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Abstract—We consider a node-monitor pair, where updates
are generated stochastically (according to a known distribution)
at the node that it wishes to send to the monitor. The node is
assumed to incur a fixed cost for each transmission, and the
objective of the node is to find the update instants so as to
minimize a linear combination of AoI of information and average
transmission cost. First, we consider the Poisson arrivals case,
where updates have an exponential inter-arrival time for which
we derive an explicit optimal online policy. Next, for arbitrary
distributions of inter-arrival time of updates, we propose a
simple randomized algorithm that transmits any newly arrived
update with a fixed probability (that depends on the distribution)
or never transmits that update. The competitive ratio of the
proposed algorithm is shown to be a function of the variance
and the mean of the inter-arrival time distribution. For some
of the commonly considered distributions such as exponential,
uniform, and Rayleigh, the competitive ratio bound is shown to
be 2.

Index Terms—Age of information, transmission cost, stochastic
arrival

I. INTRODUCTION

Rapid growth in mobile connectivity and anywhere com-

puting has led to a significant growth in real-time applica-

tions of Internet-of-Things (IoT) and Cyber-Physical Systems

(CPS). Many of the applications in these paradigms critically

require that fresh status updates are regularly received by

the controller, e.g. in health care, delivery apps [1]–[3] etc.

To formally model and capture the concept of freshness of

information at the monitor/controller, the metric of age of

information (AoI) [4] has been introduced recently, where

instantaneous age at any time is defined as the difference

between the current time and the generation time of the last

update that has been successfully received. The AoI is the

average of the instantaneous age.

One aspect that is generally neglected when considering

AoI optimization is that to transmit an update, a node requires

energy, owing to transmission and computation costs. In this

paper, we model the energy cost explicitly, and consider a

scheduling problem, where the objective function is a linear

combination of the AoI and the average transmission cost

(energy consumed).

We acknowledge support of the Department of Atomic Energy, Government
of India, under project no. RTI4001.

We consider that updates are generated stochastically at the

node, with a known inter-generation time distribution. More-

over, to keep the model simple, we assume that each update

if sent by the node to the monitor, is received instantaneously,

with no delay. With transmission cost, clearly, the node cannot

transmit all the updates to the monitor. Thus, at each time

instant, given the set of outstanding updates that have been

generated at the node after the last update was received by

the monitor, the decision variable is whether to transmit the

most recent outstanding update or wait for the next update to

be generated, given the current age of the monitor, and inter-

generation time distribution.

A. Related Work

There are primarily two models that are studied with AoI,

i) stochastic generation model and ii) generate at will model.

We briefly summarize related work in both these directions.

1) Stochastic Arrival Model: The initial work on AoI

considered a stochastic model [4]–[6], where the system is

modelled as a M/M/1 queue, with inter-generation time of

updates and service time (delay seen by each transmission) as

exponentially distributed, and found its AoI. In [7], a multi-

source M/G/1 queueing model (where service time follows

general distribution) is considered, and a closed-form expres-

sion for the AoI is derived. More challenging questions, have

been studied more recently, e.g., [8] considered the problem

of identifying the packets that should be transmitted in order

to minimize the AoI. Further, in context of energy harvesting

nodes, [9], [10] considered AoI minimization problem with

stochastic packet generation, subject to energy causality con-

straints. For a more comprehensive review of work of the

stochastic arrival model, we refer to [11].

2) Generate At Will Model: The generate at will model

is becoming more popular recently, where each node always

has an update to transmit. This model is interesting in two

settings, a) either there are multiple nodes that want to update

and only a subset of them can update simultaneously but there

is no transmission delay, or b) there is a single node, but

each update experiences a random delay. With multiple nodes,

there is a large body of work [12]–[17], when at most one

node can transmit at any time without any delay but where

each transmission is successful with some probability. With
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multiple nodes, mostly scheduling algorithms with bounded

gap (2-competitive) from the optimal algorithms have been

derived. For a single node case, when each update experiences

a random delay, [18], [19] showed that no wait policy (update

as soon as the previous update is delivered) is not optimal, and

characterized the optimal policy depending on the distribution

of the delay. Recently, several works [20]–[22] considered

minimizing average AoI with network-related constraints like

interference, transmission delay, channel reliability, etc., while

[12], [13], [23]–[25] considered average AoI minimization

problem with other performance metrics like throughput, dis-

tortion, delay, etc. For more details on prior work we refer the

reader to [26].

In both the stochastic and the generate at will model, the

actual cost of transmission can be significant, such as in

an IoT setting, where devices are small and have limited

energy [27]–[30]. The problem of minimizing the linear sum of

sampling and transmission cost in a multiple-node system with

generate at will model is analyzed in [27], subject to meeting

average AoI constraints, and an upper bound on the objective

function is derived. In [28], a multi-node system is considered,

where nodes can even transmit their updates (with arbitrary

inter-generation time) partially, such that the linear sum of

AoI, transmission cost and distortion is minimized. A greedy

algorithm is proposed that is shown to be 2-competitive. In

[30], a node is considered that can download fresh updates

(immediately) if a neighboring access-point (AP) is available,

and decrease its own instantaneous AoI to 0. The goal is

to minimize the linear sum of AoI and downloading cost.

When the time-slots in which a neigboring AP is available

is arbitrary, [30] proposes a randomized online algorithm that

is e/(e− 1)-competitive.

B. Our Contributions

In this paper, we consider a basic scheduling problem, where

the objective function is a linear combination of the AoI and

the average transmission cost (energy consumed), and the

decision at each time instant is whether to transmit the most

recent outstanding update or wait for the next update to arrive

at the node, given the current age and the inter-generation time

distribution.

• We first consider the update inter-generation time to be

exponentially distributed. For this case, we derive an

optimal algorithm, that is threshold based, where we

explicitly characterize the threshold as well. Typically, for

solving such problem e.g. [18], [29], structural properties

of MDPs are exploited, however, in this work, we take

a different approach. We derive a lower bound on the

objective function and derive sufficient conditions to

achieve that lower bound. Next, we propose a threshold

based algorithm, that transmits a newly generated update

if the time since the last transmission is above a certain

threshold, and show that it satisfies the optimality condi-

tions.

• Next, we consider the case of general inter-generation

time distributions, and consider a stationary randomized

policy, that either transmits a newly generated update

with a certain fixed probability or never transmits it at

all. In this setting, we consider the metric of competitive

ratio, that is defined as ratio of the cost incurred by the

stationary randomized policy to the cost incurred by an

offline optimal policy that knows the inputs in advance,

maximized over all inputs. For the stationary randomized

policy, we derive an upper bound on its competitive

ratio in terms of the expectation and variance of the

update inter-generation time distributions. For commonly

considered distributions such as exponential, uniform,

and Rayleigh, we show that the competitive ratio of the

stationary randomized policy is at most 2.

II. SYSTEM MODEL

Consider a node, where updates (henceforth, packets) are

generated stochastically, with inter-generation time X dis-

tributed according to a known distribution D. If the node trans-

mits an update to the monitor, it is received instantaneously,

without any delay. At any time t ≥ 0, AoI of the monitor is

∆(t) = t − λ(t), where λ(t) denotes the generation time of

the latest packet of the node that has also been received by

the monitor until time t. Therefore, average AoI ∆av(t) of a

node at time t is

∆av(t) =
1

t

∫ t

0

∆(i)di. (1)

The node incurs a cost of c units (c ≥ 0) for each transmission.

Hence, average transmission cost at time t is given by

Cav(t) =
c

t
R(t), (2)

where, R(t) denotes the number of packets transmitted by the

node until time t. The objective is to obtain a causal optimal

transmission policy π∗,

π∗ = argmin
π∈Π

lim
t→∞

ρCπ
av(t) + ∆π

av(t), (3)

where ρ ≥ 0 is a constant and Π is the set of all causal trans-

mission policies π (that only requires information obtained

until time t to decide whether to transmit at time t or not),

while Cπ
av(t) and ∆π

av(t) denotes the average transmission cost

and average AoI on following policy π, respectively.

Remark 1: Any cost function of the form aCav(t) +
b∆av(t) (where a, b > 0 are constants) can be expressed as

b(ρCav(t) + ∆av(t)), (for ρ = a/b). Therefore, the solution

of corresponding optimization problem is similar to (3).

First, we consider the exponential distribution for inter-

generation time of packets, and derive an optimal transmission

policy for (3). Then in Section IV, we generalize this to include

general distributions inter-generation time of packets.

III. EXPONENTIAL DISTRIBUTION

In this section, we assume that the inter-generation time

of packets is exponentially distributed with packet generation

rate q > 0. We develop a causal optimal transmission policy

that solves (3), by initially finding a suitable subset within
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Fig. 1: Sample plot of AoI against time when following a

policy π ∈ ΠLCFS . When π transmits a packet (generated at

time ti) at rπi , then it incurs an extra AoI cost compared to a

policy πNB ∈ ΠNB .

Π that contains an optimal solution of (3), and then deriving

sufficient conditions for a transmission policy (in the subset) to

be optimal, and proposing a transmission policy that satisfies

those sufficient conditions.

Among the policies in Π, ∆π
av(t) is minimum for that

policy π, which at any time, transmits the latest among all the

available packets [5]. To understand this, note that if a packet

is received by the monitor at time t, the AoI ∆(t) decreases

to t − λ(t) (where λ(t) is the generation time of the packet

received at time t). Also, λ(t) is maximum (and hence, t−λ(t)
is minimum) if each time the most recent packet is transmitted.

So, each time if the most recent packet is transmitted, AoI

∆(t) is minimum. Thus, for an optimal transmission policy

π∗, after a new packet is generated at the node, all previously

generated packets become obsolete (as π∗ never transmits

it). Hence, the optimal transmission policy π∗ ∈ ΠLCFS ,

where ΠLCFS ⊆ Π is the set of transmission policies which

only transmits the packet with latest generation time. In fact,

consider the set of transmission policies ΠNB ⊆ ΠLCFS that

either transmits a packet immediately after it is generated, or

never transmits it at all. Theorem 1 shows that the optimal

causal transmission policy π∗ ∈ ΠNB . So, (3) is equivalent to

π∗ = argmin
π∈ΠNB

lim
t→∞

ρCπ
av(t) + ∆π

av(t). (4)

Definition 1: Let ti denote the generation time of ith packet.

Then the ith frame fi = [ti, ti+1) is the time-interval between

ith and (i + 1)th packet generation. Note that fi ∩ fj = φ,

∀i 6= j, and the time axis can be expressed as ∪i∈Nfi.

Theorem 1: The optimal transmission policy π∗ that solves

the optimization problem (3) either transmits a packet immedi-

atly after it is generated, or never transmits it, i.e., π∗ ∈ ΠNB .

Proof: As shown in Figure 1, let the time axis be parti-

tioned into frames (Definition 1). Since a policy π ∈ ΠLCFS

only transmits the latest generated packet, in any frame fi, the

number of packets transmitted by π is at most 1 (either ith

packet, generated at the start of frame fi is transmitted, or no

transmission occurs in the frame at all). If π transmits the ith

packet in frame fi at time rπi ∈ [ti, ti+1), then in frame fi, π
incurs a transmission cost equal to c, and the AoI cost equal

to ∆(ti)(r
π
i − ti)+(ti+1− ti)

2/2 (i.e., the area under the AoI

time (t)

∆(t)
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Fig. 2: Sample plot of AoI against time when a transmission

policy πNB ∈ ΠNB is followed. Here, ti denotes the genera-

tion time of ith packet, fi denotes ith frame, and Ti denotes

the length of ith cycle.

plot in frame fi, as shown in Figure 1). Hence, the expected

cost that π incurs in frame fi is

Eq[ρc+ (∆(ti)(r
π
i − ti) + (ti+1 − ti)

2/2)|rπi ]
(a)
=ρc+∆(ti)E[r

π
i − ti|rπi ] + E[(ti+1 − rπi )

2/2|rπi ]
+ E[(rπi − ti)

2/2|rπi ] + E[(ti+1 − rπi )(r
π
i − ti)|rπi ],

(b)
=ρc+∆(ti)(r

π
i − ti) + 1/q2 + (rπi − ti)

2/2

+ (rπi − ti)/q, (5)

where we get (a) by substituting ti+1 − ti = (ti+1 − rπi ) +
(rπi − ti), while (b) follows due to memoryless property

of exponential distribution (inter-generation time of packets).

Note that rπi ∈ [ti, ti+1). Therefore, the expected cost (5)

incurred by π in frame fi is more if rπi > ti (compared

to the case when rπi = ti, i.e., when the ith packet is

transmitted immediately after it is generated at time ti). Also,

∀rπi ∈ [ti, ti+1), the AoI at the start of frame fi+1 is same

(equal to ti+1− ti, as shown in Figure 1). Hence, if ith packet

is transmitted by a policy π ∈ ΠLCFS , then it is optimal to

transmit it at time ti (the generation time of ith packet). So, an

optimal transmission policy π∗ ∈ ΠLCFS must either transmit

a packet immediately after it is generated, or never transmit

it (otherwise, another policy π̂∗ ∈ ΠLCFS that transmits the

same packets as π∗, but immediately after they are generated,

will incur lesser cost than π∗, which cannot be true because

π∗ is an optimal transmission policy).

Figure 2 shows a possible AoI plot for a policy πNB ∈
ΠNB . A packet generated at time ti is either transmitted

immediately, or never transmitted at all. Note that when a

transmission policy πNB ∈ ΠNB is followed, AoI varies in

cycles, where a cycle is defined as follows.

Definition 2: A cycle is the interval between the generation

time of two consecutively transmitted packets. In particular, let

ta and tb (where, ta < tb) denote the generation time of two

consecutively transmitted packets. Then the interval [ta, tb)
represents a cycle, and the length (duration) of the cycle is

defined to be tb − ta.

Remark 2: Note the difference between the definitions

of a cycle and a frame (Definition 1). As shown in Figure

2, a frame refers to the interval between generation time

of two consecutive packets, whereas a cycle refers to the

interval between the generation time of two packet that are also

transmitted (consecutively). A cycle may consist of multiple



frames, because every generated packet may not be transmit-

ted.

Henceforth, we denote the ith cycle by Si, and its length (time-

duration) by Ti. AoI cost incurred in a cycle Si is equal to
∫

Si
∆(t)dt = T 2

i /2. Also, the number of transmissions in a

cycle is exactly 1 (transmission occurs at the start of each

cycle). Therefore, the transmission cost incurred in each cycle

is ρc. Hence, the total cost incurred in the ith cycle Si is

ρc+ T 2
i /2. Therefore, (4) can be expressed as follows.

π∗ = argmin
π∈ΠNB

lim
t→∞

∑nt

i=1(ρc+
1
2T

2
i )

∑nt

i=1 Ti
, (6)

where nt denotes the number of cycles up to time t.

Now, let Πst
NB be the set of all stationary policies in ΠNB

such that ∀π ∈ Πst
NB , Eπ [T ] < ∞, where Eπ [·] denotes

expectation with respect to policy π, and T denotes the

cycle length (since T ′
is ∀i are i.i.d. under a stationary policy,

therefore for concise notation, we drop the subscript i to refer

to each Ti). Then in Lemma 1, we simplify (6) using renewal

reward theorem.

Lemma 1: With probability 1 (due to renewal reward

theorem), (6) is equivalent to

π∗ = argmin
π∈Πst

NB

{

V arπ(T ) + 2ρc

2Eπ[T ]
+

Eπ[T ]

2

}

, (7)

where Eπ[T ] and V arπ(T ) denotes the mean and variance of

T when policy π is followed.

Proof: For an optimal policy π∗, there exists a threshold

∆max (assuming finite ρc) such that a packet generated at

time t is always transmitted if ∆(t) > ∆max (otherwise, the

additional AoI cost will be larger than the cost due to single

transmission i.e. ρc). Therefore if q > 0, then Eπ∗ [T ] ≤ ∞ (in

fact, Eπ∗ [T ] ≤ ∆max + 1/q, where 1/q is the expected inter-

generation time of packets at the node). So, we restrict our

search space to only those policies π within ΠNB for which

Eπ[T ] <∞.

Now, let Yi = T 2
i /2 + ρc. Since the inter-generation

time of packets follows exponential distribution, therefore,

each cycle is independent of all the previous cycles (i.e.,

transmission decisions and inter-generation time of packets

during previous cycles do not affect the present cycle). So,

the optimal transmission policy in a cycle should not depend

on the index of the cycle (which implies that the optimal

transmission policy should not depend on time). Thus, it

is sufficient to search for the optimal transmission policy

within the class of stationary transmission policies. So, let

Πst
NB be the set of all stationary policies in ΠNB , such that

∀π ∈ Πst
NB , Eπ [T ] < ∞. Therefore, for any transmission

policy π ∈ Πst
NB , ((T1, Y1), (T2, Y2), ...) forms an independent

and identically distributed sequence, and the stochastic process

R = {Rt : Rt =
∑nt

i=1 Yi, t ∈ N} is a renewal reward process

[31]. From renewal reward theorem, with probability 1, we

have limt→∞
Rt

t = Eπ[Y ]
Eπ[T ] (where Y = T 2/2+ρc). Hence, (4)

can be written as

π∗ = argmin
π∈Πst

NB

Eπ [
1
2T

2 + ρc]

Eπ[T ]
,

= argmin
π∈Πst

NB

1
2 (V arπ(T ) + Eπ [T ]

2) + ρc

Eπ[T ]
,

= argmin
π∈Πst

NB

{

V arπ(T ) + 2ρc

2Eπ[T ]
+

Eπ[T ]

2

}

.

Let V ar∗(T ) = min
π∈Πst

NB

V arπ(T ), (where V arπ(T ) denotes

variance of T when policy π is followed). Theorem 2 lists

sufficient conditions for any policy π ∈ ΠNB to be an optimal

solution of (7).

Theorem 2: A stationary policy π ∈ Πst
NB is an optimal

solution π∗ of the optimization problem (7) if

Eπ [T ] =
√

V ar∗(T ) + 2ρc, and (8)

V arπ(T ) = V ar∗(T ). (9)

Proof: Let ΓOPT denote the average cost incurred by the

optimal algorithm π∗ (7). Therefore,

ΓOPT = min
π∈Πst

NB

{

V arπ(T ) + 2ρc

2Eπ[T ]
+

Eπ [T ]

2

}

. (10)

Next, we compute a lower bound on ΓOPT , and find sufficient

conditions for a policy π ∈ Πst
NB to achieve the lower bound.

For a lower bound on (10), we consider V arπ(T ) and

Eπ[T ] as independent variables, and then use coordinate-

wise minimization approach to minimize (10) (we show

in Lemma 3 that coordinate-wise minimization approach

gives a lower bound on (10)). Initially, we minimize (10)

with respect to V arπ(T ) ∈ [V ar∗(T ),∞) (by definition,

V ar∗(T ) = min
π∈Πst

NB

V arπ(T )), and find that it is minimized

when V arπ(T ) = V ar∗(T ). So, we substitute V arπ(T ) =
V ar∗(T ) in (10), and then calculate Eπ[T ] ∈ [0,∞) that

minimizes (10). We find that for V arπ(T ) = V ar∗(T ), (10)

is minimized for Eπ[T ] =
√

V ar∗(T ) + 2ρc. So, substituting

V arπ(T ) = V ar∗(T ) and Eπ [T ] =
√

V ar∗(T ) + 2ρc in

(10), we get the following lower bound on ΓOPT (10).

ΓOPT ≥
√

V ar∗(T ) + 2ρc, (11)

with equality if for a policy π ∈ Πst
NB , V arπ(T ) = V ar∗(T ),

and Eπ[T ] =
√

V ar∗(T ) + 2ρc. So, a policy π ∈ Πst
NB

achieves the lower bound (11) on ΓOPT , and hence is an

optimal solution of (7), if conditions (8) and (9) are satisfied

simultaneously.

Although Theorem 2 provides sufficient conditions (8) and

(9) for optimality, the conditions themselves are in terms of an

unknown quantity V ar∗(T ). So, Lemma 2 provides an explicit

expression for V ar∗(T ).
Lemma 2: V ar∗(T ) = 1/q2, where q is the packet

generation rate.

Proof: See Appendix B.

In next section, we propose a threshold-based transmission

policy to solve (7).



A. A Threshold Policy for Packet Transmission

Let τ denote time relative to the start time (λ(t)) of the

ongoing cycle. Thus at time t, τ = t − λ(t), and whenever

a packet is transmitted, new cycle starts and τ is reset to

0. Now, consider Algorithm 1, a threshold policy for packet

transmission. In each cycle, it transmits the first packet that is

generated at time τ > T ∗
q,ρc =

√

(1/q2) + 2ρc − 1/q ≥ 0.

Theorem 3 shows that Algorithm 1 is an optimal causal

transmission policy that solves the optimization problem (7).

Algorithm 1 Threshold policy π∗
ON for packet transmission.

1: τ ← 0; // τ increases linearly with time.

2: loop

3: if a packet is generated and τ > T ∗
q,ρc then

4: transmit the generated packet;

5: τ ← 0;

6: else

7: wait for next packet;

8: end if

9: end loop

Theorem 3: The transmission policy π∗
ON given by Algo-

rithm 1 with threshold

T ∗
q,ρc =

√

(1/q2) + 2ρc− 1/q ≥ 0 (12)

is an optimal solution of the optimization problem (7).

Proof: Note that the cycle length T = T ∗
q,ρc +X , where

X is the generation time of first packet after T ∗
q,ρc. Since X is

exponentially distributed with mean Eq[X ] = 1/q. Therefore,

Eπ∗

ON
[T ] = T ∗

q,ρc + 1/q =
√

(1/q2) + 2ρc. Since T ∗
q,ρc

is a constant, independent of X , therefore, V arπ∗

ON
[T ] =

V arπ∗

ON
(T ∗

q,ρc) + V arq(X) = 1/q2. Note that V ar∗(T ) =
1/q2 from Lemma 2. So, conditions (8) and (9) are satisfied

by π∗
ON (i.e., Algorithm 1). Thus we conclude the result using

Theorem 2.

Apart from being an optimal causal transmission policy,

additional interesting guarantee can be established for π∗
ON

(Algorithm 1) in terms of an offline optimal transmission

policy (that knows all the inputs in advance). This ensures

that the performance of π∗
ON cannot be arbitrarily bad in

comparision to a transmission policy that is provided with all

input information in advance. For a causal policy, a popular

approach to establish such a guarantee is via competitive ratio

(CR) bound. CR of a causal policy is defined as the ratio

of cost incurred by the causal policy to the cost incurred by

an offline optimal policy (that knows the inputs in advance,

i.e., in present case, the generation time of all the packets),

maximized over all inputs. CR close to 1 guarantees that the

performance of the proposed causal policy is close to optimal

offline policy.

Theorem 4: π∗
ON (Algorithm 1) has a competitive ratio

CR ≤
√
2. Additionally, CR→ 1 if q2ρc→∞.

Proof: See Appendix C.

IV. GENERAL DISTRIBUTION

In Section III, we assumed that the inter-generation time of

packets follow exponential (memoryless) distribution. How-

ever, this assumption might be restrictive in practice. In this

section, we generalize our assumption on the distribution

for the packet inter-generation time X to arbitrary (non-

memoryless) distribution D.

Note that when D is non-memoryless, we cannot claim

the optimal causal transmission policy π∗ to lie in ΠNB . To

understand this, note that when a packet is generated, then

waiting for some time may reveal extra information about

the generation time of next packet. So, after a packet is

generated, optimal policy π∗ may wait for some time to take

informed/optimal decision regarding whether to transmit the

packet or not. Moreover, if π∗ /∈ ΠNB , then the AoI cost in

different cycles (Definition 2) will be inter-dependent, because

AoI at the start of each cycle will depend on previous cycle.

Also, in continuous time setting, AoI at the start of each cycle

will be a continuous random variable that further complicates

the analysis. So, in this section, we propose a simple stationary

randomized policy, and using competitive ratio (CR) analysis,

establish guarantees on its performance (for any distribution on

packet inter-generation time X) relative to the optimal offline

solution of (3).

Let {Xi}i∈N denote the inter-generation time of packets

at the node, where X ′
is (∀i ∈ N) are i.i.d. with probability

density function PX (such that PX(x < 0) = 0), and EPX
[Xi]

and V arPX
(X) are finite. Consider Algorithm 2 that transmits

each packet immediately after generation with probability

p∗ = min{µX/
√
ρc, 1} (so, a packet is never transmitted with

probability 1−p∗). Theorem 5 provides a competitive ratio for

Algorithm 2 with respect to the optimal transmission policy.

Algorithm 2 Stationary randomized policy π∗
SR for packet

transmission.

1: if a packet is generated at the node then

2: transmit the generated packet with probability p∗;

3: else

4: wait for next packet;

5: end if

Theorem 5: The stationary randomized transmission policy

π∗
SR given by Algorithm 2 with p∗ = min{µX/

√
ρc, 1} has a

competitive ratio

CRπ∗

SR
≤ max

{

2, 1 +
V arPX

(X)

µ2
X

}

, (13)

where µX = EPX
[X ].

Proof: To prove Theorem 5, we follow a two step

approach. In step 1, we compute a lower bound on the average

cost for an optimal algorithm. In step 2, we show that in

the set of policies ΠSR that transmits each generated packet

immediately with probability p, there exists a policy with

competitive ratio (13). Finally, we show that π∗
SR given by

Algorithm 2 with p = p∗ = min{µX/
√
ρc, 1} is the optimal



policy within ΠSR to conclude Theorem 5. Detailed proof is

provided in Appendix D.

Although the competitve ratio (13) depends on the distri-

bution of inter-generation time of packets, it is bounded for

several common distributions. Some examples are as follows.

a) Exponential Distribution: For exponential distribu-

tion, the ratio V arPX
(X)/µ2

X = 1. Therefore, CRπ∗

SR
≤ 2.

b) Uniform distribution: Let the support of the uniform

distribution be over interval [a, b] (0 ≤ a ≤ b). Then

µX = (b + a)/2, and V arPX
(X) = (b − a)2/12. Therefore,

V arPX
(X)/µ2

X ≤ 1/3. Hence, CRπ∗

SR
≤ max{2, 4/3} = 2.

c) Rayleigh Distribution: Let the scale parameter of

rayleigh distribution be σ. Then µX = σ
√

π/2, and

V arPX
(X) = σ2(4 − π)/2. Therefore, V arPX

(X)/µ2
X =

(4/π)− 1 < 1. Hence, CRπ∗

SR
≤ 2.

V. NUMERICAL RESULTS

In this section, we analyse the performance of the proposed

optimal threshold policy π∗
ON (Algorithm 1 with threshold

T ∗
q,ρc (12)) and the proposed stationary randomized policy

π∗
SR (Algorithm 2 with p∗ = min{µX/

√
ρc, 1}) via numerical

simulations. We let ρ = 1, and consider a sequence of 10000
packet generations for each simulation.

Figure 3 shows the plot of average cost Γ (sum of average

AoI ∆av and average transmission cost Cav) with respect

to (w.r.t.) cost per transmission (c) for π∗
ON and π∗

SR when

inter-generation time of packets are exponentially distributed

with mean µX = 1/q = 0.25. When c increases, Γ also

increases due to increase in Cav . However, the threshold T ∗
q,ρc

(12) for π∗
ON (Algorithm 1) increases with increase in c,

and the transmission probability p∗ = min{µX/
√
ρc, 1} for

π∗
SR (Algorithm 2) decreases with increase in c. Thus, when

c increases, both π∗
ON and π∗

SR decrease the transmission

frequency of packets. Although Γ increases with c, the rate

of increase in average cost Γ is small when c is large. In

Figure 3, also note that the average cost Γ for the stationary

randomized policy π∗
SR is less than two (the competitive ratio

bound) times the average cost for π∗
ON as discussed in Section

IV.

For comparative analysis, in Figure 3 we also consider WI-

threshold policy (WITP) (with threshold (
√

0.25 + 2ρc/µX−
0.5)µX ), which is a continuous-time equivalent of the thresh-

old policy proposed in [21] (Proposition 14) for discrete-

time model. The threshold T ∗
q,ρc (12) of the optimal threshold

policy π∗
ON (Algorithm 1) depends on V arq(X), which is not

accounted by WITP. So, WITP incurs larger average cost Γ
compared to π∗

ON as shown in Figure 3.

In Figure 4, we consider the performance of π∗
SR when

the distribution on packet inter-generation time is Uniform,

Rayleigh and LogNormal, each with mean µX = 1 and

variance 0.33, 0.2732, and 1 respectively. Also, for each of

these distributions, after the sequence of packet generation

times were realized, we numerically found a threshold policy

πT for which the average cost Γ is minimum. Against each

curve, the suffix ‘-SR’ denotes π∗
SR, while the suffix ‘-T’

denotes the threshold policy πT . As shown in Figure 4, even
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Fig. 3: Plot of average cost Γ of transmission policies w.r.t.

cost per transmission.

for the three non-memoryless distributions (for packet inter-

generation time) that we considered here, the average cost Γ
incurred by π∗

SR is less than two (the competitive ratio (13)

bound for π∗
SR) times the average cost for πT .

0 0.5 1 1.5 2 2.5 3

Cost per Transmission (c)

0.5

1

1.5

2

2.5

3

3.5

A
ve

ra
ge

 C
os

t (
)

Uniform-SR
Uniform-T
Rayleigh-SR
Rayleigh-T
LogNormal-SR
Log-normal-T

Fig. 4: Plot of average cost Γ of transmission policies w.r.t.

cost per transmission for different distributions on inter-

generation time.
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Fig. 5: Variation in average AoI ∆av w.r.t. cost per transmis-

sion for different distributions on inter-generation time.

To understand the effect of cost per transmission (c) on

average AoI ∆av, Figure 5 shows the plot of ∆av against c for

Exponential, Uniform, Rayleigh and LogNormal distributions

(with mean µX = 1, and variance 1, 0.33, 0.2732 and 1

respectively) for inter-generation time of packets for both π∗
SR

and πT . Note that π∗
SR transmits each packet with probability

p∗ = min{µX/
√
ρc, 1} (where ρ is a fixed quantity that



determines the weightage given to the average transmission

cost (w.r.t. average AoI) in the objective function (3); see

Remark 1). Since µX = 1 and ρ = 1, therefore for c ≤ 1,

p∗ = 1. Hence when c ≤ 1, π∗
SR transmits all the packet. So,

∆
π∗

SR
av (average AoI for policy π∗

SR) is constant, and lower than

∆πT
av (average AoI for the numerically computed threshold

policy πT ) when c ≤ 1. However when c > 1, p∗ decreases

with increase in c, thereby increasing ∆
π∗

SR
av , that ultimately

exceeds ∆πT
av .

A similar phenomenon is observed in Figure 6 that shows

the plot of ∆
π∗

SR
av (average AoI for policy π∗

SR) w.r.t. µX

when c = 1. In general, it is expected that ∆
π∗

SR
av should

increase monotonically with µX (because packets are gen-

erated less frequently when µX is large). However, p∗ =
min{µX/

√
ρc, 1} increases linearly with µX ∈ [0, 1], while

p∗ = 1 (constant) when µX ≥ 1. So, when µX ∈ [0, 1], node

transmits more frequently when µX is close to 1. Therefore,

∆
π∗

SR
av either decreases, or increases very slowly. But when

µX ≥ 1, p∗ remains constant, and because packets are

generated less frequently when µX increases, therefore, ∆
π∗

SR
av

increases with increase in µX ≥ 1.
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Fig. 6: Variation in average AoI ∆av w.r.t. mean inter-

generation time µX of packets.

VI. CONCLUSION

In this paper, we considered a node-monitor pair with

stochastic packet inter-generation time, and analysed the prob-

lem of minimizing the weighted sum of average AoI and aver-

age transmission cost. We derived an optimal transmission pol-

icy that is of threshold-type, where we explicitly characterized

the threshold. We also showed that for arbitrary distributed

packet inter-generation time (with known mean), a simple

stationary randomized policy has a bounded competitive ratio

(in terms of mean and variance of the distribution).

APPENDIX A

Lemma 3: Let function g : [d1,∞)× [d2,∞)→ R (where

d1, d2 ∈ [0,∞) are constants) be defined as g(x, y) = y+2ρc
x +

x. Then g(x, y) ≥ g(max{d1,
√
d2 + 2ρc}, d2).

Proof: Note that g(x, y) is linear in y with minimum

at y = d2. Also, for a fixed y,
∂2g(x,y)

∂x2 ≥ 0, ∀x. So,

g(x, y) is strictly convex in x. Moreover,
∂g(x,y)

∂x = 0 at

x =
√
y + 2ρc. Hence, for a given y, g(x, y) is minimum

at x = max{d1,
√
y + 2ρc}. Therefore, g(x, y) is minimum

at (x, y) = (max{d1,
√
d2 + 2ρc}, d2), thus proving Lemma

3.

APPENDIX B

PROOF OF LEMMA 2

A policy π ∈ Πst
NB either transmits a packet immedi-

ately after generation, or never transmits it at all. So, cycle

length T is equal to the generation time of the transmitted

packet (relative to start time of the ongoing cycle). Let

M ≥ 1 denote the index of transmitted packet in a cycle

(M may be a random quantity depending on the policy π).

Therefore, T =
∑M−1

i=1 Xi + XM , where Xi is the inter-

generation time of (i − 1)th and ith packet. Since packet

inter-generation time X is i.i.d. exponentially distributed, at

any time in a cycle, next packet is generated after X time

units irrespective of the packets generated in the past. So,

XM is independent of
∑M−1

i=1 Xi, irrespective of choice of

M . Hence, V arπ(T ) = V arπ,q(
∑M−1

i=1 Xi) + V arq(XM ) ≥
V arq(XM ) = 1/q2. Also, choosing M = 1, V arπ(T ) = 1/q2

and thus, V ar∗(T ) = argmin
π∈ΠNB

V arπ(T ) = 1/q2.

APPENDIX C

PROOF OF THEOREM 4

Let π∗
ON denote Algorithm 1 (an optimal online/causal

transmission policy) and π∗
OFF denote an offline optimal

transmission policy that knows the generation time of every

packet in advance. Also, let Γπ∗

ON
and Γπ∗

OFF
be the average

cost to node (i.e., ρCav(t) + ∆av(t)) on following π∗
ON and

π∗
OFF , respectively. Therefore, the competitive ratio (CR) of

π∗
ON relative to π∗

OFF is given by CR = max
Γπ∗

ON

Γπ∗

OFF

, where

maximization is over all packet generation sequences.

Note that π∗
ON ∈ Πst

NB ⊆ ΠNB . Therefore, π∗
ON either

transmits a packet immediately after it is generated, or does

not transmit it at all. Also, similar to Theorem 1, it can be

argued that π∗
OFF either transmits a packet immediately after

it is generated, or drops it forever. So, AoI plot for both π∗
ON

and π∗
OFF is as shown in Figure 2, and average cost to node

is limt→∞

∑nt
i=1

( 1

2
T 2

i +ρc)
∑nt

i=1
Ti

, where Ti ≥ 0 is the length of ith

cycle, and nt ≥ 0 is the number of cycles up to time t. Using

renewal reward theorem as in the proof of Lemma 1, we get

Γπ∗

ON
=

1

2

(

V arπ∗

ON
(T ) + 2ρc

Eπ∗

ON
[T ]

+ Eπ∗

ON
[T ]

)

, (14)

Γπ∗

OFF
=

1

2

(

V arπ∗

OFF
(T ) + 2ρc

Eπ∗

OFF
[T ]

+ Eπ∗

OFF
[T ]

)

. (15)

Now, substituting Eπ∗

ON
[T ] =

√

(1/q2) + 2ρc and

V arπ∗

ON
(T ) = 1/q2 in (14), we get

Γπ∗

ON
=

√

(1/q2) + 2ρc. (16)

Also, using Lemma 3 (see Appendix A) we get a lower

bound on (15):

Γπ∗

OFF
≥

√

V arπ∗

OFF
+ 2ρc. (17)



Since this lower bound is in terms of V arπ∗

OFF
(T ) that is

unknown, so for an explicit lower bound on Γπ∗

OFF
, we next

compute a lower bound on V arπ∗

OFF
(T ). For ease of nota-

tion, let µ̂ denote Eπ∗

OFF
[T ]. Then by definition of variance,

V arπ∗

OFF
(T )

=

∫ ∞

0

P((T − µ̂)2 > x)dx
(a)
=

∫ ∞

0

2yP(|T − µ̂| > y)dy,

=

∫ µ̂

0

2yP(|T − µ̂| > y)dy +

∫ ∞

µ̂

2yP(|T − µ̂| > y)dy,

(18)

where in (a), we used change of variables (replaced x by y2).

Note that T is equal to the generation time of the transmitted

packet (relative to the start time of the cycle). So, T cannot

lie in interval [µ̂ − y, µ̂+ y] if no packet is generated in this

interval of time (this is sufficient condition, but not necessary).

So, P(|T−µ̂| > y) is greater than the probability that no packet

is generated in the interval [µ̂− y, µ̂+ y]. Since packet inter-

generation time follows exponential (memoryless) distribution

with parameter q, therefore, if y ≤ µ̂, then P(|T − µ̂| > y)
is lower bounded by e−q2y , otherwise it is lower bounded by

e−q(µ̂+y). So, from (18) we get

V arπ∗

OFF
(T ) ≥

∫ µ̂

0

2ye−q2ydy +

∫ ∞

µ̂

2ye−q(µ̂+y)dy, (19)

=
1

2q2
+ 2e−2qµ̂

(

µ̂

2q
+

3

4q2

)

(a)

≥ 1

2q2
, (20)

where we got (a) by minimizing with respect to µ̂. Thus, from

(17) and (20) we get

Γπ∗

OFF
≥

√

(1/2q2) + 2ρc. (21)

So, using (16) and (21), we get the competitive ratio

CR =

√

1 + 2q2ρc
√

0.5 + 2q2ρc
≤
√
2. (22)

Note that if q2ρc is large, then CR is close to 1.

APPENDIX D

PROOF OF THEOREM 5

We prove Theorem 5 in two steps. First, we compute a lower

bound on the average cost for an optimal algorithm, and then

we compute the competitive ratio for π∗
SR (Algorithm 2 with

p∗ = min{µX/
√
ρc, 1}).

1) Lower bound: For lower bound, consider an offline opti-

mal transmission policy π∗
OFF . Since an offline policy knows

the generation time of all the packets in advance, therefore,

regardless of the distribution on packet inter-generation time

X , it must transmit the packet that is to be transmitted,

immediately after generation (otherwise, if a packet is stored

and transmitted later, then the node incurs extra AoI cost

(similarly as shown in Figure 1) without any reduction in

transmission cost). Therefore, AoI of the node under an offline

optimal policy varies in cycles as shown in Figure 2 (i.e., in

each cycle, AoI increases linearly with time, and then instantly

drops to 0). Therefore, AoI cost incurred in ith cycle is T 2
i /2,

where Ti denotes the length of ith cycle. Also, at time t, let

s = t −∑R(t)
i=1 Ti denote the time elapsed since last packet

transmission (i.e., the length of ongoing (incomplete) cycle at

time t as shown in Figure 1). Therefore, overall AoI cost for

π∗
OFF is

∑R(t)
i=1 (T

2
i /2) + s2/2. Hence,

∆av(t) =
1

t









R(t)
∑

i=1

T 2
i

2



+
s2

2



 ,

=
1

2





R(t)

t

1

R(t)

R(t)
∑

i=1

T 2
i +

s2

t



 ,

(a)

≥ 1

2







R(t)

t





1

R(t)

R(t)
∑

i=1

Ti





2

+
s2

t






,

≥ 1

2

[

1

t

(t− s)2

R(t)
+

s2

t

]

, (23)

where in (a), we used Jensen’s inequality. Minimizing (23)

with respect to s ∈ [0,∞), we find that (23) is minimum for

s = t/(1+R(t)). Thus, substituting s = t/(1+R(t)) in (23),

we get

∆av(t) ≥
1

2t

[

(t− t/(1 +R(t)))2

R(t)
+

(

t

1 +R(t)

)2
]

,

=
t/2

1 +R(t)
. (24)

A lower bound similar to (24) with an additive term 1/2
was computed in [13] for average AoI for a discrete-time

model. Now, since Cav(t) = cR(t)/t, therefore, substituting

R(t)/t = Cav(t)/c in (24), and taking limits as t → ∞ in

(24), we get

lim
t→∞

∆av(t) ≥ lim
t→∞

1/2

Cav(t)/c+ 1/t
= lim

t→∞

c/2

Cav(t)
. (25)

Therefore, using (25) we get a lower bound on Γπ∗

OFF
(where

Γπ∗

OFF
is the average cost on following π∗

OFF ) as follows.

Γπ∗

OFF
= min

π∈Π
lim
t→∞

{∆π
av(t) + ρCπ

av(t)} ,
(a)
= ∆

π∗

OFF
av (t) + ρC

π∗

OFF
av (t),

≥ lim
t→∞

c/2

C
π∗

OFF
av (t)

+ ρC
π∗

OFF
av (t),

(b)
=

c/2

C
π∗

OFF
av

+ ρC
π∗

OFF
av , (26)

where in (a), the policy π∗
OFF is the optimal offline policy

that minimizes ∆av(t) + ρCav(t) as t → ∞, while in (b),

C
π∗

OFF
av = limt→∞ C

π∗

OFF
av (t).

2) Competitive Ratio: Let ΠSR be the set of transmission

policies that transmit each packet immediately after generation

with probability p, or never transmit the packet. Since ΠSR ⊆



ΠNB , therefore as shown in Section III, for any policy πSR ∈
ΠSR, we have

ΓπSR
=

V arπSR
(T ) + 2ρc

2EπSR
[T ]

+
EπSR

[T ]

2
,

=
EπSR

[T 2]

2EπSR
[T ]

+
ρc

EπSR
[T ]

,

= EπSR
[T ]

(

EπSR
[T 2]

2EπSR
[T ]2

)

+
ρc

EπSR
[T ]

. (27)

Note that Ti =
∑mi

j=1 Xij , where mi is the index of the

generated packet in ith cycle that is transmitted, and Xij is

equal to the inter-generation time of (j−1)th and jth generated

packet in ith cycle. So, Ti is a sum of random number (mi)

of i.i.d. random variables (Xij). Also, mi is independent of

Xij (∀j), because πSR transmits each packet with probability

p (independent of Xij). Hence, using Wald’s equation [32],

EπSR
[Ti] = EπSR

[mi]EPX
[X ] = µX/p, (28)

where µX = EPX
[X ]. Also, T 2

i =
∑mi

j=1 X
2
ij +

∑mi

j=1

∑mi

k=1,k 6=j XijXik . Therefore,

EπSR
[T 2

i ]
(a)
= EπSR

[mi]µX2 + EπSR
[m2

i −mi]µ
2
X ,

= EπSR
[mi]V arPX

(X) + EπSR
[m2

i ]µ
2
X , (29)

where in (a), µX2 = EPX
[X2], and µX = EPX

[X ]. Therefore,

using (28) and (29) (and dropping the subscript i for ease of

notation), we get

EπSR
[T 2]

EπSR
[T ]2

=
EπSR

[m]V arPX
(X) + EπSR

[m2]µ2
X

(EπSR
[m]µX)2

,

=
V arPX

(X)

EπSR
[m]µ2

X

+
EπSR

[m2]

EπSR
[m]2

,

(a)
= p

V arPX
(X)

µ2
X

+ 2− p,

= 2− p

(

1− V arPX
(X)

µ2
X

)

, (30)

where in (a), we used E[m] = 1/p, and E[m2] = (2− p)/p2.

Substituting (30) into (27), we get

ΓπSR
=

EπSR
[T ]

2

(

2− p

(

1− V arPX
(X)

µ2
X

))

+
ρc

EπSR
[T ]

.

(31)

Since E[Xi] < ∞, therefore for p > 0, RπSR
(t) → ∞ as

t→∞ (where RπSR
(t) denotes number of packets transmitted

until time t when policy πSR is followed). Also, Ti are i.i.d.

for each i ∈ N. So, using strong law of large numbers,

lim
t→∞

1

RπSR
(t)

RπSR
(t)

∑

i=1

Ti
a.s.→ EπSR

[T ]. (32)

Let CπSR
av = limt→∞ CπSR

av (t). Therefore, by definition,

CπSR
av = lim

t→∞

cRπSR
(t)

t
= lim

t→∞

cRπSR
(t)

∑RπSR
(t)

i=1 Ti

. (33)

So, from (32) and (33) we have

CπSR

av
a.s.→ c

EπSR
[T ]

, (34)

Thus, using (31) and (34), we get

ΓπSR
=

c/2

CπSR
av

(

2− p

(

1− V arPX
(X)

µ2
X

))

+ ρCπSR

av . (35)

Note that for policy πSR ∈ ΠSR with p = 0, CπSR
av = 0, while

for a policy πSR ∈ ΠSR with p = 1,CπSR
av is maximum for any

given realization of the packet generation process. Hence, there

exists a certain value of p ∈ [0, 1] (say, p̂), such that for the

stationary policy πSR,p̂ ∈ ΠSR with p = p̂, C
πSR,p̂
av = C

π∗

OFF
av

(where π∗
OFF is the optimal offline transmission policy used

in (26)). Therefore, using (26) and (35) we get

ΓπSR,p̂

Γπ∗

OFF

≤
c/2

C
π∗

OFF
av

(

2− p̂
(

1− V arPX (X)

µ2

X

))

+ ρC
π∗

OFF
av

c/2

C
π∗

OFF
av

+ ρC
π∗

OFF
av

,

=

(

2− p̂
(

1− V arPX (X)

µ2

X

))

+ 2ρ
c (C

π∗

OFF
av )2

1 + 2ρ
c (C

π∗

OFF
av )2

,

=

(

2− p̂
(

1− V arPX (X)

µ2

X

))

− 1

1 + 2ρ
c (C

π∗

OFF
av )2

+ 1,

≤ 2− p̂

(

1− V arPX
(X)

µ2
X

)

. (36)

From (36), it follows that

1) if
V arPX (X)

µ2

X

≤ 1, then
ΓπSR,p̂

Γπ∗

OFF

≤ 2, and

2) if
V arPX (X)

µ2

X

> 1, then
ΓπSR,p̂

Γπ∗

OFF

≤ 2− (1− V arPX (X)

µ2

X

).

Therefore,
ΓπSR,p̂

Γπ∗

OFF

≤ max
{

2, 2−
(

1− V arPX (X)

µ2

X

)}

, i.e.,

ΓπSR,p̂

Γπ∗

OFF

≤ max

{

2, 1 +
V arPX

(X)

µ2
X

}

. (37)

Now, let π∗
SR ∈ ΠSR be the optimal policy (among the

policies in ΠSR) with p = p∗ such that Γπ∗

SR
≤ ΓπSR

∀πSR ∈ ΠSR. Therefore, Γπ∗

SR
≤ ΓπSR,p̂

. Thus, from (37)

we get the competitive ratio for π∗
SR to be

CRπ∗

SR
≤ max

{

2, 1 +
V arPX

(X)

µ2
X

}

. (38)

Next, we find π∗
SR by computing p∗ that minimizes ΓπSR

(31). Substituting EπSR
[T ] = µX/p from (28) into (31), we

get ΓπSR
= µX

2p

(

2− p
(

1− V arPX (X)

µ2

X

))

+ p ρc
µX

, i.e.,

ΓπSR
=

µX

p
+ p

ρc

µX
− µX

2

(

1− V arPX
(X)

µ2
X

)

. (39)

Relaxing p to take values in (0,∞], we find that (39) is

minimum at p = µX/
√
ρc. Since p∗ ∈ (0, 1], therefore, if

µX/
√
ρc ∈ (0, 1], then p∗ = µX/

√
ρc. Otherwise, p∗ = 1

because (39) is convex in p, and hence, non-increasing in p
in interval (0, µX/

√
ρc]. Therefore, if µX/

√
ρc > 1, then for

p ∈ (0, 1], ΓπSR
is minimum at p = 1 = p∗. Thus collectively,

p∗ = min{µX/
√
ρc, 1}.
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