
ar
X

iv
:2

10
4.

01
38

6v
1

 [
cs

.N
I]

 3
 A

pr
 2

02
1

Self-adjusting Advertisement of Cache Indicators
with Bandwidth Constraints

Itamar Cohen∗, Gil Einziger†, and Gabriel Scalosub‡
∗ Department of Electronics and Telecommunications, Politecnico di Torino, Italy. Email: itamar.cohen@polito.it

†Department of Computer Science, Ben-Gurion University of the Negev, Israel. Email: gilein@bgu.ac.il
‡School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Israel. Email: sgabriel@bgu.ac.il

Abstract—Cache advertisements reduce the access cost by
allowing users to skip the cache when it does not contain their
datum. Such advertisements are used in multiple networked do-
mains such as 5G networks, wide area networks, and information-
centric networking. The selection of an advertisement strategy
exposes a trade-off between the access cost and bandwidth
consumption. Still, existing works mostly apply a trial-and-
error approach for selecting the best strategy, as the rigorous
foundations required for optimizing such decisions is lacking.

Our work shows that the desired advertisement policy depends
on numerous parameters such as the cache policy, the workload,
the cache size, and the available bandwidth. In particular, we
show that there is no ideal single configuration. Therefore, we
design an adaptive, self-adjusting algorithm that periodically
selects an advertisement policy. Our algorithm does not require
any prior information about the cache policy, cache size, or work-
load, and does not require any apriori configuration. Through
extensive simulations, using several state-of-the-art cache policies,
and real workloads, we show that our approach attains a similar
cost to that of the best static configuration (which is only
identified in retrospect) in each case.

I. INTRODUCTION

Caching is a fundamental optimization technique where a
small subset of the data is stored in a cache, which is cheaper
to access than the regular storage. Caching is common to the
point where it is present in some form in almost all computing
environments and systems, ranging from micro-controllers,
through PCs and servers, and onto distributed cloud services.

In large distributed systems, caches often further optimize
performance by advertising their content. Such advertisements
allow clients to bypass the cache when it is unlikely to
contain the requested datum, thus reducing the total access
cost, where “cost” can reflect bandwidth, access time, or
energy [1]–[3]. Content advertisements are used in mobile ad-
hoc networks [4], [5], content delivery networks (CDN) [3],
[6], [7], information centric networking (ICN) [8], [9], and
in wide-area networks [10].

Ideally, the advertisement policy would reflect the cached
content at any given time, but such a solution is bandwidth-
intensive. Content advertisement is often restricted to a band-
width budget. Therefore, systems often compromise on ad-
vertising approximate indicators that approximate the cached
content [11]–[13] to reduce the advertisement size, at the cost
of some probability of generating false-positive errors [1], [6],
[11], [13]–[17]. Such errors imply that indicators sometimes

* The work was done while this author was with Ben-Gurion University.

2 16 128 1K 8K
10−4

10−3

10−2

10−1

Update interval (#requests)

R
at

io

False negative

2 16 128 1K 8K

Update interval (#requests)

False positive

2-BPE 4-BPE 8-BPE 16-BPE

Fig. 1. Effect of the update interval on the false-negative errors (left) and
false-positive errors (right) for optimally configured Bloom filter indicators.
Both axis are in log-scale, and the cache size is 8K, policy is LRU, trace is
F1 (described in Sec. VI).

mistakenly assert that a datum is stored in the cache, causing
redundant cache accesses.

When constantly sending indicator advertisements, the ad-
vertised content remains fresh in the sense that it accurately
reflects the (approximate) state of the cached content, and we
only experience errors due to hash collisions. In bandwidth-
constrained environments, insisting on freshness mandates the
usage of relatively small (and inaccurate) indicators to cope
with the bandwidth budget, which would otherwise imply
packet drop and increased error rate. An alternative is to send
an indicator advertisement only occasionally. When using such
an approach, the advertised content gradually becomes stale,
in the sense that it takes time for the indicator available at the
clients to reflect changes in the cached content, which again
leads to an increased error rate.

To illustrate the above scenarios, consider an advertisement
transmission, followed by having the cache admit a new item
(x) and evict some item (y), such that these events are not
(yet) advertised to the clients. When the client tests for y, the
indicator falsely indicates that y is in the cache, resulting in a
false-positive error. Similarly, a query for x is likely to falsely
indicate that x is not in the cache (as it wasn’t in the cache
at the time the advertisement was sent), resulting in a false-

negative error. Thus, staleness creates both false-positive and
false-negative errors, and we expect fewer of these errors, the
more frequently we refresh the advertisements.

Fig. 1 shows the percentage of false indications as a function
of the time between subsequent advertisements, referred to as
the update interval. Here, the advertisement size is expressed

http://arxiv.org/abs/2104.01386v1

by the number of Bits Per cached Element (BPE), while the
update interval is expressed in terms of requests between
subsequent updates. Notice that the X-axis and the Y-axis are
in logarithmic scale. Fig. 1 (left) shows that the false-negative
ratio increases with the update interval, as we qualitatively
explained above, and that it may reach non-negligible rates.
Fig. 1 (right) demonstrates that increasing the update interval
also affects the false-positive errors, but the effect is less
pronounced than it is on false-negatives.

The combination of approximate indicators and staleness
makes selecting a cache advertisement policy a challenging
task. Intuitively, the cache may send an advertisement of size
x once every y requests, or a more accurate advertisement of
size β ·x (β > 1) once every β ·y requests. Both options require
similar bandwidth, but it is unclear which of them would
do better. Note that although the probability of false-positive
due to hash collisions is relatively well understood [11], the
errors caused by stale advertisements are difficult to predict
as they depend on the workload, the cache policy, and the
cache size. Furthermore, existing works do not address the
complex interplay between advertisement strategy, indicator
size, update interval, and access cost [4], [10], [18], [19].
Instead, most works fix an advertisement policy by crude
estimations and rules-of-thumb, rather than by optimizing it
according to the system being used, and the workload being
served [20], [21]. While such an approach may work in some
scenarios, changes in either the cache policy, the workload,
the cache size, or the budget, may deteriorate performance
significantly, as we demonstrate in Sec. IV.

Our contribution: Our proposed solutions make adver-
tisements easier to use in caching systems. Our first con-
tribution is the formulation of the problem and a rigorous
study of the problem domain. We perform a simulation-based
study using state-of-the-art cache policies and real workloads,
demonstrating that the best advertisement strategy depends
on numerous factors such as the cache policy, the cache
size, the workload, and the communication budget. Our study
implies that using previously developed approaches requires
extensive testing under varying conditions, to optimize the
advertisement policy. Worse yet, every change in the system
parameters requires revisiting the previous decisions. Such
optimization is rarely done in practice because it is time-
consuming, and more importantly, because some affecting
parameters are uncontrollable by the system designers. E.g.,
the workload may change dynamically, and the cache size may
vary between deployments.

In light of this challenge, we suggest an adaptive, self-
adjusting, algorithm that periodically updates its advertisement
strategy. Through an extensive simulation study using real
workloads, and state of the art cache policies, we show that
our algorithm matches the performance of the best static
strategy, that can only be determined in retrospect. Adopting
our proposed solution implies that system designers are no
longer required to optimize their advertisement policy. The
algorithm adapts to the system configuration, as well as to the
dynamic workload characteristics in runtime.

II. RELATED WORK

Indicators are used to periodically advertise the cache
content in multiple networking environments, including wide-
area networks [10], content delivery networks [2], [3], [6],
[7], information centric networking [8], [9], [22]–[24], and
wireless networks [4], [5]. Indicators make use of randomized
hash-based data structures such as Bloom filters [11], [12],
[25], and fingerprint hash tables [13], [16].

While conceptually simple, there are numerous challenges
in utilizing indicators. For example, the study in [1] shows that
indicators may degrade the performance in some scenarios in
what is refer to as the “Bloom Paradox”. The works [26]–
[28] tackle a distributed scenario where multiple caches send
indicators, and the client needs to formulate an access strategy
that minimizes the total expected cost. The work of [29]
suggests methods to reduce the transmission overheads of
indicators, at the expense of larger local memory consumption.
The works [30], [31] reduce the transmission overheads by
accurately advertising important information, while allowing
less important information to be stale, or less accurate. The
work [15] surveys many optimizations to indicators, such as
the support for removals and dynamic scaling. While such
structures are used by our work, the exact construction is not
a central part of our work.

Staleness is a major challenge for cache advertisements. The
work of [32] suggests advertisement strategies that make the
impact of staleness on the false-positive ratio and the false-
negative ratio predictable. However, their proposed solution
requires sending an update whenever sufficiently many bits of
the indicator have changed. This might impose a hefty toll on
the bandwidth consumption, and may well violate the available
budget. The works [4], [10], [18], [19] perform simulation
studies in order to identify “reasonable” advertisement policies
for some concrete settings (workload, cache size, cache policy,
miss penalty). Other works [33], [34] address the problem of
maintaining a bandwidth budget when sending advertisements
using a trial-and-error approach. Such an approach usually
requires a lot of effort on the part of system designers, and as
the workload may change, one might still end up exceeding
(or under-utilizing) the budget. In comparison, we design a
self-adjusting mechanism that utilizes the budget efficiently
without resorting to trial-and-error.

In Squid cache [21], the update interval is fixed and defaults
to sending an update once in a hour [20], [21]. Since such
a solution is problematic, Squid’s spec defines the problem
of scaling the update interval as an "open issue" [21]. In
comparison, our work provides a good solution that adapts
the update interval, and the indicator size, to the current
situation. To the best of our knowledge, our work is the first
to automatically optimize the advertisement strategy, while
efficiently utilizing a fixed bandwidth budget.

III. SYSTEM MODEL

This section formally defines our system model, as well as
our notation (which is also summarized in Table I).

TABLE I
LIST OF NOTATION

Symbol Meaning

C Cache size [number of elements]
St Set of data items in the cache at time t
It Indicator at time t

It(x) Indication for datum x
|Imin| , |Imax| Minimal, maximal feasible indicator size [bits]
FPt, FNt False-positive, false-negative estimate of indicator It

M Miss penalty
|I| Indicator size [bits]
u Update interval [number of cache requests]

umin, umax Minimal, maximal update interval [requests]
B Bandwidth budget [bits/request]
T Re-configuration interval [number of cache requests]
α tradeoff parameter balancing accuracy / responsiveness

/ bandwdith variation
P Cache policy
W Workload (trace)

Cache and cost model: We consider a cache that contains,
at any time t, some set of items St. The maximal number
of items in the cache is C. Clients issue a sequence of
requests/queries for data. The clients may request the data
from the cache, or from some remote storage. Without loss
of generality, we refer to each request as arriving in a unique
time slot t. Yet, when clear from the context, we sometimes
omit the subscript t.

Accessing the cache incurs some access cost, which we
normalize to 1 without loss of generality. Cache access cost
is due whenever the cache is accessed, even if the requested
datum is not in the cache. If a cache access for datum d at time
t results in a cache miss, i.e., d /∈ St, then an additional miss

penalty M > 1 is incurred. This miss penalty is also imposed
whenever the cache is not accessed for a given request. The
miss penalty reflects the cost of retrieving the datum from
some remote storage. The cost M includes notifying the cache
about the data access, in which case the cache may decide to
admit the datum towards serving future requests, depending on
the policy being applied for admitting and evicting items from
the cache. The service cost is the sum of the cache access cost,
and the miss penalty cost. To make a meaningful comparison
of performance, we focus our attention on the average service

cost of all the requests in the sequence, thus following similar
cost models studied in previous works [26], [28], [35].

Indicators, update intervals, and configurations: At any
time t, the cache may advertise an indicator It that approx-
imates St at time t. For any indicator It, given a datum x,
a positive indication of It indicates that x ∈ St, while a
negative indication of It indicates that x /∈ St. It may generate
false-positive and false-negative errors. A positive indication is
said to be a false-positive when x /∈ St. Similarly, a negative
indication is said to be a false-negative when x ∈ St. We
let FPt and FNt denote the estimates at time t of the false-
positive probability, and the false-negative probability, of a
cache request, respectively. We let |It| denote the size of the
indicator It in bits. To use only feasible sizes, the indicator
size should be within some predefined range [|Imin| , |Imax|].

Given some positive integer T , we consider a non-
overlapping partitioning of time (or equivalently, the sequence
of requests) into segments of length T . The update interval

ut is the number of requests between subsequent indicator
updates that the cache sends to the users. At any time t, ut

represents the time between the last update that was sent,
and the next update scheduled to be sent. When considering
dynamic algorithms, we allow the value of ut to be adjusted
only at the end of a segment.

The update interval is at least umin. One could use umin = 1,
but a slightly higher interval enables piggybacking indicator
updates on packets carrying cached data payloads, to avoid
transmission overheads [36]. We also use a maximal update
interval denoted umax (which we discuss in the sequel). We
refer to the tuple (|It| , ut) as a configuration.

An advertisement that includes the full indicator I , is called
a full-indicator update. Alternatively, an update that contains
the list of bits in the indicator that have flipped since the
previous advertisements is called a delta update. Specifying
the location of each bit in the indicator requires log |I| bits.
We assume that the cache uses a delta update whenever this
consumes less bandwidth than sending a full indicator, namely,
when the number of bits flipped in the indicator since the last
update is less than |I|

log|I| .
Bandwidth constraints: To model the system’s bandwidth

constraint, we use the previously defined partitioning of time
into segments. The transmitted bandwidth cost of configuration
(|It| , ut) over a segment of length T ending at time t is the
average number of update bits per request, being sent to the
user during the segment. We denote this cost by BWt. Since
indicators are usually of size Θ(C), and since we would like
to potentially allow the algorithm to transmit more than one
update during a segment, we require that T ≥ max {umax, C}.
In particular, we choose T = α · max {umax, C}, for some
positive integer α. Parameter α serves to control the tradeoff
between (i) the variance of the statistics gathered during a
segment, and (ii) the dynamic response of the algorithm across
segments. I.e., if α is small, then statistics are gathered over
a short interval, and may capture only very transient behavior
which could be very different in the following segment. On
the other hand, if α is large, then the algorithm maintains its
current configuration longer, even though workload and system
characteristics may change significantly during the segment.

We target system configurations that satisfy budget con-
straints, defined by a bandwidth budget of B bits/request. The
budget constraint requires that the bandwidth cost in each
segment is at most B. We note that when sending a full
indicator in each update we must have

|It|

ut
≤ B. (1)

We use this equation for determining umax as the minimal
value satisfying Eq. 1, which implies that umax =

⌊ |Imax|
B

⌋

.
A configuration (|I| , u) is said to be static if for every

time t, |It| = |I| and ut = u. Such a configuration is
said to satisfy the budget constraint if in every segment of

length T , the overall bandwidth cost of using (|I| , u) is
at most B · T , i.e. BWt ≤ B for every time t in which
a segment ends. We note that due to the dynamic nature
of caching environments, it may be impossible to verify a-

priori that a specific static configuration does not violate the
budget constraint. In particular, a configurations that uses delta
updates might end up violating the budget if there are too many
updates.

In our work, we are interested in dynamic configurations
that may re-scale and adjust both |It| and ut over time.
Such dynamic configurations may also occasionally end up
oversubscribing the network. However, using dynamic config-
urations one can strive to satisfy the budget constraint over all
segments, by adjusting to the current workload pattern, while
(implicitly or explicitly) taking into account additional system
parameters related to, e.g., the cache size, or the cache policy.
Although dynamic configurations may sometimes violate the
budget constraint, a careful adjustment of the configurations
throughout the system’s lifetime may reduce this violation
significantly (e.g., compared to static configurations).

Since configurations (either static or dynamic) may end up
violating the budget constraint, we apply a network policing

mechanism that enforces the budget constraint as follow: At
the beginning of each segment, the cache receives B · T
tokens. Once the overall number of bits sent for indicator
advertisement during the segment reaches B · T , all further
updates during the segment are dropped by the network polic-
ing mechanism. This model conforms to common network
policing behaviour that may selectively drop packets when
a user oversubscribes its allotted resources. In this sense, the
transmitted bandwidth cost BWt may indeed be larger than
the budget, but in effect, the network will never forward more
traffic than the amount prescribed by the budget B. Lastly, we
note that α also serves to define the time horizon for which
we enforce the budget violation. I.e., choosing a larger value
for α implies that we allow larger fluctuations in bandwidth
usage during a segment, as long as the overall bandwidth cost
is maintained over the entire segment.

In what follows, we consider distinct system scenarios,
where each scenario is defined by the cache size C, policy
P , workload W , and budget B. We denote such a scenario
by (C,P,W,B). We will be studying static advertisement
configurations for a variety of scenarios, as well as dynamic
advertisement configuration strategies that adapt to dynami-
cally changing scenarios. Our work considers the problem of
(dynamically) adjusting the configuration so as to minimize
the (average) service cost within a given bandwidth budget.
Throughout our work, all logarithms are of base 2.

IV. MOTIVATION AND PRELIMINARIES

This section provides insights into the performance of
static configurations to further motivate dynamic advertise-
ment strategies. We present the results of several experiments,
which use several real-life workloads and state-of-the-art cache
policies. Our results show that there is no “one-size-fits-all”
configuration and that using static configurations may lead

Scarab Wiki1
1.8

1.85

1.9

1.95

co
st

|
L

R
U

,
16

K

conf1
W

(40K,umin)
conf2

W
(140K,umin)

W-tLFU LRU

2

2.5

3

co
st
|

P
6,

64
K

conf1
P

(960K,14K)
conf2

P
(415K,22K)

64K16K

1.6

1.8

2

2.2

co
st

|
F

2,
L

R
U

conf1
C

(103K,5K)
conf2

C
(283K,14K)

Fig. 2. Differences in cost for static configurations when varying workload
(left), policy (center), and cache size (right). For each aspect being compared,
one configuration is better for one value (workload / policy / cache size),
whereas another configuration is better for the other value.

to substantial performance degradation in highly dynamic
systems.

For each scenario (C,P,W,B) considered, we perform a
grid-search of static configurations and find the best con-
figuration that satisfies the bandwidth budget constraint for
this scenario. We then compare the performance of these
configurations when used for scenarios that differ by merely
one aspect, where we focus here on changing either the cache
size, the policy, or the workload, to exemplify the effect
each of these system aspects has on system performance.
In this evaluation, we set umin = 10, |Imin| = 2.5 · C,
|Imax| = 15 · C, M = 3, α = 10, and B = 20.1 We
demonstrate configurations that exhibit very good performance
for some scenarios, but changing merely one aspect in the
scenario results in significant performance degradation.

Fig. 2 shows the results of several such experiments. In
Fig. 2 (left) we consider two workloads W1,W2, where W1

is the Scarab trace, and W2 is the Wiki1 trace, with confW1
and confW2 being their best static configurations, respectively.
The policy is LRU, and the cache size is C = 16K. One can
note that for each workload Wi, using confWj j 6= i incurs
a toll as large as 5% compared to using confWi . In Fig. 2
(center), one can see similar results hold for varying the cache
policies. Here we consider policies P1, P2, where P1 is W-
tLFU and P2 is LRU, with confP1 and confP2 being their best
static configurations, respectively. The workload is P6, and the
cache size is C = 64K. In Fig. 2 (right), one can see the same
effect is manifested for the case where we vary the cache size.
Here we consider cache sizes C1 = 16K and C2 = 64K ,
with confC1 and confC2 being their best static configurations,
respectively. The cache policy, in this case, is LRU, and the
workload is F2. In all plots, the configurations are specified in
the legend (up to rounding to the nearest K).

V. ALGORITHM CAB

In this section, we introduce the Cache-indicators Advertise-
ment with Budget constraint (CAB) algorithm. The pseudo-
code of CAB is provided in Algorithm 1. We begin with a
high-level description of our algorithmic concepts and then
detail the optimization it employs in its decisions.

1We describe the specific workloads and cache policies, as well as the
methodology of our grid search and the choice of parameters, in Sec. VI.

A. High-Level Overview

CAB has two challenges, in each of two regimes: (i) when
sending full indicators, and (ii) when sending delta updates.

1) Full-Indicator Regime: When sending full indicators,
the problem is to find the right balance between the update
interval and the accuracy of the indicator. In this regime, a
configuration (|It| , ut) sends an advertisement of size |It|
once in ut requests. Recall that by Eq. 1, we must satisfy
|It|
ut

≤ B. Here, our approach is to choose, among all the
possible configurations that satisfy Eq. 1, a configuration that
equalizes the additional cost caused by false-negative errors
(controlled by the update interval) and false-positive errors
(mainly controlled by the indicator size).

2) Delta Regime: When only sending the bits that have
changed since the previous advertisement, increasing the up-
date interval would usually have very little effect on the
consumed bandwidth. Intuitively, updating about a single
change in the cache once every u requests consumes a similar
bandwidth as updating about x changes in the cache once
in every x · u requests. The only exception to this rule-of-
thumb happens due to hash collisions, e.g., when some of
the x changes in the cache occasionally flip and re-flip the
same bit in the indicator. However, when u is small, this
effect is negligible. Hence, we favor sending updates as soon
as possible, i.e., we set the update interval to umin.

Once the update interval is fixed, the remaining challenge
is to dynamically-scale the indicator size |I| to utilize all the
budget without exceeding it. However, sending changes may
become infeasible (e.g., when the hit ratio drops and more
items are admitted to the cache), and in that case, we might
need to return to the full indicator regime. We trigger such a
transition when we exceed the budget while using the minimal
indicator size, |Imin|. To do so, we increase the update interval
to the “safe zone” of sending full indicators, i.e., satisfying
Eq. 1, in which case we can assure compliance with the
budget constraint. Such a step allows us to search for better
configurations in subsequent segments (as also demonstrated
in Sec. VI).

Co-similarity and system lifetime: Our algorithm implicitly
assumes that the behaviour of the cache in the next segment
will be similar to its behaviour in the current segment. While
such an assumption is not always correct, many underlying
caching algorithms make similar assumptions. E.g., adaptive
caches [37], [38] assume that the past access pattern provides
a good indication of the future access pattern. Thus, our as-
sumptions are reasonable in workloads where adaptive caching
works well [37]–[39]. It should be noted that in Sec. VI we
demonstrate the effectiveness of our approach in a variety
of scenarios and workloads. CAB is oblivious of the cache
policy that manages the evictions and admissions, as we show
in Sec. VI. Instead, CAB uses only the information of false-
positive and false-negative errors, as well as the bandwidth
cost, to adapt its advertisement strategy. Such information
indirectly includes some details about the cache policy, e.g.,
when the cache policy rapidly changes the cached content,

Algorithm 1 CAB(B)

1: |I0| = |Imin| , u0 =
⌊

|I0|
B

⌋

2: T = α ·max {umax, C}
3: for every time slot t = T, 2T, 3T, . . . do

4: if ∃ full indicator update during [t− T, t) then

5: |It+1| = FitToRange
(⌊

|It|
√

FPt

(M−1)·FNt

⌋)

6: ut+1 =
⌊ |It+1|

B

⌋

7: else ⊲ all updates are delta-updates
8: if |It| > |Imin| or BWt ≤ B then

9: ut+1 = umin

10: |It+1| = FitToRange

(

⌊

e
W

(

B|It| log|It|
BWt

)

⌋

)

⊲

Lambert W function
11: else ⊲ |It| = |Imin| and BWt > B
12: |It+1| = |It| ⊲ indicator size remains |Imin|

13: ut+1 =
⌊

|It+1|
B

⌋

14: end if

15: end if

16: end for

17: procedure FitToRange(size)
18: return max {min {size, |Imax|} , |Imin|}
19: end procedure

then a large update interval is likely to cause plenty of false-
negative errors. Alternatively, when the cache policy hardly
changes the cached content, the same (long) update interval
results in few false-negative errors.

B. Detailed Description

The CAB algorithm (formally defined in Algorithm 1) is an
implementation of the approach outlined above. The algorithm
begins with an arbitrary configuration that satisfies the budget
constraint (line 1). The algorithm then sets the segment size T
(line 2), such that the configuration may be updated at the end
of each segment (at times t = T, 2T, . . .). T is set to ensure
that sufficient statistics can be obtained during a segment, for
determining the configuration to be used towards the following
segment. This is controlled by the value of α, as described in
Sec. III. We note that it usually suffices to set α to a small
constant number (e.g., throughout our evaluation in Sec. VI
we use α = 10). At every time t = T, 2T, . . ., we let FPt

and FNt denote the false-positive ratio and the false-negative
ratio during the segment ending at t, and we recall that BWt

denotes the bandwidth cost (i.e., number of bits being sent
by CAB, divided by T) during this segment. Whenever a
configuration is chosen, the procedure FitToRange (lines 17-
19) ensures that the indicator size is within the prescribed
bounds, i.e., in [|Imin| , |Imax|]. For determining the indicator’s
size and the update interval, CAB distinguishes between three
cases (marked by different shaded colors in Algorithm 1). In
what follows, we discuss the algorithmic design criteria for
each of these cases.

1) Full indicator updates: The first case (lines 4-6) is when
a full indicator is sent in (at least) one of the updates during
the segment ending at t. We refer to this case as having the
algorithm work in Mode 1 (shaded red). In this operation mode,
we expect to have FPt > 0 due to using indicators (which
by nature provide merely an approximate representation of
the cached content), and FNt > 0 due to staleness. CAB
adjusts its indicator size and update interval in an attempt
to strike a balance between the loss of performance caused
by false-negatives, and false-positives. This approach makes
the reasonable assumption that false-negatives increase when
increasing the update interval (as exhibited, e.g., in Fig. 1),
and false-positives increase when decreasing the indicator size.
Due to the budget constraint, the indicator size and the update
interval are positively correlated.

For understanding the choice made in line 5, one should
note that (i) a false-positive indication incurs an unwarranted
extra cost of 1, whereas (ii) a false-negative indication incurs
an unwarranted extra cost of (M − 1) (since we could have
incurred a cost of 1 by merely accessing the cache). It
follows that targeting having (M − 1) false-positives (which
are relatively cheap) for every single false-negative (which
is relatively expensive) would balance the unwarranted extra
costs. I.e., we would like to have (M − 1) · FN = FP , or
equivalently, FP

(M−1)·FN = 1. When considering FPt and FNt,
if (M−1)·FNt < FPt, we would like to decrease the number
of false-positives, even at the cost of some additional false-
negatives, which translates to increasing the indicator size (and
in turn also increasing the update interval). If, on the other
hand, (M−1)·FNt > FPt, we would like to do the converse.

We use the term
√

FPt

(M−1)·FNt
as the step size (and direction)

for updating the indicator size. This step size implies the same
factor for adjusting the update interval (for maintaining the
budget constraint, as verified by line 6). By this, we effectively
distribute the required change of FP

(M−1)·FN equally across the
indicator size (governing the behavior of false-positives) and
the update interval (governing the behavior of false-negatives).
The combined effect brings us closer to having FP

(M−1)·FN = 1.
The algorithm may adjust the indicator size to ensure that it is
within the allowed range, and then adjusts the update interval
to satisfy Eq. 1, and avoid violating the budget constraint.

2) Delta-updates, no budget violation or non-minimal indi-

cator size: Lines 8-10 describe a case where either the budget
constraint during the segment ending at t was satisfied (i.e.,
BWt ≤ B), or the indicator size can still be reduced (i.e.,
|It| > |Imin|). We refer to this case as having the algorithm
work in Mode 2 (shaded blue).

Assume first that there is no budget violation. By the
discussion presented in Sec. V-A, when sending delta-updates,
and when there is no budget violation, it is advisable to send
updates as fast as possible, i.e., using the minimal update
interval umin. This approach also implies that there will be
no (or very few) false-negatives, since we update the indicator
with the shortest allowed interval, keeping it (almost) up to
date. For determining the indicator size, we note that the

overall bandwidth available per request can be increased by
a factor of B

BWt
. It follows that we would like to utilize the

entire budget to minimize the number of false-positives. If, on
the other hand, there is a budget violation, but |It| > |Imin|,
this implies that we may remain in the delta regime, but will
be forced to reduce the indicator size to stay within budget.

To determine the ratio by which we should adjust the indica-
tor size, it is instructive to consider the effect of changing the
indicator size |It| by some factor β > 0. Such an adjustment
implies that every change in the cache will cause β times
more/less (depending on whether β > 1 or not) changed bits
in the indicator. Furthermore, adjusting the indicator size by a
factor of β implies that specifying each index in the indicator
would now requires log(β · |It|) bits instead of log |It|. It
follows that the overall number of bits sent for each change in
the cache would increase/decrease by a factor of β · log(β·|It|)log|It|

.
We would like the overall change in the number of bits sent
to be equal to B

BWt

, to match the budget. Formally, we seek
a new indicator size |I| s.t:

|I| log |I|

|It| log |It|
=

B

BWt
, (2)

where we replace β by |I|
|It|

. The solution to this equation is
obtained by using the Lambert W function [40], implying that

the new indicator size should be set to
⌊

e
W

(

B|It| log|It|
BWt

)

⌋

.2 The
algorithm then ensures that the best indicator size in this case
falls within the allowed range.

3) Delta-updates, budget violation, minimal indicator size:

The third and last case is when we use the minimal indicator
size, but we still violate the budget. We refer to this case as
having the algorithm work in Mode 3 (shaded green).

In such a case, the only way to ensure feasibility is to
increase the update interval, as done in lines 11-13, in order
to satisfy Eq. 1. Such a scenario indeed occurs in practice
(as we show in Sec. VI), and handling this case ensures that
the algorithm can return to the configurations covered by the
previous two cases. Mode 3 allows the algorithm to transcend
to a considerably different state where we may prefer to send
full indicators. Without it, CAB cannot leave the delta regime.

VI. PERFORMANCE EVALUATION

In this section, we present the results of our simulation
study.

Setup and system parameters: We focus on scenarios
handled by general-purpose caching libraries such as Caf-
feine [41], Ristretto [42], Guava Cache [43], and the likes. In
particular, we use Caffeine for the evaluation of our proposed
solution.3 The cache has a split get/put interface where get

tests the cache, and put updates the cache. We extended
Caffeine’s simulator [41] to simulate the access cost with
cache advertisements. In our implementation, we issue a get

2The Lambert W function is the inverse of the function f(w) = wew. It
can be used for solving the equation x lnx = a by substituting y = lnx,
resulting in yey = a, implying that x = ey = eW (a).

3Caffeine is arguably the most popular Java libraries and is used in tens of
large open-source projects such as Cassandra, Corfu, and Infinispan.

LRU

W
-tL

FU
FRD

Hyp
er

1
1.5
2

2.5
3

3.5
4

F
1
|

co
st

4K

LRU

W
-tL

FU
FRD

Hyp
er

16K

LRU

W
-tL

FU
FRD

Hyp
er

64K

CAB SC CF

LRU

W
-tL

FU
FRD

Hyp
er

1
1.5
2

2.5
3

3.5
4

F
2
|

co
st

LRU

W
-tL

FU
FRD

Hyp
er

LRU

W
-tL

FU
FRD

Hyp
er

LRU

W
-tL

FU
FRD

Hyp
er

1
1.5
2

2.5
3

3.5
4

W
ik

i1
|

co
st

LRU

W
-tL

FU
FRD

Hyp
er

LRU

W
-tL

FU
FRD

Hyp
er

LRU

W
-tL

FU
FRD

Hyp
er

1
1.5
2

2.5
3

3.5
4

W
ik

i2
|

co
st

LRU

W
-tL

FU
FRD

Hyp
er

LRU

W
-tL

FU
FRD

Hyp
er

LRU

W
-tL

FU
FRD

Hyp
er

1
1.5
2

2.5
3

3.5
4

S
ca

ra
b
|

co
st

4K

LRU

W
-tL

FU
FRD

Hyp
er

16K

LRU

W
-tL

FU
FRD

Hyp
er

64K

CAB SC CF

LRU

W
-tL

FU
FRD

Hyp
er

1
1.5
2

2.5
3

3.5
4

P
3
|

co
st

LRU

W
-tL

FU
FRD

Hyp
er

LRU

W
-tL

FU
FRD

Hyp
er

LRU

W
-tL

FU
FRD

Hyp
er

1
1.5
2

2.5
3

3.5
4

P
6
|

co
st

LRU

W
-tL

FU
FRD

Hyp
er

LRU

W
-tL

FU
FRD

Hyp
er

LRU

W
-tL

FU
FRD

Hyp
er

1
1.5
2

2.5
3

3.5
4

P
8
|

co
st

LRU

W
-tL

FU
FRD

Hyp
er

LRU

W
-tL

FU
FRD

Hyp
er

Fig. 3. Access cost for CAB, the best feasible static configuration (SC), and always accessing the cache (CF).

request upon a positive indication, and we issue a put after han-
dling the request regardless of indications. Our advertisement
mechanism uses the Orestes Bloom filters library [44]. The
cache maintains a four-bit Counting Bloom Filter (CBF) [12].
However, before sending an update, the CBF is compressed
to a simple Bloom Filter (BF) [11], where a bit in the BF is
set iff the respective counter in the CBF is (strictly) positive.
The number of hash functions is optimized to minimize the
false-positive rate [14].

We set umin = 10 to minimize the transmission overheads.
We set |Imin| to 2.5 · C which suffices for a false-positive
ratio of 30%, and |Imax| to 15 ·C that implies a false-positive
ratio of 0.07% [14]. Our default budget is B = 20, which sets
umax to |Imax|

B = 0.75 ·C. We assume a miss penalty M = 3,
which is typical for edge computing, where the delay from a
cloud processing unit to the memory in the CDN is three times
higher than the delay from the cache located at the edge [45].

Benchmarks: The static configuration benchmark (SC)
is the best static configuration across a grid of con-
figurations satisfying the budget constraints in all seg-
ments. We consider a set of possible indicator sizes
{

|Imin| · (1.1)
i|i = 0, . . . , 18

}

⊆ [|Imin| , |Imax|] (where
|Imin| · (1.1)

i ≤ |Imax| implies in this case that i ≤
⌊ log 6
log 1.1⌋ = 18), and also the maximal indicator size |Imax|.

The update intervals considered are taken from the range

{

umin · (1.15)
j|j = 0, . . . , log(umax/umin)

log(1.15)

}

. For example, for
cache sizes 4K , 16K , and 64K , the number of possible update
intervals considered in the grid are 41, 51, and 61, respectively.
We note that SC can only be determined in retrospect. We also
evaluate the CacheFirst (CF) policy that always accesses the
cache (without indicators) to quantify the access cost reduction
from using advertisements.

Traces: We use the following real workloads, which are
commonly used when evaluating caching systems: (i) Scarab:
A trace from Scarab Research, a personalized recommendation
system for e-commerce sites [46]. (ii) F1, F2: Traces taken
from a financial transaction processing system [47]. (iii) P3,

P6, P8: Traces of disk accesses in Windows servers [38].
(iv) Wiki1, Wiki2: Read requests to Wikipedia pages [48].

Cache policies: We simulated the classic LRU policy,
along with three highly competitive policies, including W-
TinyLFU [49] (also denoted by W-tLFU)), FRD [50], and
Hyperbolic [39]. For completeness, we now very briefly out-
line these policies. The Least Recently Used (LRU) policy
evicts the least recently accessed item. It assumes that recently
accessed items would be accessed again. The W-tLFU policy
combines LRU with a frequency-based cache. Items are only
admitted to a frequency-based cache if they are more frequent
in a long history, which is represented as a CBF for space
efficiency. FRD varies the time it retains admitted items

10 20 40 80
2.2

2.4

2.6

2.8

3

F
1
|

co
st

LRU

10 20 40 80

Budget

W-tLFU

10 20 40 80

FRD

10 20 40 80

Hyper

CAB SC CF

Fig. 4. Access cost for CAB, the best feasible static configuration (SC), and
always accessing the cache (CF), for distinct budgets and 4 policies. The
workload is F1 and the cache size is C = 16K.

according to their past access pattern. First-timers are admitted
for a short duration, while previously encountered items are
admitted for a longer duration. FRD uses extensive metadata
about past accesses to distinguish first-timers from recurring
items. Finally, Hyperbolic caching is an adaptive cache policy
that changes its eviction policy according to the workload.

A. Competitive Evaluation:

CAB across workloads and policies: Our first experiment
compares the access cost for the four cache policies when vary-
ing the cache size and the workload. Fig. 3 shows the results
of these experiments. First, observe that increasing the cache
size reduces the access costs, as expected by cache policies.
Further, observe that for most traces, the differences between
the cache policies are not very large, and are smaller than the
differences between the CF and SC policy. This implies that
the potential benefit from advertising cache content may be
higher than the benefit from changing the cache policy. Finally,
observe that the performance of CAB is very similar to that of
the SC benchmark. In some cases, (e.g., F1 4K LRU) CAB is
even slightly better than the best static configuration. Such a
result implies that conditions change during the trace and that
CAB manages to adjust itself according to these changes, thus
reducing cost. In other cases, CAB is slightly worse than the
best configuration, but the difference is always small. CAB
operates in real time, without prior knowledge of the system
configuration, or the workload (other than knowing the cache
size, the budget, and the bounds on the indicator sizes).

CAB across budgets and policies: Fig. 4 illustrates the
results for varying budgets. As expected, in all policies CAB
and SC improve when the budget increases. As in our previous
experiment, CAB matches the performance of SC regardless
of budget. However, for W-tLFU CAB is not as good as SC
for a small budget (10). The reason for this is that W-tLFU
contains a very small and rapidly-changing Window cache,
which forces CAB into short update intervals, which are bad
for the larger and less dynamic Main cache (consuming 99%
of the cache space). Alternatively, notice that CAB is slightly
better than SC for a budget of 40 across all policies, implying
that it manages to adapt to the changes within the trace.

B. CAB Under the Hood:

To highlight the performance and behavior of CAB in
dynamic settings, where the workload changes, we run several

0 5 10 15 20 25 30 35
40

80

120

160

200

240

in
di

ca
to

r
si

ze
[K

b]

0 5 10 15 20 25 30 35
0
2
4
6
8

10
12

up
da

te
in

te
rv

al
[K

re
qu

es
ts

]

0 5 10 15 20 25 30 35
0.1
0.4
0.7

1
1.3
1.6
1.9

ut
ili

za
tio

n
[B

W
/
B

]
0 5 10 15 20 25 30 35

0

0.2

0.4

0.6

0.8

1

time [M requests]
hi

t
ra

tio

Fig. 5. The dynamics of CAB on a concatenated trace F1→F2→F1→F2. F1
requests are dark shaded, and F2 requests are light shaded. The cache size is
16K , the policy is LRU, and the budget is 20 bits/request.

traces one after another. Since each workload’s characteristics
are slightly different, such an experiment allows us to follow
the dynamic change of configuration performed by CAB and
the system behavior as it interacts with these changes.

Fig. 5 follows the execution of CAB for a combination
of traces F1 (dark shaded area) and F2 (light shaded area),
concatenated as F1→F2→F1→F2. Note that both F1 and F2
are typical to the same application (financial transactions), and
therefore such a concatenated workload may indeed happen in
practice. The total request count is ∼40M. The experiment
is performed using C = 16K, the LRU policy, M = 3,
and a budget of 20 bits/req. As in earlier experiments, we
take umin = 10, and α = 10. This implies T = 160K,
resulting in ∼250 configuration segments during the entire
simulation. Also, we set |Imin| = 2.5 · C = 40K, and
|Imax| = 15 · C = 240K.

The top subfigure shows the evolution of the indicator size.
The second topmost subfigure shows the evolution of the
update interval. These two figures provide a glimpse into the
evolution of the configurations used by CAB. The bottom
subfigure shows the evolution of the hit ratio of the cache.
We stress that the hit ratio captures the ratio of requests that
are actually found in the cache, and is therefore an artifact
of the settings (workload, cache size, and cache policy). The
advertisement policy doesn’t impact the hit ratio. However,
CAB’s advertisement policy implicitly reacts to the hit ratio.
The second bottom-most subfigure shows the bandwidth uti-

lization (normalized to the bandwidth budget). Notice that the
utilization is calculated before network policing; hence CAB
may try to exceed the bandwidth (but the network policing
prevents that).

These figures show the effect of the algorithm’s choices and
the properties of the workload. We now turn to explain and
describe the algorithm’s performance along time t (measured
by the request counts).

• t ∈ [0, 1M]: Soon after the beginning, CAB identifies that
the cache uses delta-updates, and thus sets ut = umin, while
adjusting the indicator size so as to comply with the budget
constraint (Mode 2).

• t ∼ 1M: The hit ratio (bottom subfigure) sharply decreases.
This translates to a substantial change in the cached content,
resulting in much larger delta updates that violate the bud-
get constraint (second-bottom subfigure). Note that CAB
cannot exceed the budget, as its advertisements are dropped
once the budget is exhausted (leading to additional errors).
The algorithm fails to comply with the budget constraint
with a minimal update interval, even when shrinking the
indicator size to |Imin|. Hence, CAB increases the update
interval, to ensure adhering to the budget restriction (Mode
3).

• t ∈ [1M, 5.5M]: CAB constantly works in Mode 1, mostly
sending full indicators (as it is cheaper than sending the
mere changes). During this time, the algorithm constantly
satisfies the budget constraint, and merely makes small
adjustments to the indicator size, and the update interval, to
optimize its usage of bandwidth while balancing the extra
costs incurred by false-positives and false-negatives.

• t ∈ [5.5M, 18M]: the F1 trace ends, and the F2 trace
begins. The hit ratio increases, thus allowing for using
a much larger indicator, and more frequent updates. The
algorithm hence switches to Mode 2, and persistently
uses the minimal update interval. When CAB occasionally
violates the budget constraint, it shrinks the indicator again,
to stay within limits.

• t ∼ 18M: A sudden drop in the hit ratio does not allow the
algorithm to keep a minimal update interval anymore, even
when the indicator size is |Imin|. Hence, CAB switches to
mode 3, and significantly increases the update interval to
satisfy the budget constraint.

• t ∈ [18M, 20M]: The algorithm works in Mode 1, con-
stantly sending full indicators, and adjusting the indicator
size and the update interval to remain within budget. The
general increase in hit ratio allows the algorithm to settle
for smaller indicator size and update intervals.

• t ∈ [20M, 25.5M]: The algorithm again behaves as it did
when initially handling F1.

• t ∈ [25.5M, 40M]: The F2 trace arrives, and the algo-
rithm exhibits similar behavior when transitioning again
to handling F2. However, a closer look shows that the
indicator size and the update interval slightly differ from
those chosen by the algorithm in the previous run of F2,
which occurred in the interval t ∈ [5.5M, 18M]. These

changes further exemplify how the algorithm adapts even
to minor changes stemmed from differences in the cache’s
content at the beginning of the different runs of F2.

VII. DISCUSSION AND CONCLUSIONS

Many systems use cache advertisements, which highlight
the need for efficient cache advertisement strategies. Yet,
prior to our work, the literature lacked a rigorous method
to configure the advertisement strategy. Therefore, system
designers turn to design decisions based on rules-of-thumb
and ad-hoc benchmarks of typical workloads. Additionally,
these approaches are mostly limited to selecting a static
advertisement policy, which means that changes in system and
workload parameters might degrade the quality of their choice.

Our work surveys the possible modes of operations that
an advertisement policy can utilize. We empirically show
that there is no one-size-fits-all policy and that advertisement
policies’ performance depends on the cache policy, the cache
size, and the workload. Worse yet, static policies are ill-suited
for adaptive cache policies that change their behavior during
run-time [37]–[39].

We designed the novel CAB algorithm that adjusts the
advertisement policy according to the current conditions. CAB
reaches its decision by monitoring its bandwidth footprint,
false-positive, and false-negative errors. It is indifferent to the
cache size, the workload, and the cache policy (beyond their
indirect effect on the false-positive and false-negative rates).

We performed an extensive evaluation that uses eight real
workloads and tested the classic LRU policy and three other
leading cache management policies. We performed our work
under a strict network model that drops messages if transmit-
ting them would violate the bandwidth budget. Under these
conditions, CAB exhibits an overall cost comparable (and
sometimes superior) to the best static advertisement policy
for all cache sizes, workloads, and cache policies. CAB is a
game-changer as developers no longer need to optimize their
advertisement policy manually. Instead, they can use CAB to
optimize the advertisement strategy, shorten development time,
and attain good performance in a variety of scenarios and
system configurations. More so, CAB solves problems that
were encountered by many works [?], [?], [?], [4], [10], [18],
[19], [32]–[34], and solved only in an ad-hoc manner.

Next, we study and discuss the dynamic behavior of CAB,
varying its advertisement strategy according to the condi-
tions, and effectively transitioning between the delta and full-
indicator updates regimes. To the best of our knowledge,
CAB is the first to combine these options seamlessly. We
note that CAB changes its transmission policy quite often
during the system’s lifetime, which incurs computation costs
at the cache. E.g., a new indicator is required every time
we change the indicator size. While we do not evaluate the
CPU usage of the cache, we sized the reconfiguration intervals
to be ten times the cache size. Thus, the amortized cost of
computing a new indicator is one indicator operation per 10
cache accesses. We believe that such a configuration makes
the additional overheads manageable (if not negligible) since

current indicators, such as Bloom filter implementations [41],
[44], reach over 20 million ops per second on a single thread
and are embarrassingly parallel.

Another takeaway from our research is that false-negatives
should not be neglected when advertising cached content.
Looking into the future, we plan to develop access strategies
that cope well with false-negatives, and then use such strate-
gies alongside CAB on a distributed network. Such work may
borrow ideas from [26], [32] in developing improved solutions
for distributed cache access with advertisements.

REFERENCES

[1] O. Rottenstreich and I. Keslassy, “The bloom paradox: When not to use
a bloom filter,” IEEE/ACM Trans. Netw., vol. 23, no. 3, pp. 703–716,
2015.

[2] X. Guo, T. Wang, and S. Wang, “Joint optimization of caching and
routing strategies in content delivery networks: A big data case,” in
IEEE ICC, 2019.

[3] B. M. Maggs and R. K. Sitaraman, “Algorithmic nuggets in content
delivery,” ACM SIGCOMM Computer Communication Review, vol. 45,
no. 3, pp. 52–66, 2015.

[4] I.-W. Ting and Y.-K. Chang, “Improved group-based cooperative caching
scheme for mobile ad hoc networks,” J. Parallel. and Distrib. Comp.,
vol. 73, no. 5, pp. 595–607, 2013.

[5] T. Le, Y. Lu, and M. Gerla, “Social caching and content retrieval in
disruption tolerant networks (dtns),” in International Conference on

Computing, Networking and Communications (ICNC). IEEE, 2015,
pp. 905–910.

[6] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and
B. Zhao, “Oceanstore: An architecture for global-scale persistent stor-
age,” SIGPLAN Not., vol. 35, no. 11, pp. 190–201, 2000.

[7] D. S. Berger, R. K. Sitaraman, and M. Harchol-Balter, “Adaptsize: Or-
chestrating the hot object memory cache in a content delivery network,”
in NSDI, 2017, pp. 483–498.

[8] M. Bilal and S. G. Kang, “A cache management scheme for efficient
content eviction and replication in cache networks,” IEEE Access, vol. 5,
pp. 1692–1701, 2017.

[9] I. Psaras, W. K. Chai, and G. Pavlou, “Probabilistic in-network caching
for information-centric networks,” in ICN, 2012, pp. 55–60.

[10] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: a
scalable wide-area web cache sharing protocol,” IEEE/ACM transactions

on networking, vol. 8, no. 3, pp. 281–293, 2000.
[11] B. H. Bloom, “Space/time trade-offs in hash coding with allowable

errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, 1970.
[12] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Varghese,

“An improved construction for counting bloom filters,” in ESA, 2006, pp.
684–695.

[13] G. Einziger and R. Friedman, “Tinyset: An access efficient self adjusting
bloom filter construction,” IEEE/ACM Trans. Netw., vol. 25, no. 4, pp.
2295–2307, 2017.

[14] S. Tarkoma, C. E. Rothenberg, and E. Lagerspetz, “Theory and practice
of bloom filters for distributed systems,” IEEE Comm. Surv. & Tut.,
vol. 14, no. 1, pp. 131–155, 2012.

[15] L. Luo, D. Guo, R. T. Ma, O. Rottenstreich, and X. Luo, “Optimizing
bloom filter: Challenges, solutions, and comparisons,” IEEE Communi-

cations Surveys & Tutorials, vol. 21, no. 2, pp. 1912–1949, 2018.
[16] G. Einziger and R. Friedman, “Counting with tinytable: Every bit

counts!” in ICDCN, 2016, p. 27.
[17] Y. Kanizo, D. Hay, and I. Keslassy, “Access-efficient balanced bloom

filters,” Comput. Comm., vol. 36, no. 4, pp. 373–385, 2013.
[18] W. Shi and Y. Mao, “Performance evaluation of peer-to-peer web

caching systems,” J. of Sys. and Soft., vol. 79, no. 5, pp. 714–726, 2006.
[19] M. Tortelli, L. A. Grieco, and G. Boggia, “CCN forwarding engine based

on bloom filters,” in CFI, 2012, pp. 13–14.
[20] Squid Cache, “Squid-cache wiki.” [Online]. Available: https://wiki.

squid-cache.org/SquidFaq/CacheDigests#Would_it_be_possible_to_
stagger_the_timings_when_cache_digests_are_retrieved_from_peers.3F

[21] ——, “Squid digest spec, v5.” [Online]. Available: http://www.squid-
cache.org/CacheDigest/cache-digest-v5.txt

[22] R. Hou, L. Zhang, T. Wu, T. Mao, and J. Luo, “Bloom-filter-based
request node collaboration caching for named data networking,” Cluster

Computing, vol. 22, no. 3, pp. 6681–6692, 2019.
[23] M. Zhang et al., “A survey of caching mechanisms in information-centric

networking,” IEEE Communications Surveys & Tutorials, vol. 17, no. 3,
pp. 1473–1499, 2015.

[24] G. Zhang, Y. Li, and T. Lin, “Caching in information centric networking:
A survey,” Comp. Net., vol. 57, no. 16, pp. 3128–3141, 2013.

[25] D. Guo, J. Wu, H. Chen, Y. Yuan, and X. Luo, “The dynamic bloom
filters,” IEEE Trans on Knowl. and Data Eng., vol. 22, no. 1, pp. 120–
133, 2009.

[26] I. Cohen, G. Einziger, R. Friedman, and G. Scalosub, “Access strategies
for network caching,” in IEEE INFOCOM, 2019, pp. 28–36.

[27] L. Chen, A. Giovanidis, W. Wang, and L. Shan, “Sequential resource
access: Theory and algorithm,” INFOCOM, 2021.

[28] I. Cohen, G. Einziger, and G. Scalosub, “On the power of false negative
awareness in indicator-based caching systems,” in IEEE ICDCDS, 2021.

[29] M. Mitzenmacher, “Compressed bloom filters,” IEEE/ACM Trans. Netw.,
vol. 10, no. 5, pp. 604–612, 2002.

[30] S. Z. Kiss, É. Hosszu, J. Tapolcai, L. Rónyai, and O. Rottenstreich,
“Bloom filter with a false positive free zone,” in IEEE INFOCOM, 2018,
pp. 1412–1420.

[31] Y. Zhu, H. Jiang, J. Wang, and F. Xian, “HBA: Distributed metadata
management for large cluster-based storage systems,” IEEE Trans. Par-

allel Distrib. Syst., vol. 147, pp. 204–220, 2018.
[32] Y. Zhu and H. Jiang, “False rate analysis of bloom filter replicas in

distributed systems,” in ICPP, 2006, pp. 255–262.
[33] Hong Tang and Tao Yang, “An efficient data location protocol for

self.organizing storage clusters,” in ACM/IEEE Supercomputing, 2003,
pp. 53–53.

[34] H. Cai and J. Wang, “Foreseer: A novel, locality-aware peer-to-peer
system architecture for keyword searches,” in ACM/IFIP/USENIX Mid-

dleware, 2004, p. 38–58.
[35] O. Eytan, D. Harnik, E. Ofer, R. Friedman, and R. Kat, “It’s time to

revisit LRU vs. FIFO,” in HotStorage, 2020.
[36] A. Rousskov and D. Wessels, “Cache digests,” Comp. Net. and ISDN

Sys., vol. 30, no. 22-23, pp. 2155–2168, 1998.
[37] G. Einziger, O. Eytan, R. Friedman, and B. Manes, “Adaptive software

cache management,” in ACM Middleware, 2018, pp. 94–106.
[38] N. Megiddo and D. S. Modha, “Arc: A self-tuning, low overhead

replacement cache.” in Fast, no. 2003, 2003.
[39] A. Blankstein, S. Sen, and M. J. Freedman, “Hyperbolic caching:

Flexible caching for web applications,” in USENIX ATC, 2017, pp. 499–
511.

[40] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E.
Knuth, “On the Lambert W function,” Adv. Comput. Math., vol. 5, no. 1,
pp. 329–359, 1996.

[41] B. Manes, “Caffeine: A high performance caching library for java.”
[Online]. Available: https://github.com/ben-manes/caffeine

[42] Dgraph Labs, Inc., “Ristretto: A high performance memory-bound go
cache.” [Online]. Available: https://github.com/dgraph-io/ristretto

[43] Google, “Guava: Google core libraries for java.” [Online]. Available:
https://github.com/google/guava

[44] Baqend GmbH, “Orestes: Bloom filter library for java.” [Online].
Available: https://github.com/Baqend/Orestes-Bloomfilter

[45] T. X. Tran and D. Pompili, “Octopus: A cooperative hierarchical caching
strategy for cloud radio access networks,” in IEEE MASS, 2016, pp. 154–
162.

[46] “Caffeine’s simulator cache traces.” [Online]. Avail-
able: https://github.com/ben-manes/caffeine/tree/master/simulator/src/
main/resources/com/github/benmanes/caffeine/cache/simulator/parser

[47] M. Liberatore and P. Shenoy, “Umass trace repository,” 2016. [Online].
Available: http://traces.cs.umass.edu/

[48] G. Urdaneta, G. Pierre, and M. van Steen, “Wikipedia workload analysis
for decentralized hosting,” Comp. Net., vol. 53, no. 11, pp. 1830–1845,
2009.

[49] G. Einziger, R. Friedman, and B. Manes, “Tinylfu: A highly efficient
cache admission policy,” TOS, vol. 13, no. 4, pp. 35:1–35:31, 2017.

[50] S. Park and C. Park, “FRD: A filtering based buffer cache algorithm
that considers both frequency and reuse distance,” in MSST, 2017.

https://wiki.squid-cache.org/SquidFaq/CacheDigests#Would_it_be_possible_to_stagger_the_timings_when_cache_digests_are_retrieved_from_peers.3F
https://wiki.squid-cache.org/SquidFaq/CacheDigests#Would_it_be_possible_to_stagger_the_timings_when_cache_digests_are_retrieved_from_peers.3F
https://wiki.squid-cache.org/SquidFaq/CacheDigests#Would_it_be_possible_to_stagger_the_timings_when_cache_digests_are_retrieved_from_peers.3F
http://www.squid-cache.org/CacheDigest/cache-digest-v5.txt
http://www.squid-cache.org/CacheDigest/cache-digest-v5.txt
https://github.com/ben-manes/caffeine
https://github.com/dgraph-io/ristretto
https://github.com/google/guava
https://github.com/Baqend/Orestes-Bloomfilter
https://github.com/ben-manes/caffeine/tree/master/simulator/src/main/resources/com/github/benmanes/caffeine/cache/simulator/parser
https://github.com/ben-manes/caffeine/tree/master/simulator/src/main/resources/com/github/benmanes/caffeine/cache/simulator/parser
http://traces.cs.umass.edu/

	I Introduction
	II Related work
	III System Model
	IV Motivation and Preliminaries
	V Algorithm CAB
	V-A High-Level Overview
	V-A1 Full-Indicator Regime
	V-A2 Delta Regime

	V-B Detailed Description
	V-B1 Full indicator updates
	V-B2 Delta-updates, no budget violation or non-minimal indicator size
	V-B3 Delta-updates, budget violation, minimal indicator size

	VI Performance Evaluation
	VI-A Competitive Evaluation:
	VI-B CAB Under the Hood:

	VII Discussion and Conclusions
	References

