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Abstract—The cybersecurity breaches render surveillance sys-
tems vulnerable to video forgery attacks, under which authentic
live video streams are tampered to conceal illegal human ac-
tivities under surveillance cameras. Traditional video forensics
approaches can detect and localize forgery traces in each video
frame using computationally-expensive spatial-temporal analysis,
while falling short in real-time verification of live video feeds. The
recent work correlates time-series camera and wireless signals to
recognize replayed surveillance videos using event-level timing
information but it cannot realize fine-grained forgery detection
and localization on each frame. To fill this gap, this paper
proposes Secure-Pose, a novel cross-modal forgery detection and
localization system for live surveillance videos using WiFi signals
near the camera spot. We observe that coexisting camera and
WiFi signals convey common human semantic information and
the presence of forgery attacks on video frames will decouple
such information correspondence. Secure-Pose extracts effective
human pose features from synchronized multi-modal signals
and detects and localizes forgery traces under both inter-frame
and intra-frame attacks in each frame. We implement Secure-
Pose using a commercial camera and two Intel 5300 NICs and
evaluate it in real-world environments. Secure-Pose achieves a
high detection accuracy of 95.1% and can effectively localize
tampered objects under different forgery attacks.

Index Terms—Surveillance system, video forgery, cross-modal
authentication

I. INTRODUCTION

With the increasing needs of safety and security in our daily
life, video surveillance systems have gained a lot of traction in a
wide spectrum of indoor applications, such as crime prevention
in banks and customer monitoring in retail stores [1]]. As their
popularity and prominence rapidly grow in the physical world,
these systems inevitably become attractive attack surfaces in
the cybersecurity space. Recent studies have demonstrated
that attackers can infiltrate into the surveillance system by
exploiting vulnerabilities of the monitoring camera [2] or
hijacking its connection Ethernet cable [3] and then tamper
the authentic live video streams to cover illegal human activities
in the monitored area without showing any perceptible clues
in the central server’s screen as shown in Fig. [I] Under the
looming threat of such attacks, timely forgery detection and
accurate forgery localization on each video frame is highly
desired for a surveillance system to quickly alarm on-going
cyberattacks and seamlessly track potential intruders.

*The corresponding author is Wei Wang (weiwangw @hust.edu.cn).
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Fig. 1. Illustration of video forgery attacks in surveillance systems.
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Although extensive efforts have been devoted to detecting
video forgery attacks, existing approaches still fall short
in achieving both real-time and fine-grained detection per-
formance. Traditional watermark-based approaches require
dedicated modules on surveillance cameras for video integrity
preservation, while not all camera manufacturers support such
modules. Alternatively, many video forensics approaches that
exploit statistic characteristics of video signals [4], [S], [6],
[[7], (8] are developed to detect tampered frames and further
localize forged regions in them. Though possessing fine-
grained detection abilities, these approaches basically rely
on various spatial-temporal analysis methods, which require a
high computational complexity, and therefore are ill-suited
for real-time attack detection on live surveillance videos.
Additionally, the recent work [9] demonstrates that WiFi
signals can be leveraged to expose video looping attacks
on surveillance systems. However, it employs event-level
timing information from time-series WiFi and camera signals
to detect replayed video sequences and cannot realize fine-
grained forgery detection and localization on each video frame.
Hence, none of existing approaches simultaneously satisfies
real-time and fine-grained requirements of forgery detection
and localization.

The pervasive coexistence of surveillance cameras and WiFi
devices offers the opportunity to detect video forgery attacks
in a real-time and fine-grained manner. Nowadays, many areas
under surveillance cameras, such as shops and homes, are also
covered by WiFi hotspots to provide us ubiquitous wireless
connectivity [10], [L1]. In such areas, not only visible light
but only WiFi signals interact with involving human objects,
because human bodies act as reflectors in the WiFi frequency
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range. In this condition, camera and WiFi signals convey
the common human semantic information. If forgery attacks
are launched on video frames, such cross-modal information
correspondence will be decoupled, which can be exploited for
timely forgery detection and accurate forgery localization.

Toward this end, we present Secure-Pose, a novel cross-
modal system that effectively detects and localizes video
forgery traces in live surveillance video streams using co-
existing WiFi signals. Our fundamental insight is that channel
state information (CSI) measurements in WiFi signals are
effective in probing human objects under surveillance cameras,
from which authentic human semantic information can be
carefully disentangled for forgery detection and localization on
suspicious live video frames. Specifically, under video forgery
attacks, the human semantic features from video frames are
tampered to conceal really on-going scenes and thus will
mismatch with that of CSI measurements. In this way, taking
concurrent camera and WiFi signals as input, Secure-Pose
can discern between authentic and tampered video frames and
further localize forgery traces in each video frame.

To realize the above idea, we have to address the following
three challenges.

1) How to synchronize noisy CSI measurements with video
frames? Generally, raw CSI measurements have variable time
intervals between them due to the random access protocol
and packet loss, which significantly hampers periodicity of
CSI measurements and their accordance with video frames.
To deal with this issue, we first use linear interpolation to
resample a group of fixed-interval CSI samples between two
video frames based on CSI and video timestamps. Next, we
leverage Hampel identifier to remove unwanted outliers from
CSI samples caused by environment noise.

2) How to effectively disentangle human semantic informa-
tion from CSI measurements? Due to a low spatial resolution, it
is highly challenging to disengage semantic information from
CSI measurements. To address this issue, we first formulate
semantic feature extraction as pose estimation and present pose
information using Joint Heat Maps (JHMs) and Part Affinity
Fields (PAFs) that are retrievable from CSI samples. We then
leverage two customized neural networks that take camera
and WiFi as inputs, respectively, with an effective cross-modal
training scheme to output JHMs and PAFs.

3) How to efficiently detect and localize forgery traces
in each video frame? Since multiple people would appear
in the camera’s FOV, it is cumbersome and computationally
inefficient to perform person-by-person attack detection based
on estimated JHMs and PAFs from camera and WiFi signals.
To avoid this issue, we construct the JHM difference tensor
that can preserve sufficient information about forgery attacks
while removing irrelevant information. Based on such feature
tensor, we can detect video forgery attacks using a sample
convolutional neural network (CNN) and localize human
objects only in tampered regions.

Summary of Results. We design Secure-Pose that extracts
effective human pose features from synchronized camera
and CSI signals and then performs forgery detection and

(b) Intra-frame attacks.

(a) Inter-frame attacks.

Fig. 2. Examples of inter-frame and intra-frame attacks.

localization on each video frame. We implement Secure-Pose
using a logitech 720p camera and two Intel 5300 NICs, and
evaluate it in real-world indoor environments. The evaluation
results demonstrate that Secure-Pose achieves a high detection
accuracy of 95.1%. Moreover, it can successfully recognize
94.9% of tampered video frames and meanwhile mistakenly
classify just 4.7% authentic ones. In addition, Secure-Pose can
localize body keypoints of tampered human objects with a
mPCK@0.2 of 69.3% under various forgery attacks.

Contributions. The main contributions of this work are
summarized as follows. First, we show that coexisting camera
and WiFi signals convey common human semantic information
and such cross-modal information correspondence can be
exploited to detect and localize video forgery attacks in each
video frame. Second, we propose a novel cross-modal forgery
detection and localization system that can discover forgery
traces in live surveillance videos. Third, we implement Secure-
Pose on a commercial logitech 720p camera and two Intel
5300 NICs and conduct extensive experiments in real-world
indoor environments to verify its effectiveness and robustness
against various forgery attacks.

II. Tarear MobeL AND WiF1 CSI SIGNATURES
A. Video Forgery Attacks in Surveillance Systems

We consider a common surveillance scenario, where a fixed
camera monitors an open area in an indoor environment, such
as banks and retail stores, and transmits live video streams to
a central server for remote monitoring. In this scenario, human
objects are generally the target of surveillance systems for
behavior monitoring and trace tracking [[L]. Moreover, since
many people with different motions could go in and out of
the monitored area in reality, we make no assumption on the
number of people in the camera’s field-of-view (FOV) as well
as their body motions.

In such a surveillance system, a malicious attacker could be
capable of launching various cyberattacks, such as hijacking
the camera [2] or the connection Ethernet cable [3], to penetrate
into the system. After that, the attacker can further trigger
two kinds of video forgery attacks, i.e., inter-frame attacks
and intra-frame attacks, to conceal illegal human activities
under surveillance cameras. In inter-frame attacks, the attacker
replaces the live video frames with previously-recorded frames.
In intra-frame attacks, the attacker removes or adds some
human objects in the transmitted frames. Fig. [2| exemplifies
inter-frame and intra-frame attacks on sequences of surveillance
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video frames. In general, both two kinds of video forgery
attacks render the human semantic features, such as body
positions and poses, in the tampered video frames and really
on-going scenes mismatching. The video frames that describe
mismatching human activities are considered as tampered
frames, and the others are authentic frames.

Furthermore, we assume that a pair of WiFi transceivers are
colocated with the surveillance camera. Since it is extremely
difficult to mimic complicated CSI measurements based on
video contents, CSI measurements from the WiFi transceivers
are considered to be authentic.

B. CSI Signatures in Commercial WiFi Signals

In WiFi communication systems, channel state information
describes how a WiFi signal propagates between a transceiver
pair for characterizing current channel conditions. Specifically,
according to the IEEE 802.11n WiFi protocol [12], both orthog-
onal frequency division multiplexing (OFDM) and multiple-
input-multiple-output (MIMO) technologies are adopted for
high-throughput transmission. Let N, and N, be the numbers
of transmitting and receiving antennas, respectively, K the
number of OFDM subcarriers. At time ¢, one CSI sample
between the i-th transmitting antenna and the j-th receiving
antenna on k-th subcarrier can be expressed as [13]]

AQ it

d. .
o din
hg,j,k = Z aneﬂn ra (1)

n=1

where Ny, represents the number of signal traveling paths, df,j,n
the signal travel distance on n-th path and 4; the wavelength
of the k-th subcarrier. Thus, with the adoption of OFDM and
MIMO technologies, a CSI measurement can be denoted as
H' € CNexNexK From Eq. (T), we can observe that one CSI
sample consists of signals from multiple paths.

Since the human body can be considered as a reflector at
WiFi frequency range, WiFi signals will have rich interactions,
such as reflection and scattering, with body limbs before
arriving at the receiver if human objects are present near
the WiFi transceivers. Hence, similar to visible light captured
by a camera, WiFi CSI measurements can also convey human
body information, which can be leveraged to verify the veracity
of video content under the threat of video forgery attacks.

III. System DEsiGNn
A. System Overview

Secure-Pose takes advantage of pervasive WiFi signals in
the monitored area to detect and localize forgery traces in live
surveillance videos. In particular, it enables real-time forgery
detection as well as fine-grained forgery localization on each
video frame. Secure-Pose can be a part of the surveillance
system, and its properties empower the system to quickly alarm
on-going cyberattacks and seamlessly track potential intruders.

As depicted in Fig. [3] Secure-Pose takes concurrent camera
and WiFi signals as input and outputs the authenticity of
live video frames and potential forgery traces. The core
of our system includes three components — Multi-Modal
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Signal Preprocessing, Semantic Feature Extraction and Forgery
Detection and Localization.

« Multi-Modal Signal Preprocessing. Taking both camera
and WiFi signals as input, our system first synchronizes
CSI amplitude features with video frames via linear
interpolation for better data accordance. Then, it removes
outliers from noisy amplitudes using Hampel identifier.

« Semantic Feature Extraction. In this component,
our system exploits well-designed OpenPose [14] and
CSI2Pose neural networks, respectively, to extract both
Joint Heat Maps and Part Affinity Fields from synchronous
video frame and CSI features. Moreover, a cross-modal
training scheme is developed to effectively train CSI2Pose
network with the supervision of OpenPose network.

« Forgery Detection and Localization. In this component,
our system first calculates the difference of JHMs from
OpenPose and CSI2Pose networks for efficient feature
representation. Then, it builds a simple detection network
to accurately detect forgery attacks. After that, our system
localizes forgery traces in each tampered frame.

B. Multi-Modal Signal Preprocessing

Being a part of the surveillance system, Secure-Pose first
takes as input compressed video streams transmitted from the
surveillance camera and decode them as RGB image frames.
Specifically, we denote the decoded video frame sequence as

{"',Imil,lm,Ierl,"'}, )

where I € R*">3 i a complete RGB image. Therein, H
and W indicate the frame height and width, respectively. In
parallel with video data acquisition, we also input raw CSI
amplitude measurements from the co-located WiFi receiver
into our system. Formally, the input amplitude sequence can
be expressed as

{~'-,A”_1,An,An+1,-~'}, (3)

where A" € RV>NeXK contains all amplitudes of H”.

Data Synchronization. Since Secure-Pose relies on concur-
rent camera and WiFi signals, the synchronization between two
signals is critical. The asynchronous signals probably convey
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different human semantic information, leading to a high false
alarming rate when be applied for forgery detection.
Concretely, let us assume that the camera has a FPS (Frames
Per Second) of F; and the WiFi receiver has a CSI sampling
rate of Fy Hz. Because Fy is basically much larger than F/,
we correspond F < Fy/F; CSI measurements to one video
frame. However, due to the random access protocol as well
as packet loss, the time interval between any two successive
raw CSI measurements is variable as shown in Fig. Eka),
which results in a varying number of CSI measurements in
one time unit and thus weakens their periodicity. In contrary,

the time interval between video frames is basically constant.

Consequently, simply correlating the CSI measurement index
n with the video frame index m is erroneous. To deal with this
issue, our system synchronizes CSI measurements with video
frames based on their timestamps. Mathematically, we denote
tm-1 and t,, as the timestamps of two video frames I""~! and
I'", respectively. For the video frame I'", our system resamples
a set of F CSI measurements {Al’... JAS - ,AF} with a
constant time interval At = (,, — t,,—1)/F using low-complexity
linear interpolation, and thus each resampled CSI measurement
A/ can be obtained by

A=A p AT -A"Th, 4)

where t,_1 <ty =t,_1 + fAt<t, and = % As Fig. a)
shows, the resampled CSI measurements have a constant
periodicity and thus better accordance with video frames.
CSI Denoising. Due to environment noise, outliers that
show a sudden change could appear in CSI measurements and

thus hamper the effectiveness of extracted amplitude features.

To address this problem, we leverage Hampel identifier [[15]], a
simple yet efficient outlier detection algorithm, to remove these
outliers over time domain. In particular, given a CSI amplitude
sequence {aﬁ;i SRS ,aZ;i} of i-th transmitting antenna,
Jj-th receiving antenna and k-th subcarrier, our system declares
a;”j’k as an outlier such that

n

|al7j’k —/1"| >y, 5)

where " and o, respectively, are the local median and median
absolute deviation of the sequence. Moreover, ¢ determines the
sliding window size and vy decides the tolerable deviation from

u", and we empirically set both § and y to be 3 in our system.

Once al'fj P is detected as an outlier, our system replaces it with

the local median y". As shown in Fig. Elkb), most of outliers
in CSI measurements can be effectively detected.

Towards this end, at time #,,, Secure-Pose outputs a set of F'
resampled and denoised CSI amplitudes, which can be denoted
as R™. Similar to the video frame I, we term R™ as the RF
frame. Thus, our system obtains a camera-WiFi frame pair
™, R™) after multi-modal signal preprocessing.

C. Semantic Feature Extraction

With a camera-WiFi frame pair (I",R™), Secure-Pose
proceeds to extract semantic features from them, respectively.

Semantic Feature Representation. We formulate the task
that extracts semantic features as a human pose estimation
problem. In computer vision, human pose estimation requires
correctly localizing anatomical keypoints or body parts of
individuals and further inferring their poses in images. Such
limb-level information is perceptible by WiFi signals as human
limbs act as reflectors at WiFi frequency ranges.

In the field of pose estimation, there are mainly top-bottom
and bottom-top approaches, which correspond to different
ways of representing human pose information. Specifically,
the top-bottom approaches [16]], [17] first employ a person
detector to segment all persons out with bounding boxes
on pixel-level feature maps and then perform person-wise
pose estimation within their own bounding boxes. In these
approaches, the estimated human poses are represented by
locations of body keypoints within the corresponding bounding
boxes. However, these bounding-box-based approaches cannot
be directly applied to low-spatial-resolution RF frames, from
which pixel-level visual feature maps are extremely hard to
extract. In contrast, the bottom-top approaches [18]], [14] first
extract all possible body keypoints in one image and associate
them to form full-body poses. In this way, human poses are
represented by locations of body keypoints in the global image
space. Thus, the bottom-top pose representation does not rely
on pixel-level bounding boxes, which is more suitable for
extracting human pose features from RF frames.

Concretely, we represent human pose features as Joint
Heat Maps (JHMs) and Part Affinity Fields (PAFs) [14]. We
assume there are J body keypoints. Given the video frame
I" € RW3 JHMs indicate the confidence maps of body
keypoint locations in the image space and can be represented
by a 3D tensor 8" € RFXWXJ ag

S" = (s’l",s’z", e ,s’J"), (6)

where §7' € RV is the 2D confidence map of j-th keypoint.
In our system, we use the Body-14 model and thus set J = 14.
Moreover, PAFs contain spatial information of body limbs,
each of which is represented by two associated body keypoints.
Formally, PAFs of C limbs can be denoted as a 4D tensor
L" e RHXWXZXC as

L7 = (10,18, (7

where 1" € RF*W>2 5 a set of 2D vectors at all elements in the
image space and indicates the location and orientation for c-th
limb. Since the Body-14 model is adopted, we have C = 13.
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As Fig. [5] shows, we exploit OpenPose network [14] to
extract JHMs and PAFs from I and develop CSI2Pose network
for R™.

OpenPose Network. Taking I as input, it first adopts a
Feature Pyramid Network (FPN) [19], a state-of-the-art feature

extraction tool to learn multi-scale visual features from images.

Then, it leverages a two-branch CNN to generate visual JHMs
and PAFs. Thus, given the input video frame I",it outputs
JHMs Syt € RP*W*/ and PAFs L' € RFXWx2XC g5

(Sp.Ly) = F2(m), ®)

where F7(-) represents the parameters of OpenPose network.

CSI2Pose Network. Given the RF frame R, our CSI2Pose
network generates corresponding JHMs Sy, € R*W*/ and
PAFs Ly, € RFPXWXCX2 Since it is a challenging task to translate
time-series CSI amplitudes to human pose features, we design
three modules in CSI2Pose network, i.e., CSI Transformer,
JHM Generator and PAF Generator as depicted in Fig [3

In CSI transformer, we transform R™ into an image-size
tensor that encodes human semantic information under the
camera’ FOV. To do this, we first use deconvolution layers to
upsample R™ to a higher spatial resolution. Then, we employ
two convolution layers to produce encoded wireless features
and feed them into a stack of residual blocks [20] to further
transform the wireless features into intermediate feature maps
that correlate with human information in the image space.

In the subsequent JHM generator, the intermediate feature

maps are fed into a decoder structure to refine semantic features.

Next, a Fully Convolutional Network (FCN) [21] is followed

to map refined semantic features into the JHM tensor S§.

Similarly, we build the same structure for our PAF generator
to output the PAF tensor L.

After all, given the RF frame R”, our CSI2Pose network
outputs JHMs S§, and PAFs LY as

(St L) = Faw(R™), 9)

where Fqy(-) are trainable parameters of CSI2Pose network.

Cross-Modal Training. In the training phase, we train
CSI2Pose network with the supervision of OpenPose network’s
outputs for avoiding laborious and time-consuming data
annotation. Specifically, given a training set of camera-WiFi
frame pairs {(I’, R”")},_,.y, we first input {I"},_,.y into OpenPose

network ¥7(-) and obtain the corresponding visual semantic
feature set {(S’V, L }y=1;y' After that, we proceed to train our
CSI2Pose network by taking {R”},_;.y as input and using
{(Sy , Li)}>v=1;y as ground-truth labels.

The training objective of CSI2Pose network is to minimize
the discrepancy between its output and OpenPose’s output:

Y
min Zl L (S} Sy) + Lear (L. LYy).  (10)

where Ljgy () and Lpar(-,-) are mean squared error (MSE)
loss functions for JHM and PAF features, and they can be
further expressed as

J

Lo SuSw) = D > al - lIsjth,w) = siy(h,wB, (1)

j=1 hw

C
Lpar (L, Lw) = Y 3" a5, - 5, w) = Ky (Wl (12)

c=1 hw

In Eq. (T1) and Eq. (T2), “i,w and «)  are pixel-wise weights
for JHM and PAF tensors, respectively. Since the majority
of elements in JHMs and PAFs are with small values [14],
we set both ail’w and a}  to be proportional to the absolute
value of (h, w)-th element in the ground-truth labels Sy and
Sw for giving positive elements more attentions. In addition,
considering that JHMs and PAFs indicate different semantic
information and have values in different scales, we appoint
different coefficients 4, 81 , 42 and B, to balance between
Lum and Lpap in the training objective (I0). Hence, a/;w
and j,  can be computed as

13)
(14)

@, = A - llsj(h w3 + 1.
., = Ay - 5, w13 + Ba.
In our system, we set 1, =1, 8, =1, 4, =0.3 and B, = 0.7.

D. Forgery Detection and Localization.

We proceed to detect forgery attacks and localize forgery
traces in I"" based on S}', L', S% and L% as shown in Fig. @

JHM Difference Calculation. Since we have JHMs and
PAFs estimated from video and RF frames, a straightforward
way is to assemble detected keypoints to form human instances
with full-body poses from (S”‘, L;") and (S"’,’V L"’}V) respectively,
and perform forgery detection via calculating pose similarity in
a person-wise manner. However, such approach is cumbersome
and computationally inefficient.

Secure-Pose utilizes estimated JHMs Sy and S§; for forgery
detection. Specifically, it takes their difference as the basis of
the following forgery detection and localization. Let us denote
D" e REXWXJ a5 the JHM difference tensor, which can be
computed as

D" =Sy - Sk (15)

The rationale behind the difference operation in Eq. (I3) is
that with effective feature extraction by ¥7(-) and Fqy(-), JHM
tensors S}' and Sy, from video and RF frames would be very
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similar, making D™ having a lot of near-zero differences, if
no attacks are present. In contrast, when video forgery attacks
appear, body poses in the video frame I" is modified and
the visual JHMs S{' will change accordingly, which results in
large differences between S}' and Sy, in the tampered regions.
Hence, the JHM difference tensor D™ can preserve sufficient
information about forgery attacks and remove redundant
information about authentic scenes.

Tampered Frame Detection. To avoid cumbersome person-
by-person detection, we perform frame forgery detection using
a simple binary classification model, which directly takes the
JHM difference tensor D™ as input and produces, as output, a
binary indicator Z" € {0, 1} to mark the presence of forgery
attacks in the video frame I”'. Note that we assign Z™ =1 to
a positive D™ if the corresponding I'" is tampered and Z™" =0
to a negative D™ if I is authentic.

Specifically, we build a detection neural network Fp(-) to
recognize forgery attacks based on D™. Specifically, Fp(-)
has a CNN structure, which consists of two convolutional
(conv) layers and two fully connected (FC) layers. The conv
part first executes convolutions on all channels of D" and
further converts features into a 1D feature vector as output.
Then, the FC part transforms the 1D feature vector into a
two-dimensional probability vector p” = (pg', p}') € [0, 11
indicate the likelihood of attack presence as

" = Fp(D™). (16)
Once p” is obtained, our system can output a decision Z™ as
Z" = argmax p. a7

4

To train the detection network Fp(-), we collect lots of
positive and negative samples of JHM difference tensors and
thus obtain a labeled dataset {(D”, Zy)}y:h y- Hence, the training
objective is to minimize the difference between the detection
network’s predictions and ground-truth labels:

Y
1
in = 5 Y ) 18
n%nyyZ;LBCE(PyZ) (13)
where Lpce(:,-) is binary cross entropy (BCE) loss, which
can be computed as

Lpce (. 2)=—(Z-logpr +(1-22)-logpo).

Forgery Trace Localization. After frame forgery detection,
our system proceeds to localize forgery traces in the tampered
frames. Since the tampered frames could contain more human
objects or less human objects when compared with the
authentic ones, we term both the added and erased human
objects in tampered frames as abnormal objects for simplicity.
Hence, the goal of forgery trace localization is to estimate
human poses of abnormal objects in tampered regions. To
do this, once I" is detected as a tampered frame by Fp(-),
Secure-Pose performs body part association to discover poses
of abnormal objects based on the JHM difference tensor D™
as well as estimated PAF tensors L' and L.

The first step is to select body keypoint candidates of
abnormal objects based on D”. Since D™ is the difference
between Si* and S%, it could have negative values as well as
positive ones. Our system performs non-maximum suppression
(NMS) on the absolute value of D™ to pick up a keypoint
candidate set K™, which can be expressed as

K" =k}, eR? : forje {1, J})ne L,

19)

Nk, 0

where N; denotes the number of candidates of j-th keypoint
and k’" is the location of n-th candidate of j-th keypoint.

The second step is to associate the candidate keypoints K™
to form abnormal human poses using PAFs L{" and Lg,. In
this step, our system first sums up L' and L{, to obtain a
combined PAF tensor Fj' € R?*W*2*C for saving computational
complexity in the following association phase, which can be
computed as

F) =L+ L. @21)

Then, with K™ and Fy', our system leverages the keypoint
association method proposed in [14] to estimate the poses of
abnormal objects. Specifically, human poses are determined
by a set of connected body keypoits, and such best connection
states &" between keypoints in K™ can be obtained by

= Fa (K", FY), (22)

where F4(:, ) represents the association function in [[14]]. More-
over, each element in & is a binary variable Ey, &, € {0, 1},
which indicates the connection state between k;-th keypoint
and k,-th keypoint in K™.

Toward this end, Secure-Pose outputs a binary detection
decision Z™ using a simple neural network ¥ (-) and produces
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the body poses " of only abnormal objects in the tampered
region.

IV. IMPLEMENTATION AND EVALUATION

A. Implementation

As shown in Fig. [/} we implement Secure-Pose using one
logitech 720p camera and two Intel 5300 NICs equipped with
three antennas each. Specifically, two NICs, one as a transmitter
and the left as a receiver, are both placed at a height of one
meter and separated with each other about six meters away. In
each NIC, we uniformly spaced three antennas with a distance
of 2.6cm. For a good FOV, we mount the camera with a
height of 2m and place it on the receiver side. To generate
video signals, the camera is set to output 1280x720p RGB
images with a FPS of 7.5. To sample CSI signals, two NICs
are controlled by two Intel NUCs separately, using an open-
source tool [22]], to communicate with a bandwidth of 20 MHz
centering in the 5.6 GHz WiFi band. In this condition, we
record CSI measurements of 30 subcarriers with a sampling
rate of 100Hz.

B. Evaluation Methodology

Data Collection. We collect concurrent camera and WiFi
data in a laboratory office with a size of 8mx16m. We recruit
five volunteers and ask them to perform daily activities, such
as walking, sitting and waving hands, under the camera’ FOV.
During data collection, the number of people in the scene
varies from zero to three. In such condition, we collect multi-
modal data of half an hour in total. Based on the collected
data, we resize all video frames into a size of 64 x 128, and
resample 5 CSI measurements for each video frame. After
that, we obtain about 12K samples of synchronized video-RF
fame pairs. In all samples, half of them are used to generate
positive samples that contain tampered video frames under
inter-frame or intra-frame attacks. To do this, we perform inter-
frame attacks by randomly replacing the pristine video frame
in a sample with a different video frame from another sample.
To launch intra-frame attacks, we leverage Faster-RCNN [17]]
to detect and crop a human object out and then replace it
with the corresponding blank background segment. The left
6K samples with authentic video frames are considered as
negative samples. Finally, we randomly split all positive and
negative samples into three datasets for training and testing
our system.

. Dataset A. It contains 3K positive and 3K negative

samples for training £ and ¥ in our system.

« Dataset B. It contains 1.5K positive samples under inter-

frame attacks and 1.5K negative samples for testing.

» Dataset C. It contains 1.5K positive samples under intra-

frame attacks and 1.5K negative samples for testing.

Training Details. We train our CSI2Pose and detection
network on PyTorch framework. Specifically, we adopt a batch
size of 1 and a RMSprop optimizer with weight decay le-8
and momentum 0.9 for each training. The initial learning rate
is set to le-6 for CSI2Pose network and le-5 for the detection
network. Moreover, the learning rate will be multiplied by

1
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AUROC=0.983 /7 Inter-
Frame | 95.1% | 4.6% | 95.2%
. 0.6 4 Attack
a /7
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04 P Frame | 94.7% | 4.9% | 94.9%
P Attack
-
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Fig. 8. ROC curve. The reference
line is for random guessing.

Fig. 9. Forgery detection perfor-
mance under different attacks.

a decay factor 0.1 if validation loss does not decrease for 5
epochs. Finally, we train CSI2Pose network with 20 epochs
and the detection network with 10 epochs.

Evaluation Metrics. We use the following metrics to
evaluate the performance of Secure-Pose.

o Accuracy. It is defined as the ratio of the number of
samples that are correctly detected to the total number of
positive and negative samples.

o True positive rate (TPR). It is the ratio of the number
of positive samples that are successfully detected to the
total number of positive samples.

« False positive rate (FPR). It is the ratio of the number
of negative samples that are mistakenly recognized to the
total number of negative samples.

« Percentage of correct keypoint (PCK). It is the ratio
that the normalized distance from prediction xf, to ground-
truth y{, of j-th keypoint of p-th person is less than p:

1< X5, = ¥ylla
PCK;@p = > {””b—py’”” Sp},
p=1
where 0 < p < 1, P is the number of people and b” is the
diagonal length of p-th person’s bounding box. Moreover,
the mean PCK over all keypoints is denoted as mPCK@p.
« Dice loss. Given two numerical tensors P € R? and Q
R3, it is computed as

2 Zx,y,z |p(-x’ Y, Z)l : |5](X, Vs Z)'
Yoy P2, DN+ lg(x, v, 2)

DP,Q)=1-

C. Experimental Results

Forgery Detection Performance. First, we present the
detection performance of Secure-Pose. We report the receiver
operating characteristic (ROC) curve of our system as well as
its area under ROC curve (AUROC) to illustrate its capability
of discriminating authentic and tampered video frames. As
depicted in Fig. [8] the ROC curve tightly follows the left-hand
and top borders, implying that high TPRs and low FPRs are
mostly obtained as the detection threshold varies in [0, 1].
Accordingly, the corresponding AUROC almost covers the
whole ROC space and reaches to 0.983, which is close to 1,
i.e., the ideal case. Furthermore, we demonstrate the detection
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performance under different forgery attacks in terms of TPR,
FPR and accuracy. As shown in Fig. 0] Secure-Pose has
a higher TPR and a lower FPR under inter-frame attacks.
This is due to that inter-frame attacks require replacing all
human objects in the authentic frame and thus incur a large
difference between authentic and tampered frames, making our
system easier to detect such forgeries. In contrast, intra-frame
attacks only change a part of objects and therefore lead to a
smaller difference. Despite that, our system still has a close
performance in two attack scenarios. To sum up, Secure-Pose
achieves an average detection accuracy of 95.1% for each
video frame. Specifically, it can successfully detect 94.9% of
tampered video frames and correctly recognize 95.3% authentic
frames. The above results demonstrate the effectiveness of
Secure-Pose in detecting forgery attacks in video streams.

Forgery Localization Performance. Then, we illustrate
the forgery localization performance of our system. For this
purpose, we show the mean PCK of pose estimation of
abnormal objects under different forgery attacks. As depicted
in Fig. the localization of abnormal objects’ keypoints
yields high mean PCKs at low normalized distance errors.
For instance, there are about 70% estimated locations of
abnormal keypoints that are within 20% of diagonal length
of person bounding boxes. Moreover, it also can be observed
that our system always has a higher mean PCK under intra-
frame attacks in terms of different normalized distance errors.
The reason is that compared with inter-frame attacks, intra-
frame attacks have a smaller modification on the difference
JHM tensor D™ as well as the combined PAF F}' in Eq. (1)),
which leads to a higher accuracy on keypoint localization and
association for abnormal objects. Additionally, we showcase
the outputs of forgery trace localization under inter-frame and
intra-frame attacks, respectively, in Fig. [T1] In the inter-frame
attack, we replace the authentic frame that has three persons
with a blank background. In this case, the absence of three
persons is successfully detected by our system, and then their
associated body keypoints are accurately inferred and presented
on the tampered frame. In the intra-frame attack, one of two
persons (the left one) is erased from the pristine frame. In this
case, our system correctly localizes such forgery and plots the
body pose of the erased person. The above results suggest

attacks. All abnormal objects are successfully localized.

keypoints are not present for simplicity.

the effectiveness of Secure-Pose in localizing different forgery
attacks in each video frame.

Performance of CSI2Pose Network. Next, we show the
performance of the proposed CSI2Pose network Fy. Specifi-
cally, Fqy is designed to infer human pose features from CSI
signals with the supervision of OpenPose network ¥r. To
measure its ability of pose estimation, we directly leverage
body association method [14] on CSI2Pose network’s outputs
(S%,L%) and compare its association results with those of
OpenPose network. As Fig. [I2] shows, the keypoint of nose
has a higher PCK than the others at low normalized distance
error. This may be caused by that the head part is generally
with fewer occlusions by other people and clothing, which
makes F7 to generate more accurate nose labels for ¥4y during
cross-modal training and thus their performance difference of
the nose part is smaller. Moreover, we also observe that as
the normalized distance error approaches 0.5, the curves of all
body keypoints get close with each other and tend to converge
to a high value about 0.9. The above observations illustrate
that the proposed CSI2Pose network is effective in semantic
feature extraction.

Effectiveness of the Weighted Loss Functions. We further
demonstrate the impact of the weighted MSE loss functions
Ligm and Lpap proposed in Eq. @) and Eq. (]E) for
cross-modal training. To do this, we first train a CSI2Pose
network using the standard MSE losses for JHMs and PAFs
without weights as baseline. Then, we run both weighted and
unweighted CSI2Pose networks on all testing samples and,
respectively, compute Dice losses between their outputs and
those of OpenPose network. Fig. [I3] and Fig. [I4] plot the
cumulative distribution function (CDF) of Dice losses in terms
of JHM and PAF, respectively. In Fig. [[3] the weighted curve
is always higher than the unweighted one. Specifically, the
unweighted curve is very steady and goes straight up when the
Dice loss exceeds 0.8, however, the weighted curve rises up
beyond 0.5. The same trends can also be found in Fig. [T4] for
PAFs. The above observations indicate that the weighted losses
Lyum and Lpsp are effective, and they can force CSI2Pose
network to pay more attention on foreground objects and thus
learn more accurate JHM and PAF features from WiFi CSI
features during cross-modal training.
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Effectiveness of the JHM Difference. Finally, we present
the effectiveness of the proposed JHM difference tensor D™,
which is the difference between estimated JHM tensors S{' and
S To do this, we modify the detection network Fp(-) to take
together 81" and S§; as input and train it on Dataset A. Fig. @
illustrates TPR, FPR and accuracy of two versions of Fp(+)
using different JHM feature tensors. We can observe that two
complete JHM tensors enable a TPR increase of 1.2% and bring
a FPR decrease of 1.9% in comparison with those of the JHM
difference tensor. This observation is reasonable because Sy’
and Sy, naturally have more formation about forgery attacks
than D™, which can be learned by our detection network.
Despite that, they have nearly identical performance. The
above observations suggest that the proposed JHM difference
tensor D™ is an effective feature representation for forgery
detection. In particular, it can preserve suffice information
about forgery traces that is contained in JHM tensors S} and
S while having a smaller size.

V. ReLATED WORK

Video Forgery Detection. With the rapid advances in video
editing techniques, it has become much easier to tamper
surveillance videos. Traditional watermark-based approaches
require dedicated modules for video integrity preservation,
while not all commercial cameras have such a watermarking
module. Passive video forensics approaches leverage video
statistic characteristics to discover forgery traces [4], [,
[6], [7], [8]. However, such approaches are computationally-
expensive and cannot be applied for real-time forgery detection
on live video feeds. The recent work [9] compares event-level
timing information from WiFi and camera signals to detect
camera looping attacks. However, this work cannot detect and
localize forgery attacks in each video frame. In this work,
we propose a novel cross-modal system that can detect and
localize forgery attacks in each frame of live surveillance
videos.

Human Perception Using RF Signals. Recent years have
witnessed much progress in performing human perception
based on RF signals. These studies [23], [24]], [25] exploit
unique RF characteristics to detect on-body propagation.
Moreover, the authors in [26] use a dedicated FMCW radio to

Fig. 14. CDFs of Dice losses between CSI2Pose’s
and OpenPose’s PAF outputs using weighted and

Fig. 15. Performance of the detection network
using different JHM features as input.

capture coarse human skeletons from RF signals that bounce off
the body when a subject walks towards transceivers. After that,
they proceed to exploit FMCW radios to estimate 2D [27]] and
3D [28]] human poses through walls and occlusions. Compared
with dedicated RF radios, low-cost WiFi radios are much
promising in enabling pervasive human perception in various
indoor environments. Relying on commercial WiFi transceivers,
WiPose [29] is proposed to reconstruct 3D human skeletons in
the single-person scenario. Moreover, Person-in-WiFi [30] is
designed to learn body segmentation mask and joint coordinates
from WiFi signals. In this work, we focus on recover human
pose features from both video and WiFi signals and perform
video forgery detection and localization in a cross-modal
manner.

VI. CoNCLUSION

This paper presents Secure-Pose, a novel cross-modal system
that effectively detects and localizes forgery traces in live
surveillance videos using ambient WiFi signals. We observe
that the coexisting camera and WiFi signals contain common
human semantic information and the presence of video
forgery attacks will decouple such cross-modal information
correspondence. Our system effectively extracts human pose
features from synchronized camera and WiFi signals and
efficiently discovers forgery traces under different attacks. We
implement our system using one commercial camera and two
Intel 5300 NICs and evaluate it in real-world environments.
The evaluation results demonstrate that Secure-Pose achieves
a high detection accuracy of 95.1% and accurately localizes
body keypoints of tampered objects under both inter-frame
and intra-frame attacks.
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