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Abstract—The ability to accurately evaluate the performance
of location determination systems is crucial for many applica-
tions. Typically, the performance of such systems is obtained
by comparing ground truth locations with estimated locations.
However, these ground truth locations are usually obtained by
clicking on a map or using other worldwide available technologies
like GPS. This introduces ground truth errors that are due to the
marking process, map distortions, or inherent GPS inaccuracy.

In this paper, we present a theoretical framework for analyzing
the effect of ground truth errors on the evaluation of localization
systems. Based on that, we design two algorithms for computing
the real algorithmic error from the validation error and mark-
ing/map ground truth errors, respectively. We further establish
bounds on different performance metrics.

Validation of our theoretical assumptions and analysis using
real data collected in a typical environment shows the ability
of our theoretical framework to correct the estimated error of
a localization algorithm in the presence of ground truth errors.
Specifically, our marking error algorithm matches the real error
CDF within 4%, and our map error algorithm provides a more
accurate estimate of the median/tail error by 150%/72% when
the map is shifted by 6m.

Index Terms—Localization, Real error, Validation error, Mark-
ing error, Map error, Rayleigh distribution, Rice distribution

I. INTRODUCTION

Location determination technologies have gained momen-
tum recently with a number of outdoor and indoor applications
such as directions finding, directed ads, E911, driverless cars,
among others. Typically, the performance of location deter-
mination systems is quantified through some measures, e.g.
the full error CDF, or a single-value metric such as median,
mean, or different percentiles. To do that, a ground truth data
set is usually collected tagged with the actual user location
to compare the estimated location against. This ground truth
location can be entered manually, by a user clicking on the
map where he/she is standing, or automatically; by using
a higher accuracy tracking technology; e.g. using GPS or
GNSS systems as ground truth for cellular-based localization
technologies [32], [28], [11], [15], [2], [22].

These methods for ground truth collection are inherently
noisy and may lead to inaccuracy in the reported evaluation
results of a particular localization system [31], [1], [18], [30],
[2], [3], [16], [12], [36]. In particular, a human ground truth
collector may click on the map in the wrong location when
marking his/her position. This is especially true in open areas,
when there are no landmarks to help determine where the user
is standing, or when the user marks the location on the limited

mobile device screen. Moreover, in many cases, ground truth
locations may be marked at a lower granularity to reduce the
collection overhead, e.g. by marking the start and end location
of a trace and interpolating the ground truth points between
them [22], [5]. Furthermore, the map used for marking the
ground truth locations may contain errors itself, e.g. have an
offset or scale error (Figure 1), an error whose possibility
increases with a worldwide deployment. All of these factors
could affect the reported accuracy of a localization system,
which can be significant when the current state-of-the-art is
trying to squeeze the errors in their systems.

In this paper, we present a theoretical framework for ana-
lyzing the effect of ground truth errors on the evaluation of
localization systems. Using this framework, we design two
algorithms for computing the real algorithmic error from the
validation error and marking/map ground truth errors, respec-
tively. These algorithms can be used to adjust the reported
accuracy on the different metrics of a given localization system
to account for ground truth collection issues, as well as to
prioritize which factors should be handled more carefully.
Specifically, our analysis shows interesting findings: (a) The
impact of marking error on evaluation accuracy is quadratic;
(b) As the accuracy of the localization system gets better, the
impact of error in ground truth grows; (c) The 95%-tail error
is at least twice of the median/mean errors; (d) Marking error
has more impact than map error on the mean and median, but
less impact on the tail.

We validate our assumptions and analysis on a real indoor
WiFi dataset. The results show the ability of our theoretical
framework to correct the estimated error of a localization
algorithm to obtain a more realistic error in the presence of
ground truth errors. In particular, our marking error algorithm
matches the real error within 4% in all percentiles. Moreover,
our map error algorithm provides a more accurate estimate
of the median/tail error by more than 20%/5% when the map
is shifted by 1m in X and Y directions. This enhancement
increases to 150%/72% when the map is shifted by 6m.

To the best of our knowledge, this is the first work that
quantifies the effect of ground truth accuracy on the perfor-
mance of location determination systems.

The rest of the paper is organized as follows: Section II
presents the mathematical model formulation and notation
used in the paper. Section III gives the details of our theo-
retical analysis followed by the experimental validation of the
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Fig. 1: Map error example. The human-marked ground truth
locations (green circles) inside a railway station differ by a
consistent offset of about 30 meters in the northeast direc-
tion. This is because the used map system had an incorrect
alignment of the building.

theoretical results in Section IV. Section V discusses related
work. Finally, we conclude the paper in section VI.

II. FUNDAMENTAL MATHEMATICAL MODEL

In this section, we introduce the mathematical model used
for evaluating the performance of a general location determi-
nation system and state the problems we study in this paper.

A. Types of Ground Truth Errors

First, we define two types of ground truth error: marking
error and map error. In Figure 2(a), the user is at the green
circle but marks his/her location at the blue triangle on an
accurate map. In this case, we call the ground truth error
as marking error. For example, this can be due to the lack
of landmarks for the user to determine his/her exact location
accurately on an open space on the map of the small screen
of a mobile device, or simply due to a mistake from the user.

In Figure 2(b), the user would mark his/her location at the
blue triangle if an accurate map is used. However, he/she
actually marks location at the orange diamond due to using
an incorrect map (as in Figure 1). In this case, we call this
second ground truth error as map error.

B. System Model and Problem Statement

Next, consider a localization algorithm which returns a
user’s 2D location Xalgo. Let Xgt be the user’s actual (real)
ground truth location and X̂gt be the human-marked ground
truth location. Ideally we would like to calculate the algo-
rithm’s real error Errreal = Xgt −Xalgo. However, due to
the ground truth error Errgt = X̂gt − Xgt, the validation
error actually used to evaluate the algorithm’s performance in
literature and many practical systems is

Errval = X̂gt −Xalgo = Errreal + Errgt

Clearly, we are more interested in the location accuracy
|Errreal|, rather than |Errval| which is impacted by the
ground truth error. Once there is enough evaluation data
({Xalgo, X̂gt}), we can know the cumulative distribution

Fig. 2: Ground truth errors. (a) A marking error between
actual ground truth location (green circle) and human-marked
ground truth location on an accurate map (blue triangle). (b)
An additional map error between human-marked ground truth
location on an accurate map (blue triangle) and that on an
incorrect map (orange diamond).

function of |Errval|. Furthermore, instead of using the full
distribution, the accuracy is commonly expressed using high-
level summary statistics, e.g. “some inexpensive GPS receivers
can locate positions to within 10 meters for approximately 95
percent of measurements [13].” In this paper, we consider three
major summary statistics that are commonly used in literature
and practical systems to quantify a localization algorithm
performance:
• The mean error |Errval|mean
• The 50%-median error |Errval|median
• The 95%-tail error |Errval|tail 1

The mean and median reflects the average user experience,
while the tail reflects the worst user experience.

We again emphasize that, since we are more interested to
know |Errreal|mean instead of |Errval|mean, we define the
impact of ground truth error

∆mean = |Errval|mean − |Errreal|mean (1)

as the difference between the validation error and the real error,
i.e. how much of the validation error is caused by the ground
truth error. The notions of ∆median / ∆tail are similar to (1).

To summarize, in this paper we propose and answer the
following questions:

1) Given the summary statistics on the validation error
|Errval|mean and the ground truth (marking/map) error
|Errgt|mean, how can one computes the real algorithmic
error |Errreal|mean?

2) What is the relation between the impact ∆mean and the
ground truth (marking/map) error |Errgt|mean?

3) Can we answer the above two questions for other metrics
such as the median or 95%-tail error, or more generally
for any q-th quantile?

4) Which ground truth error has a larger impact on the
evaluation of a localization system? Marking error or
map error?

1We select 95% as it is most commonly used for confidence intervals [40].
But in theory any level can be selected for the tail error such as 90% or 99%.



Algorithm 1 Compute the real error from validation error and
marking error. This algorithm uses mean but can be extended
to any q-th quantile (0 < q < 1).

Input: validation error mean u = |Errval|mean, marking
error mean v = |Errmark|mean, u > v

Output: real error mean |Errreal|mean
return |Errreal|mean =

√
u2 − v2

C. Application Example

Given a localization algorithm with validation error
|Errval|mean = 6m (which is the main metric commonly used
in literature). The human-marked ground truth is collected on
an incorrect map with an offset |Errmap| = 2m, and we esti-
mate there is an average marking error |Errmark|mean = 3m.

First, we use Algorithm 2 (Section III-B) to remove the
map error, which gives a new validation error |Errval|mean =
5.79m on an accurate map. Next, we use Algorithm 1 (Section
III-A) to remove the marking error and end up with a real
error |Errreal|mean = 4.95m. This final error is a more re-
alistic/accurate reflection of the algorithm performance in real
time after removing the inaccuracy in ground truth collection.

III. THEORETICAL RESULTS

Mathematically, instead of giving the summary statistics
|Errval|mean and |Errgt|mean, even if we know the full
distribution of Errval and Errgt, it is still hard to solve the
distribution of Errreal such that Errval = Errreal +Errgt.
This is because the real algorithmic error and the ground truth
error are independent, but the validation error and the ground
truth error are not; and we do not know the correlation between
them.

To make the problem mathematically tractable, we assume
that the algorithmic and marking errors follow the most widely
used normal distributions. We also further consider the map
error of a constant translation.

We start by analyzing the marking error in Section III-A
and map error in Section III-B. We then compare these two
errors in Section III-C, and discuss the map scale error in
Section III-D. All assumptions are validated in Section IV.

A. Marking Error

Assume that both the real algorithmic error and the mark-
ing error follow 2D Gaussian distributions2 Errreal ∼
N (0, diag[(σreal)2]), Errmark ∼ N (0, diag[(σmark)2]). We
also assume that both error distributions are symmetric in 2D
(do not have any orientation bias), so that they have zero mean
and the errors in X and Y directions are independent and
identically distributed. In this setting, the validation error is
also a 2D Gaussian

Errval = Errreal + Errmark ∼ N (0, diag[(σval)2])

where (σval)2 = (σreal)2 + (σmark)2.

2We write diag[σ2] for short to represent a matrix that has σ2 on all
diagonal entries and zero otherwise.

Fig. 3: Impact of marking error ∆mean as a function of
|Errval|mean and |Errmark|mean. The figures for ∆median /
∆tail are similar.

For the 1D error norm, it is known that for a Gaussian vari-
able X ∼ N (0, diag[σ2]), its norm |X| follows a distribution
|X| ∼ Rayleigh(σ) [25] with a probability density function
p(x|σ) = x

σ2 e
− x2

2σ2 , x ≥ 0 and its mean |X|mean is equal to
Rayleigh(σ)mean = σ

√
π/2.

Thus |Errmark|, |Errreal| and |Errval| are all Rayleigh
distributions. Since the mean is linear in σ,

|Errreal|mean = σreal
√
π/2 =

√
((σval)2 − (σmark)2)π/2

=
√
|Errval|2mean − |Errmark|2mean (2)

Algorithm 1 shows how to obtain the real error mean given
the validation and marking error means. It also applies to the
median and 95%-tail, because for any q-th quantile (0 < q <
1), Rayleigh(σ)q-th = σ

√
−2 ln (1− q) is always linear in σ.

Theorem 1. The impact of marking error (∆mean):

|Errmark|2mean
2|Errval|mean

< ∆mean <
|Errmark|2mean

2|Errval|mean − |Errmark|mean
This also holds if we replace the mean by any q-th quantile
(e.g. ∆median and ∆tail).

Proof. From (2), |Errval|mean − |Errmark|mean <
|Errreal|mean < |Errval|mean.

∆mean = |Errval|mean − |Errreal|mean

=
|Errval|2mean − |Errreal|2mean
|Errval|mean + |Errreal|mean

=
|Errmark|2mean

|Errval|mean + |Errreal|mean
|Errmark|2mean
2|Errval|mean

< ∆mean <
|Errmark|2mean

2|Errval|mean − |Errmark|mean

Theorem 1 gives us a direct quantitative measure on the
impact of marking error on location accuracy (see Figure 3):

1) ∆ is quadratic in |Errmark|. This means that a small
error in the collected ground truth has a magnified
(quadratic) impact on the error in the reported algorithm
accuracy.



Fig. 4: ∆mean(v, 1) approximation function. ∆(v, 1) values
are calculated by using the numerical Bessel function [29].
δ(v, 1) values are calculated by using the algebraic approxi-
mation function. The figures for ∆median / ∆tail are similar.

2) ∆ is inversely proportional to |Errval|, i.e. when a local-
ization algorithm does not perform well on validation,
the impact of marking error is not significant. As the
algorithm improves to have better accuracy, the quality
of ground truth data becomes more and more important.

Theorem 2. Relations between the real error mean, median,
and 95%-tail.

|Errreal|tail
|Errreal|median

= 2.07 and
|Errreal|tail
|Errreal|mean

= 1.95

These also hold if we replace |Errreal| by |Errval|.

Proof.

|Errreal|tail
|Errreal|median

=
σreal

√
−2 ln (1− 0.95)

σreal
√
−2 ln (1− 0.5)

= 2.07

|Errreal|tail
|Errreal|mean

=
σreal

√
−2 ln (1− 0.95)

σreal
√
π/2

= 1.95

Theorem 2 gives us an approximation on the average/worst
user experience on location accuracy, e.g. if a GPS receiver
has an accuracy of 10 meters for 95% of the time, we would
expect that it can localize within 5 meters for 50% of the time.

B. Map Error (Translation)

Again, we assume that Errreal ∼ N (0, diag[(σreal)2]) but
Errmap = V is a constant 2D vector. For now we assume
that there is no marking error (see Section II-C when both
marking and map errors exist). In this setting, the validation
error is also a 2D Gaussian but with a non-zero mean

Errval = Errreal + Errmap ∼ N (V, diag[(σreal)2])

For simplicity, let σ = σreal since there is only one variance
parameter in this section (as the map error is a constant), and
v = |V | be the norm of the map error vector. The 1D error
norm |Errreal| ∼ Rayleigh(σ), |Errmap| = v.

For a non-zero mean Gaussian variable X ∼
N (V, diag[σ2]), its norm |X| follows a distribution

TABLE I: Constants α, β for δ(v, 1) approximation function
and root-mean-square error on |∆(v, 1)− δ(v, 1)|.

α β RMSE |∆− δ|
Mean 1.2392 2.3064 0.0052

Median 1.1471 2.3384 0.0032
Tail 0.7870 1.9452 0.0038

TABLE II: Constant γ for Rice(0, 1)/Rayleigh(1).

γ

Mean
√
π/2 = 1.2533

Median
√
−2 ln (1− 0.5) = 1.1774

Tail
√
−2 ln (1− 0.95) = 2.4477

|X| ∼ Rice(v, σ) [26] with a probability density

function p(x|v, σ) = x
σ2 e
− x

2+v2

2σ2 I0
(
xv
σ2

)
, x ≥ 0 where

I0(z) =
∑∞
k=0

(z/2)2k

(k!)2 is the modified Bessel function of the
first kind with order zero. Note that when v = 0, Rice(v, σ)
is the same as Rayleigh(σ).

Finally, the impact of map error is

∆mean(v, σ) = |Errval|mean − |Errreal|mean
= Rice(v, σ)mean −Rice(0, σ)mean

and similarly for ∆median / ∆tail.
1) ∆(v, σ) Approximation Function: Unlike Rayleigh dis-

tribution, the mean/quantile statistics of Rice distribution have
no closed-form expressions. This is because in general, Bessel
functions cannot be expressed as a finite algebraic combination
of elementary functions [27]. To make the analysis easier, we
give an algebraic approximation function for computing the
impact ∆(v, σ).

We start with analysis on the mean error. By scaling a factor
of 1/σ, we have

∆(v, σ) = Rice(v, σ)mean −Rice(0, σ)mean

= σ (Rice(v/σ, 1)mean −Rice(0, 1)mean)

= σ∆(v/σ, 1) (3)

Consider the function

∆(v, 1) = Rice(v, 1)mean −Rice(0, 1)mean

where Rice(0, 1)mean = Rayleigh(1)mean =
√
π/2.

It has the following two properties:
• ∆(0, 1) = 0

• limv→∞
∆(v,1)
v = 1 3

We next construct an algebraic approximation function

δ(v, 1) = (vβ + αβ)
1
β − α (4)

with two rational number constants α > 0, β > 1. Here α
sets the difference between v and δ(v, 1) as v → ∞, and β
controls how δ(v, 1) varies for small v. One can verify that
δ(v, 1) has two similar properties:

3As v → ∞, if v increases by 1, the norm |X| of every sample X ∼
Rice(v, 1) increases by an amount that also converges to 1. Thus ∆(v, 1) is
linear in v with slope 1.



Algorithm 2 Compute the real error from validation error and
map error. This algorithm uses mean but can be extended to
any q-th quantile (0 < q < 1).

Input: validation error mean u = |Errval|mean, map error
v = |Errmap|, u > v

Output: real error mean |Errreal|mean
Find α, β for mean error in Table I, and γ in Table II
Set σmin = (u− v)/γ, σmax = (u− v)/(γ − α)
Set ε for convergence
while σmax − σmin > ε do
σ = (σmin + σmax)/2
if (u/σ + α− γ)β − (v/σ)β − αβ < 0 then
σmax = σ

else
σmin = σ

end if
end while
return |Errreal|mean = σγ

• δ(0, 1) = 0

• limv→∞
δ(v,1)
v = 1

Figure 4 shows a comparison of ∆(v, 1) and its approxima-
tion δ(v, 1). The ∆(v, 1) values are computed by generating
the probability density function using numerical calculations
of the Bessel function [29], and the approximation δ(v, 1)
values are computed from the closed-form expression (4). The
constants α and β are optimized to minimize the root-mean-
square error on |∆(v, 1)− δ(v, 1)| (see Table I).

Once we have δ(v, 1), similar to (3)

δ(v, σ) = σδ(v/σ, 1) = σ
((

(v/σ)β + αβ
) 1
β − α

)
2) Numerical Algorithm for Computing the Real Error

(Algorithm 2): Using the ∆(v, σ) approximation function, we
can obtain the real error mean as follows:

Let u = |Errval|mean, γ = Rice(0, 1)mean =
√
π/2. By

definition of ∆mean,

|Errval|mean = |Errreal|mean + ∆(v, σ)

u = σγ + σ
((

(v/σ)β + αβ
) 1
β − α

)
This is equivalent to solving the equation

f(σ) = (u/σ + α− γ)β − (v/σ)β − αβ = 0 (5)

Let σmin = u−v
γ , σmax = u−v

γ−α .

f(σmin) = (v/σmin + α)β − (v/σmin)β − αβ > 0

f(σmax) = −αβ < 0

and ∀σ < σmax,

f ′(σ) = −β
(
(u/σ + α− γ)β−1 − (v/σ)β−1

)/
σ2 < 0

Therefore, we can binary search on σ ∈ (σmin, σmax) to
solve f(σ) = 0. Finally, |Errreal|mean = σγ.

Fig. 5: Impact of map error ∆mean as a function of
|Errval|mean and |Errmap|. These curves are similar to Fig. 3
on the marking error, but values are smaller.

Figure 5 shows the impact of map error ∆(v, σ), which
seems to increase slower (comparing to marking error) until
when the map error v is close to the validation error u.
Intuitively, this can be explained as follows: Let the real error
be a zero mean Gaussian centered at the origin O, and we
add a map error V = (v, 0), where v > 0. For any sample
X , its error increases |X − V | > |X − O| if and only if X
lies on the left side of the line x = v/2. Since the Gaussian
has zero mean, there are more samples on the left side of the
line x = v/2, so the overall mean error will increase. But it
increases slowly as the changes on two sides may cancel each
other, until for sufficiently large v where a significant majority
of samples are on the left side of the line x = v/2.

Similarly, Algorithm 2 can be applied to any q-th quantile
(0 < q < 1). Table I and II also list α, β, and γ values for
the median and 95%-tail.

Note that unlike marking error, for map error, Theorem 2
only holds for the real error |Errreal|tail

|Errreal|median > 2, but

not for the validation error as limv→∞
|Errval|tail
|Errval|median =

limv→∞
|Errreal|tail+∆tail(v,σ)

|Errreal|median+∆median(v,σ)
= 1, because

limv→∞
∆(v,σ)
v = 1.

C. Comparing the Impact of Marking and Map Errors

In Section III-B, we briefly explained that the impact of map
error is less than marking error on ∆mean, when the map error
is equal to the marking error mean. Now we formally prove
this result.

Theorem 3. Given the validation error u = |Errval|mean
and the ground truth error v = |Errgt|mean (either marking
or map error), u > v. Let ∆mark

mean be the impact of marking
error when v is |Errmark|mean, and ∆map

mean be the impact
of map error when v is |Errmap|. With similar definitions on
∆median / ∆tail, we have

∆mark
mean > ∆map

mean, ∀v/u < 0.9995

∆mark
median > ∆map

median, ∀v/u < 0.9970

∆mark
tail < ∆map

tail



Proof. We start with ∆mean. From Algorithm 1, ∆mark
mean =

u−
√
u2 − v2. From Algorithm 2, ∆map

mean = u− σ∗γ where
σ∗ ∈ (σmin, σmax) is the solution for f(σ) = 0 in (5).

So ∆mark
mean > ∆map

mean if and only if

σ∗ >
√
u2 − v2

/
γ (6)

Let s =
√

u+v
2 , t =

√
u−v

2 , λ = t/s < 1.

Then u = s2 + t2, v = s2 − t2, v
u = 1−λ2

1+λ2 .

(a) When λ = t
s ≤

γ−α
γ , i.e. v

u ≥
1−( γ−αγ )

2

1+( γ−αγ )
2 = 0.9997,

√
u2 − v2

γ
=

2st

γ
≥ 2t2

γ − α
=
u− v
γ − α

= σmax > σ∗

In this case, ∆mark
mean < ∆map

mean.
(b) When λ = t

s >
γ−α
γ , i.e. v

u < 0.9997,√
u2 − v2

/
γ < σmax, σ

∗ < σmax

Since ∀σ < σmax, f ′(σ) < 0. (6) is equivalent to

f
(√

u2 − v2
/
γ
)
> f(σ∗) = 0(

u
√
u2−v2
γ

+ α− γ

)β
−

(
v

√
u2−v2
γ

)β
− αβ > 0

Replace (u, v) by (s, t),(
s2 + t2

2st
+
α

γ
− 1

)β
−
(
s2 − t2

2st

)β
−
(
α

γ

)β
> 0

Using λ = t/s,

g(λ) =
(
1 + 2λ(α/γ − 1) + λ2

)β − (1− λ2)β − (2λα/γ)β

> 0 (7)

Figure 6 plots the algebraic function g(λ) and its derivative
g′(λ) on 0 ≤ λ ≤ 1. They satisfy

g(0) = 0, g′(0) = 2β(α/γ − 1) < 0

g(1− α/γ) = −(2α(γ − α)/γ2)β < 0

g(1) = 0, g′(1) = 0

From g′(λ), we know there exists a root g(λ∗) = 0 such
that ∀0 < λ < λ∗, g(λ) < 0 and ∀λ∗ < λ < 1, g(λ) > 0.
Therefore, we can binary search g(λ) = 0 for a numerical
solution λ∗ = 0.0160. So in this case, (7) holds if and only if
λ > λ∗, i.e. v/u < 1−λ∗2

1+λ∗2 = 0.9995.
Combining (a) and (b), ∆mark

mean > ∆map
mean if and only if

v/u < 0.9995.
The proof for ∆median is similar. λ∗ = 0.0390 and

∆mark
median > ∆map

median if and only if v/u < 0.9970.
∆tail is different. As shown in Figure 6, ∀0 < λ < 1,

g(λ) < 0. So (7) never holds and ∆mark
tail < ∆map

tail .

Although theoretically there are examples ∆mark
mean < ∆map

mean

(e.g. λ = γ−α
γ ). In practice, v/u > 0.99 should never happen

(ground truth error being more than 99% of validation error).
Thus, we conclude that marking error has a larger impact on
the mean and median, while map error has a larger impact on
the tail.

Fig. 6: Algebraic function g(λ) and its derivative g′(λ).

D. Map Error (Scale)

Besides the translation error, another type of map error is
the scale error, which can be modeled by a linear transform
X̂gt = SXgt + V where S = diag[sx, sy] is a scaling matrix
without rotation, and V is a translation vector. Then

Errmap = X̂gt −Xgt = (S − I)Xgt + V

where I is an identity matrix. For S = I , this reduces to the
model we discussed in Section III-B.

Note that in this paper, our analysis only relies on the
error distribution Errgt. It does not require the distribution of
ground truth location Xgt (i.e. where the data is collected).
With the scale error (S 6= I), the distribution of Errmap

depends on the distribution of Xgt. Unless Xgt also follows
a normal distribution and sx = sy , we cannot apply the
same analysis in this paper. This additional distribution of Xgt

makes the model more complicated. We leave this as a topic
for future work.

IV. EXPERIMENTAL VALIDATION

In this section, we validate the theoretical assumptions and
results on a real dataset collected in a typical environment. We
start by describing the environment and the localization tech-
nique. We then validate the error distributions assumptions.
Finally, we compare our theoretical results with experimental
results obtained directly from the real data.

A. Experimental Setup

Without loss of generality, we use a probabilistic WiFi
fingerprinting localization system in our experiments similar
to [38], [39]. To collect the necessary data for validation, we
deploy the localization system in a floor in our university
campus building with a 37m x 17m area containing labs,
offices, meeting rooms as well as corridors (Figure 7). We
use the already installed WiFi infrastructure in the building,
mainly four APs installed in the same floor in addition to 12
APs overheard from other floors. We obtain the real ground
truth (without marking or map errors) based on the landmarks
in the environment such as doors and fixed access points
locations. We collect the WiFi scans by a Samsung S4 cell
phone that scans for the WiFi access points at different 24
discrete reference locations that cover the entire area of interest
uniformly.



Fig. 7: Indoor testbed used for experimental validation.

B. Validating Error Distributions Assumptions

1) Marking Error: We start by getting the marking error
distribution by comparing the marked ground truth locations,
which are obtained by clicking on the map, with the real
ground truth locations from the floor landmarks. Our results
show that the error in X follows a normal distribution with
µ = −0.04 and σ = 0.16, i.e. N (−0.04, 0.162), while the
error in Y follows a normal distribution N (−0.03, 0.092). The
mean values in both distributions are small around zero which
matches our theoretical assumptions that the marking errors
in X and Y follow normal distributions with mean zero. The
quantile-quantile plot in Figure 8 shows that the marking error
norm fits a Rayleigh distribution with σ = 0.14 very well. This
also matches our theoretical analysis.

2) Validation Error: The validation error distribution is
obtained by comparing the system estimated location with
the marked (not real) ground truth locations. Our results
show that the error in X follows a normal distribution
N (0.84, 3.862), while the error in Y follows a normal dis-
tribution N (0.41, 1.542). In our analysis, we assume that the
error distributions in X and Y are identical. However, in our
experiments, the validation error in X direction is higher than
in Y direction. This is due to the geometry of the building
(e.g. the building width is larger than its height, leading to
more errors in the X direction), making the validation error
norm possibly deviate from the Rayleigh distribution.

Figure 9 shows the validation error norm distribution and
its best fit using a Rayleigh distribution with σ = 2.81. Since
in our experiments the error distributions in X and Y are
not identical, Rayleigh distribution does not lead to the best
fit and other distributions, e.g. the exponential distribution in
Figure 9(c), could be a better choice. Nonetheless, Rayleigh
distribution still fits most percentiles, except for very large tail
errors.

3) Real Error: The real error distribution is obtained by
comparing the system estimated location with the real ground
truth locations in the collected dataset (obtained based on
the landmarks in the environment). Similar to the validation
error, the real error distributions in X and Y follow normal
distributions N (0.80, 3.892) and N (0.39, 1.532), respectively.
The real error norm also fits a Rayleigh distribution with

(a) Marking error distribution. (b) Rayleigh distribution test.

Fig. 8: Marking error norm distribution with Q-Q plot vs.
Rayleigh distribution.

σ = 2.78 except at the tail. Similarly, this is due to the error
distributions in X and Y being not identical.

4) Validation Map Error: To get the validation map error
distribution, we shift the real ground truth locations in the
evaluation dataset in X and Y directions, simulating offset
errors in the provided map. Figure 10 shows the validation
error norm distribution after shifting the map by 3m in both
X and Y directions. The validation error norm fits the Rice
distribution with v = 4.65 and σ = 3.29 better than other
distributions most of the time, except at the tail (asymmetric
X/Y distribution). Note that when the map error exists, al-
though the exponential distribution gives larger tail errors, it
does not perform well at the lower percentiles.

C. Theoretical vs Experimental Real Error

1) Marking Error: Figure 11 presents a CDF comparison
between the theoretical and experimental real errors. The the-
oretical real error is obtained from the marking and validation
errors by applying Algorithm 1. The experimental real error
is obtained directly from the data. The figure shows that the
theoretical real error matches the experimental one within
4% in all percentiles. Table III further shows the summary
statistics of the results.

On Theorem 2, the ratio of the validation error tail to the
median is 8.05

2.47 = 3.26, and the ratio of the validation error
tail to the mean is 8.05

3.41 = 2.36. Similarly, the ratio of the
real error tail to the median is 7.99

2.37 = 3.37 and the ratio of
the real error tail to the mean is 7.99

3.39 = 2.36. These show
that in practice, the 95%-tail error is more than twice of the
median/mean errors. Again, these higher ratios are because of
the larger tail errors from asymmetric X/Y distribution.

2) Map Error: To study the effect of applying Algorithm 2
on the localization accuracy, we shift the real ground truth
locations with different values from 1m to 6m in X and
Y directions, simulating offset errors in the provided map.
Figure 12 compares the validation error norm, theoretical real
error norm, and experimental real error norm for the different
map shift values. The validation error is obtained by com-
paring the system estimated location with the shifted ground
truth locations in the collected dataset. Hence, it increases with
the increase of the map shift. The experimental real error is
obtained by comparing the system estimated location with the



(a) Validation error distribution. (b) Rayleigh distribution test. (c) Exponential distribution test.

Fig. 9: Validation error norm distribution with Q-Q plot vs. Rayleigh and exponential distributions. The figures for real error
norm distribution are similar.

(a) Validation error distribution. (b) Rice distribution test. (c) Exponential distribution test.

Fig. 10: Validation error norm distribution after shifting the map by 3m in both X and Y directions with Q-Q plot vs. Rice
and exponential distributions.
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Fig. 11: A comparison between experimental and theoretical
real error norm CDFs (from Algorithm 1).

real ground truth locations in the collected dataset. Finally, the
theoretical real error is obtained from Algorithm 2 given the
map shift value and the validation error statistics.

The figure shows that the calculated theoretical real error
is closer to the experimental real error than the validation
error norm which is typically used to evaluate the localization
algorithms. In particular, Algorithm 2 does provide a more
accurate estimate of the median and tail localization error by
more than 20% and 5%, respectively, when the map is shifted
by 1m in X and Y directions. This enhancement increases to
150% and 72%, respectively, when the map is shifted by 6m.
Therefore, this algorithm can be used to obtain a more realistic
quantification of the localization system error.

V. RELATED WORK

In this section, we present a brief overview of the previous
work on evaluating the accuracy of localization systems that

TABLE III: Summary statistics for the different error metrics.
The experimental results are calculated directly from the data
while the theoretical real error is calculated from Algorithm 1.

Metric Marking error Real error Real error
Type Experimental Experimental Theoretical
Mean 0.17 3.39 3.40 (0.3%)

0.25 Q 0.11 2.00 2.02 (1.0%)
Median 0.15 2.37 2.46 (3.8%)
0.75 Q 0.24 3.60 3.70 (2.8%)
0.95 Q 0.30 7.99 8.04 (0.6%)

is most relevant.

A. AP Density Analysis

In literature, there are studies that focus on the effect of
access points (APs) number and position on the localization
accuracy [17], [34]. In [17], the authors proposed the theoreti-
cal error analysis for WiFi-based localization. It is shown that
the Cramer-Rao lower bound (CRLB) [33], [35] is inversely
proportional to the number of the RSS measurements available
from APs. They show that it is not necessary to leverage
all the available APs to achieve the best accuracy. In [34],
authors proposed an algorithm that searches for the optimal
APs and beacons placement that maximizes the localization
accuracy. They tackle the problem of optimizing AP and
beacon placement, which is NP-Complete, by proposing a
heuristic differential evolution algorithm based on the widely
used CRLB.

On the other hand, in this work, our goal is different: to
get the real error statistics from the marking and map errors.
Moreover, unlike these studies, which are limited to APs-
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Fig. 12: A comparison between the validation error norm, theoretical real error norm (from Algorithm 2), and experimental
real error norm for the different map shift values.

based localization systems, our analysis is general for any
localization system.

B. Error Bounds Analysis

Another set of studies put bounds on the localization er-
ror. Examples include time-of-arrival [24], time-difference-of-
arrival [7], angle-of-arrival [7], and the RSS fingerprinting [4],
[37], [23]. The CRLB is widely used in these studies to put
a bound on localization error [4], [24], [14]. In [4], authors
studied the CRLB for anchored and anchor-free localization
using noisy range measurements. They gave a method to
compute the CRLB in terms of the geometry of the sensor
network. In [24], the authors investigate the improvement
in positioning accuracy if all multipath delays are processed
(instead of using the first path). The authors show that using
the first arrival only is sufficient for optimal localization when
there is no prior information about the non-line-of-sight delays.
When such prior information is available, the multipath delays
can improve the localization accuracy. The best achievable
accuracy is evaluated in terms of CRLB and the generalized-
CRLB. In [14], the authors analyze the CRLB of localization
using signal strength difference as location fingerprint.

In contrast, our target is not to put a bound on the local-
ization error only, but to establish bounds on different metrics
between the localization error and ground truth errors.

C. Localization Confidence Estimation

Recently, different confidence estimation techniques are
proposed for different localization systems. Examples include
GPS [8], [20], GNSS [21] and indoor localization techniques
such as [19], [20], [6]. Confidence estimation for the GPS
is typically derived from the geometric dilution of precision
which measures the confidence as a function of error caused by
the geometry of the GPS satellites [8], [20], [21], [6]. Authors
of [8], [21] further analyze the error characteristics of GPS
and GNSS localization systems and derive an error model
to estimate the localization error based on a combination of
the number of satellites, dilution of precision, received signal
strength and receiver speed. In [6], authors maintain a database
of locations and their corresponding error measurement to
estimate the localization accuracy. In [21], authors proposed a

technique that identifies the dominant noise types and builds
an error source model to estimate the GNSS positioning error
based on the Allen variance method [9]. In [10], authors
estimate the indoor localization confidence by assuming that
the error in user location follows a Gaussian distribution.
They proposed a system that can work in real-time to get
the confidence in the estimated location from the history of
the previous estimated locations.

In comparison to these systems, which do not consider the
marking and map errors, we provide a general framework to
handle both kinds of ground truth errors.

VI. CONCLUSIONS

In this paper, we presented a theoretical framework for
analyzing the effect of ground truth errors on the evaluation
of localization systems. We designed two algorithms for
computing the real algorithmic error from the validation error
and marking/map ground truth errors, respectively. We showed
that the impact of marking error is quadratic in its ground truth
error, and inversely proportional to validation error. We further
established bounds on different performance metrics: that the
95%-tail error is at least twice of the median/mean errors and
proved that marking error has more impact than map error on
the mean and median, but less impact on the tail.

We validated our theoretical assumptions and analysis on
a real indoor WiFi dataset. Our experiments show the ability
of our analysis to obtain a more realistic localization error in
the presence of ground truth errors. Specifically, we showed
that Algorithm 1 matches the real error within 4% in all
percentiles, and Algorithm 2 provides a more accurate estimate
of the median and tail errors by more than 150% and 72%,
respectively, when the map is shifted by 6m.

For future work, we are extending our analysis to address
map scale errors and modifying the model to handle asym-
metric X/Y error distributions.
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