after time
√
L, either S1 or S2 still has at least

√
L/2

unfinished jobs.

If S2 still has at least
√
L/2 unfinished jobs (case 1), then

suppose that the instance is T1 (this happens with probability

1/2). We prove the lemma by induction on t. When t =
√
L+

1, we know that there are at least
√
L/2 jobs from S2 that have

not yet been completed. So the lemma is true for t =
√
L+1.

Now consider some
√
L+ 1 < t ≤ L+

√
L. By induction, at

time t − 1 there were at least
√
L/2 uncompleted jobs from

S2 ∪ S3 that had already been released. At most one of these

jobs was processed by A at time t − 1 (since they all share

v3 as an endpoint), and at time t one new job from S3 was

released. Thus the number of uncompleted jobs from S2 ∪ S3

at time t is at least
√
L/2− 1 + 1 =

√
L, as claimed.

Now suppose that S1 still has at least
√
L/2 unfinished jobs

after time
√
L (case 2). Then with probability 1/2 the instance

is T2. The same induction works here. When t =
√
L+1, we

know that there are at least
√
L/2 jobs from S1 that have not

yet been completed, so the lemma is true for t =
√
L + 1.

Now consider some
√
L+ 1 < t ≤ L+

√
L. By induction, at

time t − 1 there were at least
√
L/2 uncompleted jobs from

S1 ∪ S4 that had already been released. At most one of these

jobs was processed by A at time t − 1 (since they all share

v1 as an endpoint), and at time t one new job from S4 was

released. Thus the number of uncompleted jobs from S1 ∪ S4

at time t is at least
√
L/2− 1 + 1 =

√
L, as claimed.

Lemma V.4. The expected sum of flow times in A is at least

Ω(n3/2)

Proof. For every job i, let c(i) denote its completion time in
A. For every time, let R(t) denote the number of jobs that
have been released but not yet completed by A. Let S = T1 if
T1 is the instance, and otherwise let S = T2. Then Lemma V.3
implies that with probability at least 1/2,

∑

i∈S
(c(i)− ri) =

∑

t

R(t) ≥
L+

√
L

∑

t=
√
L+1

R(t) ≥
L+

√
L

∑

t=
√
L+1

√
L

2

≥ Ω(L3/2) = Ω(n3/2).

Lemmas V.2 and V.4, together with Yao’s principle [22],

imply Theorem V.1.
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