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Abstract—Data holders, such as mobile apps, hospitals and
banks, are capable of training machine learning (ML) models
and enjoy many intelligence services. To benefit more individuals
lacking data and models, a convenient approach is needed which
enables the trained models from various sources for prediction
serving, but it has yet to truly take off considering three issues:
(i) incentivizing prediction truthfulness; (ii) boosting prediction
accuracy; (iii) protecting model privacy.

We design FedServing, a federated prediction serving
framework, achieving the three issues. First, we customize an
incentive mechanism based on Bayesian game theory which
ensures that joining providers at a Bayesian Nash Equilibrium
will provide truthful (not meaningless) predictions. Second,
working jointly with the incentive mechanism, we employ truth
discovery algorithms to aggregate truthful but possibly inaccurate
predictions for boosting prediction accuracy. Third, providers
can locally deploy their models and their predictions are
securely aggregated inside TEEs. Attractively, our design supports
popular prediction formats, including top-1 label, ranked labels and
posterior probability. Besides, blockchain is employed as a comple-
mentary component to enforce exchange fairness. By conducting
extensive experiments, we validate the expected properties of
our design. We also empirically demonstrate that FedServing
reduces the risk of certain membership inference attack.

Index Terms—Prediction serving, Incentive mechanism, Pri-
vacy, Aggregation

I. INTRODUCTION

Machine learning (ML) is revolutionizing our world and
the global market for ML driven services is expected to reach
$5, 330 million by 2024 [1]. Many data holders, such as mobile
apps, hospitals and banks, are able to train models based
on the available data they hold, and use the trained models
to achieve functionality and business innovation [2]. From
another perspective, most individuals lacking data and power
are incapable of training models, so that they hardly benefit
from ML. Even if an individual is in possession of a model,
it still has the real-world demand to collaborate with others’
models, demonstrated by an existing real-world case, i.e., two
banks in North America collaborate to detect money launder-
ing. Obviously, due to privacy concerns, intellectual property
issues or business competition, model owners are unwilling
to share their trained models. Thus, it is necessary to build a
bridge which connects model owners who have no incentives
of sharing models with individuals who need models.

Building such a bridge inevitably needs to support three
essential requirements as following: (i) providing sufficient

∗Work was done when the author was a visiting student with City University
of Hong Kong. It has been accepted for inclusion in IEEE INFOCOM 2021.

incentives to the model owners so that they are willing
to contribute their models; (ii) enabling individual users of
interest to enjoy as high-performance as possible models; (iii)
guaranteeing model privacy, since models imply private infor-
mation about their training data [3]. However, there exists no
work to realize such a bridge, so that it has yet to truly take off.

While Machine-Learning-as-a-Service (MLaaS) platforms
enable monetizing models for prediction serving on a pay-
per-query basis, trained models have to reside on the un-
trusted servers, causing model privacy concerns. Although
earlier works present effective approaches [4–6] for protect-
ing models against the untrusted servers, they still are not
really satisfactory. Specifically, cryptographic methods are
computation-consuming and inefficient when handling large-
sized models [4], but high-performance models usually are
large. Differential privacy based defenses would sacrifice pre-
diction accuracy [5]. Trusted hardware-enabled approaches are
relatively practical but still have efficiency limitation. It is due
to that trusted hardwares are majorly restricted to CPUs, but
running large models usually needs GPUs [6].

Motivated by our observations, our goal is to make model
owners freely deploy their models without limits, collectively
contribute their models to make profits and securely use
models without privacy leakage concerns. Towards the goal,
we present a federated prediction serving framework, FedServ-
ing, towards model owners from various sources in an open
setting. Our starting point is allowing model owners to deploy
models at local devices and provide aggregated predictions for
exchanging with monetary rewards. Standing on top of it, we
especially make efforts to design our solution for enforcing
prediction accuracy, due to the following two-fold challenges:
Challenge (i): Strategic behaviors of model owners. Model
owners (hereafter called as providers) are likely to be rational
and selfish, so that they may be strategic to report meaningless
predictions without effort. In addition, ground truths with
respect to given prediction queries are usually unknown, which
makes the truthfulness of predictions hard to be verified.
Challenge (ii): Varying quality of models. While aggregating
predictions (e.g., via majority voting or averaging) is a classic
strategy for improving accuracy, they may be less effective in
our case. The issue of majority voting and averaging is that
they assume prediction sources (i.e., models) are equally reli-
able. Yet, the assumption cannot hold in our open setting. It is
due to that (1) the qualities of models from various sources are
varying and due to local deployment, there is no available au-
thority enforcing the model quality upon answering prediction
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queries; (2) even well-trained models are not always general-
ized well over the whole feature space of all prediction queries,
so producing predictions are probably not always accurate.

In light of the two challenging issues, the state-of-the-
art solutions usually resort to incentive mechanisms in
conjunction with quality-aware aggregation algorithms, as
learnt from the literature [7–12]. Unfortunately, previous
work cannot be used to mitigate our challenging issues.
The main reason is that they fail to simultaneously handle
categorical and continuous data covered by popular prediction
outputs [13]. As a concrete instance, the prediction outputs
for each query of a sentiment analysis task can be top-1
label, e.g., [upset], ranked labels, e.g., [upset, scared,
distressed, guilty], and posterior probability for each label,
e.g., 〈95.0%, 2.0%, 1.0%, 2.0%〉, which are supported by
Google Photos and Google Cloud Vision API, for example.

Our key design. We customize a complementary mecha-
nism by integrating an incentive design with “truth-finding”
algorithms. Concretely, our mechanism (1) uses Bayesian
game theory to model the honest and strategic behaviors
of providers and ensures the existence of a Bayesian Nash
Equilibrium, where all providers will offer truthful (rather
than meaningless) predictions for given prediction queries;
(2) employs truth discovery (TD) algorithms to learn highly
accurate predictions from the truthful (but possibly inaccurate)
predictions to eliminate the effect of inaccurate predictions; (3)
allocates the providers with fair rewards in proportion to the
truthfulness of their predictions; (4) simultaneously handles
prediction output formats including labels and the respective
posterior probability.

Despite that models are locally deployed, privacy concerns
still exist due to disclosing predictions of a model. Concretely,
a model’s predictions can be exploited to infer if a data record
was used to train a model, e.g., identifying if an individual
was a patient at the hospital, known as membership inference
attacks [14]. To address the privacy concern, we leverage
trusted execution environments (TEEs) to aggregate predic-
tions from multiple providers, and only aggregated predictions
are revealed to users [15]. Owing to the confidentiality and
integrity provided by TEEs, a model’s predictions are not
revealed and aggregated predictions are correctly generated.
It is noteworthy that our proposed incentive mechanism also
can benefit from the TEEs’ integrity, since the procedure of
evaluating the truthfulness of predictions from each model
can be correctly executed, which further enforces fair rewards
guided by the truthfulness. Notably, we do not use privacy-
preserving verifiable cryptography, considering that TEEs are
relatively more performant.

Besides, we need to facilitate an open setting for model
owners from various sources freely joining in FedServing.
But meanwhile, we also need a regulation complementary
to our incentive mechanism for fulfilling the transparent
process of money settlement and deterring providers’ selfish
behaviors, e.g., abortion, thereby achieving the fairness of
money-prediction exchange among users and providers. In
light of the issues, we choose blockchain to facilitate the

open setting and enforce the regulation.
We note that FedServing can be extended to support the

existing prediction serving systems and now we shed light on
the service manner of our FedServing framework. A prediction
serving server can deploy a smart contract as a uniform query
interface for charging users and as an entrance for participating
providers. When receiving the query and fees from a user, the
server resorts to its off-chain TEEs-empowered component to
collect predictions from participating providers who undertake
the prediction task. The TEE strategically aggregates predic-
tions and submits aggregated predictions to the blockchain.
Finally, the user obtains the predictions and meanwhile the
smart contract allocates the user’s fees to the participating
providers according to the truthfulness of their predictions.

In conclusion, this paper makes the main contributions as
following:
• We propose a federated prediction serving framework

empowered by the blockchain, providing an as accurate
as possible prediction service with truthful contributions
from various source models in an open setting.

• We customize an incentive mechanism for eliciting truth-
ful contributions, by carefully applying a technique of
peer prediction [16] and fully respecting the formats of
popular prediction outputs.

• We extend a widely-adopted truthful discovery algorithm
to support our prediction setting, and make it jointly work
with our designed incentive mechanism, finally producing
as accurate as possible predictions.

• We implement our design and conduct extensive experi-
ments in terms of the performance, validity and ability
against a privacy attack. For reproducibility, our code
is publicly available at https://github.com/H-W-Huang/
FedServing.

II. RELATED WORK

Prediction Serving System. Existing excellent systems [17,
18] centralizedly manage models as well as deploy models
for low-latency and high-throughput prediction serving, where
models are off-the-shelf. To enhance prediction accuracy, they
generally support ensemble models which aggregate predic-
tions from multiple models.

Different from them, our work focuses on the models from
various sources for prediction serving in an open setting. More
precisely, we consider how to incentivize model owners from
various sources to provide truthful prediction services while
respecting model privacy and ensuring prediction accuracy. To
the end, we present a distributed framework which achieves
the following three-fold components which are less considered
by the existing systems [17, 18].
(i) Pricing mechanism. We customize a pricing mechanism
for compensating participating providers and incentivizing
prediction truthfulness, instead of using an one-price-fits-
all pricing structure, which still respects the pay-per-query
business pattern of the current MLaaS platforms.
(ii) Quality-aware aggregation. Considering that the model
quality and the ground truths of prediction queries are un-
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known in our open setting, we use TD algorithms to aggregate
predictions rather than simply averaging, thereby eliminating
the effect of low-accuracy predictions.
(iii) Model and prediction protection. We make models
never leave local devices and multiple predictions are securely
aggregated inside TEEs so that users only obtain aggregated
predictions. Due to local deployment, providers retain control
over when and how their in-house models are used to make
predictions, e.g., joining in an ensemble to produce predic-
tions, thereby reducing the risks of privacy attacks [14].
Incentive Mechanism. Prior incentive mechanisms [7–
12, 19–34] are designed for stimulating participation by
compensating workers’ costs with monetary rewards, and
implementing the economic properties, such as platform profit
maximization, individual rationality and budget feasibility,
which greatly promote the development of crowdsourcing.
The incentive mechanisms generally resort to game-theoretic
methods, such as reverse auction [21, 22, 25, 26, 31], double
auction [23, 34] and all-pay auction [20], or other game
theory [9, 11, 33]. With the game-theoretic analysis, they
consider the strategic behaviors of workers and investigate
how to encourage workers to behave truthfully.

In this paper, we aim to stimulate the truthfulness
of collective predictions considering providers’ strategic
behaviors of providing meaningless predictions, thereby
achieving quality control. Existing mechanisms do not solve
our problem, since the following four requirements cannot be
simultaneously satisfied:
(i) Incentivizing truthfulness. Most mechanisms [21, 22,
25, 26] focus on incentivizing workers to reveal their costs
truthfully. A few excellent mechanisms like [9, 11] incentivize
the truthfulness of crowd data as this paper, but they are
unsatisfactory to us due to that (ii) below cannot be supported.
(ii) Simultaneously handling categorical and continuous
data. Theseus [9] proposes a truthful mechanism for quality
and efforts elicitation while focusing on continuous sensing
data. [11] creatively studies the joint elicitation of quality,
efforts and data while focusing on discrete data (more pre-
cisely, binary data). Their techniques do not solve our problem,
since we simultaneously consider labels and confidence values
which are categorical data and continuous data, respectively.
(iii) No reliance on prior knowledge. Prior arts [8, 23]
assume the prior knowledge about workers’ reliability or
reputation that helps allocate rewards. We do not use such
prior knowledge, since a provider’s predictions for historical
tasks are considered irrelevant to the current task1.
(iv) Jointly addressing incentive and quality concerns. Most
mechanisms for incentivizing truthfulness do not jointly work
with TD, except to [7–10, 12]. These works can be deployed
with TD, but they still are unsatisfactory to us: Theseus [9], [8]
and [12] majorly consider the continuous data stream; [7] does
not focus on workers’ strategic behaviors; [10] cares about
binary answers and assumes that most workers are reliable.

1We note that a prediction task usually is requested with batch queries,
where the queries belonging to the same task are relevant.

III. SYSTEM OVERVIEW

In this section, we present our FedServing framework. It
begins with the system model, and then figures out the threat
assumptions and design goals.

Fig. 1: Overview of the FedServing framework.

A. System Model

At the high level, our FedServing consists of four entities
as shown in Fig. 1: prediction providers, user, smart contract
and TEEs-based server. Specifically, the prediction providers
who own various ML models monetize their prediction query
services on the blockchain (e.g., Ethereum). They could
publicize non-private model profiles like service APIs for user
accessing their models. User is able to browse model profiles
on the blockchain, and query prediction services via a smart
contract, named as prediction serving contract (PS contract).
PS contract aims at receiving the user’s query request, relaying
the request, receiving aggregated predictions and achieving
the fair payment finalization. As the intermediator between
the prediction providers and the PS contract, the TEEs-based
server is responsible for strategically aggregating predictions
sent by multiple providers, and calculating accuracy-aware
scores used to guide allocating rewards. The basic workflow
in Fig. 1 is described as following:

1 User sends a transaction which contains a description
about her requested task, e.g., a sentiment analysis task,
and makes a deposit for payment to the PS contract. Note
that the task’s input data, e.g., text files, can be securely
stored in an accessible system like IPFS, and then be
securely authorized to participating providers.

2 Providers participate in the task by submitting a deposit
to the PS contract for potential penalty, e.g., punishing
abortion. Here, we omit the phase that they can authen-
tically obtain the task’s input data from IPFS.

3 Participating providers evaluate local models on the input
data, and lastly submit predictions to the TEE via an
authenticated communication channel.

4 The TEE strategically aggregates predictions from multi-
ple participating providers and compute accuracy-aware
scores for each provider. After that, the aggregated pre-
dictions are correctly encrypted using the user’s public
key and submitted to the blockchain.

5 User retrieves and decrypts the aggregated predictions
using her private key, and meanwhile, her deposit is



allocated to the participating providers according to the
respective accuracy-aware scores.

B. Threat Model and Assumptions

Prediction Provider. We consider that prediction providers
are rational and self-interested. They may act to maximize
their profits by submitting arbitrary predictions. The providers
answering certain query are named as participating providers
and assumed not to collude with each others. In addition, we
assume that the input data received by participating providers
are benign; perturbed input data known as adversarial exam-
ples [35] are out of our consideration.
TEEs. We trust that TEEs, e.g., Intel Software Guard
Extensions (SGX), can securely execute specific programs
against external observation and manipulation, i.e., ensuring
confidentiality and integrity. We note that side-channel attacks
and rollback attacks on TEEs are out of the scope of this
paper like prior TEEs-empowered work [36], owing to many
off-the-shelf defence mechanisms [37, 38]. We rely on the
authenticated communication channels built between a TEE
and a remote party, e.g., Intel SGX’s Enhanced Privacy ID
(EPID) remote attestation protocol.
Blockchain. We trust the blockchain for integrity and avail-
ability. Smart contract autonomously and faithfully executes
defined functions, e.g., correctly locking deposits and settling
rewards, which is assumed not vulnerable to software bugs.
Remarks. We aware that FedSeving can suffer from Sybil
attacks [39], where a prediction provider may maliciously use
multiple fake accounts to join in certain task. For demoralizing
Sybil attacks, a widely adopted solution is to increase the
attack cost like solving proof-of-work puzzles and making
deposits. In this paper, we require each participating provider
to make a deposit before undertaking a task.

C. Design Goals

Truthfulness and accuracy. It means that user can ob-
tain aggregated predictions with truthfulness and accuracy
guarantees. Specifically, each participating provider provides
truthful (but possibly inaccurate) predictions, and meanwhile,
the truth discovery algorithm is correctly conducted on the
provided truthful predictions to produce truths, i.e., aggregated
predictions, which are regarded accurate enough.
Fairness. It includes the fairness of reward allocation and the
fairness of money-prediction exchange. First, each participat-
ing provider in a task gets a fair reward guided by a strictly
proper score which is computed based on the truthfulness of
their predictions. A comparatively truthful prediction leads to
a higher score, and the prediction’s provider obtains compara-
tively more rewards. Second, all participating providers receive
rewards iff the user obtains the final predictions.

IV. DESIGN OF PREDICTION AGGREGATION

Considering that our FedServing is built in an open setting,
participating models might produce inaccurate predictions.
The reasons include that (i) varying quality models can freely
participate in FedServing, and meanwhile, there is no available

authority enforcing the quality of participating models; (ii)
trained models are not always generalized well over the whole
feature space of every prediction task [40].

In light of this issue, we study the lessons from the earlier
works [8–10, 41, 42] and leverage TD algorithms [41] to
aggregate predictions, so as to learn as accurate predictions
as possible from varying quality models in absence of ground
truth. We support three common prediction formats in practice.
To the best of our knowledge, there is no existing scheme
dealing with the issue as this paper. The previous work [42] is
similar to our design of prediction aggregation, but it focuses
on one single format, i.e., probability vector. We especially
consider other popular prediction outputs, e.g., ranked label
list, used in Google Photos.

For ease of presentation, we begin with an instance of
prediction task. Then, we elaborate three prediction formats
and demonstrate how to aggregate them.
Instance Description. Suppose that a social psychologist has
a sentiment analysis task for a set of consulting letters from
anonymous citizens. She needs to label the set of consulting
letters with the emotion states for studying social projection.
With the task, she can query the PS contract in our FedServing:
what are the emotion states for each consulting letter,
distressed, upset, guilty or scared?
Prediction Formats. In the above instance, we introduce
three popular prediction output formats [13]: (1) Abstract:
a top-1 class label, e.g., ’upset’, (2) Rank: a ranked list
of labels, e.g., [upset, scared, distressed, guilty], and (3)
Measurement: a probability vector for possible class la-
bels, e.g., 〈2.0%, 95.0%, 1.0%, 2.0%〉 for [distressed, upset,
guilty, scared] (their sum is 100%).

Apparently, the measurement output contains the most de-
tailed prediction information while the abstract output contains
less information. Note that here we mainly discuss classifica-
tion tasks, but our method can be easily extended to regression
tasks which are associated with real-valued predictions.
Prediction Aggregation. We now introduce the algorithm to
aggregate predictions adapted to the three formats. Specifi-
cally, in order to fluently run the truth discovery algorithm as
shown in Algorithm 1, we carefully transform the later two
formats into continuous data vectors. For ease of explanation,
we suppose that there are three models predicting a given
consulting letter with the corresponding label list [distressed,
upset, guilty, scared]. Their predictions with respect to the
three formats are demonstrated in TABLE I.

We now explain how we uniformly represent the three-
format predictions by using continuous data vectors. For the
abstract format, the three models separately produce labels
’upset’, ’distressed’ and ’distressed’. We transform them into
the corresponding 0/1 value vectors, where the index with
value 1 is the most possible label, as shown in the abstract row
of TABLE I. For the rank format, the three models provide
the ranked lists of possible labels as presented in TABLE II.
For example, a ranked list [upset, scared, distressed, guilty]
is given by the first model. We set ranked integer values to
each ranking level. A largest integer represents the highest



TABLE I: Examples of prediction formats

Format Model1 Model2 Model3

Abstract 〈0, 1, 0, 0〉 〈1, 0, 0, 0〉 〈1, 0, 0, 0〉
Rank 〈2, 4, 1, 3〉 〈4, 2, 1, 3〉 〈4, 2, 3, 1〉
Measurement 〈2.0%, 49.0%, 1.0%, 48.0%〉 〈92.0%, 2.0%, 1.0%, 5.0%〉 〈93.0%, 2.0%, 3.0%, 2.0%〉

ranking level while a smallest integer represents the lowest
one. With this representation rule, the ranked lists in TABLE II
are transformed into the vectors with integer values in the
rank row of TABLE I. Last, the probability vectors in the
measurement format are presented without change. Hereafter,
we call the vector values as confidence values.

TABLE II: Examples of ranked lists.

Value Model1 Model2 Model3

4 upset distressed distressed
3 scared scared guilty
2 distressed upset upset
1 guilty guilty scared

After the uniform representation, multiple predictions for
the set of consulting letters in each format will be aggregated
via Algorithm 1 including two steps. Specifically, we sup-
pose that there are multiple predictions from m (m ≥ 3)
providers for n consulting letters. Each prediction is a c-
length vector containing the confidence values for each class
label, where c is the number of given possible class labels.
They are represented as {Iji }

m,n
i=1,j=1, where Iji is a continuous

data vector vji =(vji1, ..., v
j
ic). Now, with Algorithm 1, we

iteratively estimate the truths on {Iji }
m,n
i=1,j=1 and update m

providers’ weights until convergence. The algorithm finally
outputs the truths as the aggregated predictions {Oj(ε)}nj=1

with respect to each consulting letter.

Algorithm 1 Truth discovery
Input: provider predictions {Iji }

m,n
i=1,j=1

Output: truth predictions {Oj(ε)}nj=1

1: Initialize r = 1 and weights {w(r)
i = 1}i=1,...,m.

2: repeat
3: for each j ∈ [1, n] do

4: Oj(r+1) ←
∑m

i=1 w
(r)
i

I
j
i∑m

i=1
w

(r)
i

(1)

5: end for
6: for each i ∈ [1,m] do

7: w
(r+1)
i ← −log(

∑n
j=1 floss(Oj(r+1),I

j
i
)∑m

k=1

∑n
j=1

floss(Oj(r+1),I
j
k
)
) (2)

8: end for
9: r = r + 1

10: until r ≤ ε
11: return {Oj(ε)}nj=1

Initially, we set each provider’s weight with 1 and denote an
iteration threshold ε. Then, with fixed weights, m providers’
predictions are aggregated via the weighted mean method
(Step (1)). During the iterative computation, the aggregated
predictions are closer to that of the providers having higher
weights. With the aggregated predictions, each provider’s
weight is updated based on the distances between his predic-
tions and the aggregated predictions with respect to n consult-
ing letters (Step (2)). The provider whose predictions are closer
to the aggregated predictions will be assigned with a higher

weight. Here, the loss function floss(·) is used to characterize
the distance and specifically, we use the normalized squared
loss function. Step (1) and (2) are iteratively computed until
r reaches pre-defined threshold ε.

V. DESIGN OF PRICING MECHANISM

The previous section introduces the process of aggregating
predictions with the aim to filter out less accurate predictions.
Yet, the accuracy of aggregated predictions still cannot be
guaranteed if a majority of self-interested providers offer
meaningless predictions. In order to motivate the self-
interested providers to provide truthful predictions, we jointly
design our pricing mechanism by employing the Bayesian
game theory. Notably, predictions contain categorical and
continuous data which will be simultaneously handled.

This section begins with the setting definitions and design
objectives, and then presents the pricing mechanism formula-
tion and an approximate solution. To the end, an analysis for
the proposed pricing mechanism is elaborated.

A. Mechanism Setting

We use the game theory method to model the strategic be-
haviors of participating providers inspired by the works [9, 11].
Concretely, we model participating providers P = {i, ...,m}
playing a non-cooperative game, where each of them indepen-
dently gives a private prediction for each query requested by
certain user. Note that a requested task can include multiple
queries, e.g., labeling multiple consulting letters.

In the game, participating providers behave as utility maxi-
mizers. They behave strategically by evaluating their expected
utility. Specifically, they will not participate if the expected
utility is negative, and otherwise, they offer predictions via
a specific strategy that maximizes the expected utility. In
general, the evaluation needs some technical assumptions [16].
We assume that participating providers undertaking the same
task have a common prior belief, and meanwhile, they use the
same belief updating procedure, i.e., Bayes’ rule.

A provider’s behavior is described by strategy. A strategy is
denoted by s = (l,v) meaning giving a prediction for a query
, or ⊥ meaning abort. Herein, l is a list of claimed possible
class labels and each label in l is from discrete set Ω; v is the
corresponding posterior probability values which are drawn
from probability density distributions Ψ. Thus, the strategy
space is {(Ω,Ψ)} ∪ {⊥}. Then, the participating providers’
strategy profile is S = (s1, ..., sm), if we suppose that there
are m participating providers.

Next, we continue to formulate the provider model, the user
model and a Bayesian Nash Equilibrium for providers.
Provider Model. Within the defined game, a provider’s payoff
depends on his own strategy with regard to other providers’
strategies. Specifically, given a payment function p(·), a cost



function c(·) and deposit d0, we define any provider’s utility
ui(S), i ∈ P in a game with a strategy profile S as following:

ui(S) = pi(S)− c(si)− d0.

Next, any provider can evaluate the expected utility:

ES−si
[ui(si,S−si)] = ES−si

[pi(si,S−si)]− c(si)− d0,

where S−si is the strategy profile excluding si. Note that a
participating provider’s deposit for n queries is d = n× d0.
User Model. A user’s objective is to obtain the aggregated
predictions whose accuracy is as close as possible to the
truth accuracy. To exchange the aggregated predictions
{vj}j=1,...,n of n queries from m participating providers,
she makes amount of deposits, namely budget B, on the
blockchain. Assume that the market publicizes budget curves
relative to the number of employed providers via market
survey. With the budget curves, the user deposits a budget level
that enables soliciting certain number of prediction providers.
Bayesian Nash Equilibrium. A strategy profile S∗ is denoted
as a Bayesian Nash Equilibrium (BNE) in the defined game,
if no provider i ∈ P can increase her expected utility by
changing the current strategy s∗i with regard to other providers’
strategies S∗−si :

ES∗
−si

[ui(s
∗
i ,S
∗
−si)] ≥ ES∗

−si
[ui(si,S

∗
−si)].

At the BNE, our mechanism aims to achieve several design
objectives in Section V-B.

B. Design Objectives

With the strategy S∗ at the BNE, we state three design
objectives below.

Definition 1. (Truthfulness) An aggregated prediction for a
query is truthful if and only if (i) the aggregation computation
is correctly executed, and meanwhile, (ii) every participating
provider i ∈ P at BNE S∗ provides a prediction s∗i = (li,vi)
satisfying the following condition:

li = lp ∧DKL(vT ||vi) ≤ θ.

Here, vector lp contains the public possible class labels, e.g.,
[distressed, upset, guilty, scared] in Section IV. vT is the
true posterior probability for lp. DKL(||) is the Kullback-
Leibler (KL) divergence function. DKL(vT ||vi) measures
the information lost using vi to approximate vT . Clearly,
condition (i) can be guaranteed by leveraging TEEs. Next,
we design a pricing mechanism to meet condition (ii), that
is, every provider has no motivation to provide a prediction
which deviates from the truthful labels and the corresponding
truthful posterior probability. However, vT is unknown in
our setting. Our designed pricing mechanism will take it into
consideration.

Definition 2. (Individual Rationality) A pricing mechanism
satisfies individual rationality (IR) iff every participating
provider i ∈ P at the BNE has non-negative expected utility:

ES∗
−si

[ui(s
∗
i ,S
∗
−si)] ≥ 0.

Definition 3. (Budget Feasibility) A pricing mechanism sat-
isfies budget feasibility (BF) iff the total payment allocated to
the participating providers i ∈ P at the BNE is not more than
a user’s given budget for every query:

ES∗ [

m∑
i=1

pi(S
∗)] ≤ B

n
,

where m is the number of providers while n is the number of
queries.

C. Pricing Mechanism Formulation

We are now ready to formulate the optimization problem of
designing our pricing mechanism for participants’ predictions
(called as PPP), i.e.,

max
p(·)

m∑
i=1

Pr(DKL(vT ||vi) ≤ θ)

s.t. ES∗
−si

[ui(s
∗
i ,S
∗
−si)] ≥ 0

ES∗ [

m∑
i=1

pi(S
∗)] ≤ B

n
.

As elaborated, given a set of participating providers P =
{1, ...,m}, n queries and budget B, we aim to customize a
payment function p(·) which satisfies both constraints of IR
and BF, as well as maximizes the objective function, that is,
the overall probability of the KL divergence between every
provider’s prediction at BNE S∗ and the true prediction which
is less than given threshold θ.

Solving PPP optimization problem will effectively minimize
the loss between the accuracy of the aggregated predictions
via truth discovery and the truth accuracy, which is the user’s
objective. First, given n queries,

∑n
j=1

∑m
i=1 DKL(vTj ||vji )

is apparently minimized, if PPP optimization problem is
solved for every query. Next, we can achieve that the result
accuracy via truth discovery is as close as possible to the
truth accuracy due to

∑n
j=1

∑m
i=1 Pr(DKL(vTj ||vji ) ≤ θ) ≥∑n

j=1 Pr(DKL(vTj ||vj) ≤ θ). The conclusion is according
to the following derivation:
m∑
i=1

n∑
j=1

DKL(vTj ||vji ) ≥
∑m
i=1 wi(

∑n
j=1 DKL(vTj ||vji ))∑m
i=1 wi

=

n∑
j=1

∑m
i=1 wiDKL(vTj ||vji )∑m

i=1 wi
≥

n∑
j=1

DKL(vTj ||
∑m
i=1 wiv

j
i∑m

i=1 wi
)

=

n∑
j=1

DKL(vTj ||vj).

However, solving PPP optimization problem is hard and
the ground truth is unavailable, namely vT . Hence, we ap-
proximately solve it by applying the idea of divergence-based
Bayesian Truth Serum (BTS) method [16]. The main idea
of the divergence-based BTS method is rewarding a player
based on the divergence between her reports and a randomly
selected counterpart’ reports, when there is no ground truth



for verification. It is an effective approach to incentivize report
truthfulness and control report quality [16]. We inherit such
desirable properties from the divergence-based BTS method,
and in the meantime, we handle both discrete data and continu-
ous data, i.e., label and posterior probability, which is different
from prior works [9, 11] considering either continuous data or
discrete data.

Derived from the divergence-based BTS method, we denote
our payment function. It rewards a participating provider i
based on its strategy si and a randomly selected provider r’s
sr by calculating two scores. The payment function is pi(si) =
αi × (scoreIi + scorePi + 1)2, where αi > 0. The two scores
are denoted accordingly as following:
(1) scoreIi = scoreI(si, sr) measures a penalty value if si
reports the same labels with sr, but the corresponding posterior
probability disagrees with each others.

scoreI(si, sr) = −Ili=lr∧DKL(vi||vr)>θ

Herein, Ia is an indicator. Its value is 1, if condition a is valid;
otherwise, its value is 0.
(2) scorePi = scoreP(si, sr) measures a reward value if si’s
posterior probability fits close to the distribution of the class
labels provided by sr.

scoreP(si, sr) =
1

c

c∑
k=1

[2− (1− vi(lrk))2 −
∑

lr∈Ω/{lrk}

vi(lr)
2]

Herein, c is the number of possible class labels; vi(l) means
the posterior probability for label l and (vi(l1), ...,vi(lc))
constitute vi with constraint

∑c
k=1 vi(lk) = 1. Concretely,

vi(lrk) = Pr(lrk|lik) represents i’s the posterior probability
for label lrk ∈ Ω. If vi(lrk) = Pr(lrk|lik = lrk),
the score value is maximized, being equal to 2. If
vi(lrk) = Pr(lrk|lik 6= lrk), the score value is minimized,
being equal to 0.

With the definitions above, the value of (scoreIi+scorePi+
1) falls in the range [0, 3]. Also, it is worth noting that the
scoring rule consisting of the two scores has been proved
strictly Bayes-Nash incentive-compatible relying on stochastic
relevance in [16]. It means that a truthful prediction is always
configured with a higher score compared to a untruthful
prediction so as to achieve the goal of fairness (refer it to
Section III-C).

Considering the potentiality of a participating provider
aborting, we revise our payment function. If provider i does
not abort, her deposit d0 should be refunded, that is, pi(si) =
pi(si) + d0. Otherwise, her deposit d0 will be forfeited.

D. Analysis

In this section, we proceed to analyze how to achieve the
design objectives in Section V-B by using the presented pricing
function as an approximately solution.

To begin with, we quantify the cost function with respect
to different participating providers, which is useful to estimate
the providers’ expected utility. For simplicity, we assume that
participating providers’ costs are known, which refers to the

complete information scenario. Their costs derive from the
identical two cost parameters c1 > 0 and c2 > 0 which are
far smaller than a user’s budget B. We assume that the cost of
generating a product linearly increases with the product’s qual-
ity. Recall that we measure the truthfulness of a prediction via
the divergence-based BTS method due to the lack of ground
truths. Specifically, using two scores measures a prediction
truthfulness. Thus, we next naturally regard the two scores as
the quality metric to calculate the corresponding cost of every
strategy si. That is, c(si) = c1 · (scoreIi+scorePi+1)+c2. It
is noteworthy that the cost monotonically increases with score
(scoreIi + scorePi + 1) increasing.

We are now ready to analyze that with our pricing mecha-
nism, there exists a BNE achieving our design objectives via
parameter constraints. Specifically, we set constraint condi-
tions on parameter αi considering the design objectives of
individual rationality and budget feasibility, based on which
we find a BNE, where all participants adopt the strategy of
offering truthful predictions. Below, we demonstrate and prove
this finding by Theorem 1.

Theorem 1. In the non-cooperative game, there exists a BNE
S∗ = (s∗1, ..., s

∗
m), where every participating provider i ∈

{1, ...,m} provides s∗i containing li = lr and DKL(vi||vr) ≤
θ compared with s∗r (r 6= i) when parameter αi satisfies (1)
αi ≥ c1

2·scorei , (2) αi ≥ c1·scorei+c2
score2i

and (3) αi ≤ B
nm ·

1
score2i

,
where scorei = (scoreIi + scorePi + 1).

Proof. Given other participating providers’ strategies S∗−si and
a randomly selected provider’s strategy s∗r , every provider i
can estimate her expected utility by

ES−si
[ui(si,S−si)|s∗r ] = ES−si

[pi(si,S−si)|s∗r ]− c(si)− d0

= αi × (scoreIi + scorePi + 1)2 + d0

− c1 · (scoreIi + scorePi + 1)

− c2 − d0.

Here, we suppose that provider i does not abort. If she aborts,
apparently her expected utility is equal to −d0 which is
negative. For every provider i not aborting, she can maximize
her expected utility when her strategy s∗i = (li,vi) leads
to scorei reaching the maximum among [ c12αi

, 3]. Therefore,
every rational provider i is doomed to chose the strategy
which enables scorei being equal to 3. To be more clear, we
summarize the possible cases for every provider i’s strategy
and her expected utility as following:
(a). If s∗i = (li,vi), where li 6= lr, her expected utility
is negative due to (scoreIi + scorePi + 1) = 0 leading to
ES−si

[ui(si,S−si)|s∗r ] = −c2.
(b). If s∗i = (li,vi), where li = lr and DKL(vi||vr) ≤ θ, her
expected utility is equal to 9αi−3c1−c2 which is positive due
to parameter constraint (2), and maximized due to (scoreIi +
scorePi + 1) = 3.
(c). If abort, her expected utility is negative due to
ES−si

[ui(si,S−si)|s∗r ] = −d0.
Hence, strategy profile S∗ = (s∗1, ..., s

∗
m) in Theorem 1, where

s∗i satisfies li = lr and DKL(vi||vr) ≤ θ is a BNE.



VI. EXPERIMENT

A. Implementation and Setup

Prediction Aggregation with TEEs. We initialize TEEs by
utilizing SGX SDK of version 2.5. In the SGX environment,
we implement the prediction aggregation program (i.e., Algo-
rithm 1) by using C/C++ programming language.
Smart Contract. We also implement the PS contract with the
Solidity programming language of Ethereum and deploy it on
the Ropsten Test Network via MetaMask2.
Dataset. We totally use three datasets to simulate three pre-
diction tasks. Specifically, we use two well-studied image
datasets, including MNIST3 and ImageNet4 for image predic-
tion, as well as a public text dataset, namely 20 Newsgroups5

for text prediction. With respect to three datasets, we will
correspondingly sample a number of test data for evaluation.
Note that MNIST, ImageNet and 20 Newsgroups contain
10K, 100K and near 8K test data, respectively. More concrete
information of the three datasets are shown in TABLE III.

TABLE III: Real-world datasets used in the experiment.

Dataset Type Size Features Labels

MNIST Image 70K 20x20 10
ImageNet Image 1.26M 224x224x3 1000
20 Newsgroups Text 18846 – 20

Provider Simulation. We collect three groups of various
trained models which are used to simulate providers for
serving prediction. We separately collect 6, 10 and 15 models
under various frameworks which are evaluated on MNIST,
20 Newsgroups and ImageNet. Specifically, we implement
and train the models for the MNIST and 20 Newsgroups by
ourselves, and download off-the-shelf models for ImageNet
from two public model sources6,7. Due to the space limitation,
we only present the models trained on 20 Newsgroups dataset
in TABLE IV.

TABLE IV: Models evaluated on 20 Newsgroups.

Model Framework Acc. Model Framework Acc.

Boost SKLearn 0.740 KNN SKLearn 0.660
Bagging SKLearn 0.660 CNN Keras 0.730
Dec. tree SKLearn 0.550 DNN Keras 0.810
Ran. forest SKLearn 0.760 RNN Keras 0.760
SVM SKLearn 0.820 RCNN Keras 0.720

We simulate distrustful predictions by perturbing normal
predictions, where perturbations are sampled from the uniform
distribution on interval (0, 1). With the perturbation methods,
we simulate a distrusting provider by perturbing a model’s all
predictions.

We will consider three cases in perturbing predictions of
models, including (a) no perturbation, (b) perturbing no more

2https://metamask.io/
3http://yann.lecun.com/exdb/mnist/
4http://www.image-net.org/challenges/LSVRC/2012/
5http://qwone.com/ jason/20Newsgroups/
6https://keras.io/api/applications/
7https://pytorch.org/docs/stable/torchvision/models.html

than M
2 models’ predictions, and (c) perturbing more than

M
2 models’ predictions, where M is the total number of

models. Note that case (a) is used to simulate the BNE setting
induced by Theorem 1, where each provider is incentivized to
provide truthful predictions; case (c) creates the setting, where
providers lack sufficient motivation for prediction truthfulness;
case (b) refers to the setting between case (a) and (c).

In addition, our experiments are conducted in a Ubuntu
16.04 server equipped with a CPU of 3.40GHz, 32 GB RAM
and a GPU of Nvidia GTX-1080.

B. Evaluation

Our evaluation is four-fold: (i) To highlight the advantage
of Algorithm 1, we compare the accuracy of predictions
generated by Algorithm 1 and that by averaging (a traditional
ensemble strategy); (ii) To demonstrate the effectiveness of
the incentive mechanism, we plot and compare simulation
results of prediction aggregation regarding case (a), (b) and (c)
in terms of accuracy; (iii) To show service cost, we estimate
the computation complexity of prediction aggregation with a
TEE and evaluate gas costs caused by the interaction between
the PS contract and the TEE; (iv) To answer whether or not
prediction aggregation via Algorithm 1 is effective to resist
membership inference attacks, we conduct state-of-the-art
attacks [43] and present empirical evidences.

TABLE V: Accuracy comparison.

Dataset Avg. Label Rank Probability

MNIST 0.907 0.978 0.973 0.981
ImageNet 0.724 0.790 0.764 0.789
20 Newsgroups 0.721 0.862 0.836 0.862

First of all, as shown in TABLE V, for each dataset, the ac-
curacy of the predictions generated by Algorithm 1 regrading
three output formats (i.e., 3th to 5th column) is always better
than the averaging accuracy (i.e., 2th column) of all participat-
ing models. We can see that on ImageNet dataset, the accuracy
improvement is relatively small, but as pointed out by [44],
spending a lot of time and energy to achieve minor accuracy
improvement on difficult object recognition task is deserved.

Second, Fig. 2 and Fig. 3 (from left to right) show the ac-
curacy of aggregated predictions regarding three perturbation
cases on MNIST, 20 Newsgroups and ImageNet, respectively.
For each dataset, it can be clearly seen that the accuracy
in case (a) is always higher than that in case (b) and (c),
which is because that participating providers offer truthful
predictions with sufficient incentives. We also can see that
in case (c), where a vast majority of participating providers
report meaningless predictions, the accuracy is never better
than 0.5. The reason is that Algorithm 1 fails to learn the
truth when a majority of predictions are not enough accurate,
and thus our incentive mechanism is necessary to handle case
(c). In addition, from Fig. 2, the evaluated accuracy slightly
grows up with the increasing queries. According to Fig. 3, we
also notice that the accuracy of the rank-level predictions on
ImageNet drops more obviously than the other two datasets
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Fig. 3: Accuracy on different-format predictions.

in more serious perturbation cases. It might be caused by the
large number of labels, i.e., 1000, on ImageNet dataset.

Third, Fig. 4 presents the estimated time costs of prediction
aggregation inside the TEE over three datasets. Note that we
omit the one-time cost of setting up a TEE. Clearly, more
queries spend more times. By comparing the three sub-figures,
we also can know that the time complexity becomes higher as
the number of labels of the query task increases. Recall that
the number of class labels of MNIST, 20 Newsgroups and
ImageNet is 10, 20 and 1000, respectively. Besides, gas costs
are mainly derived from two parts: (1) execution costs of the
PS contract when its three entry points, Deposit, Request and
Response, are correspondingly invoked, and (2) execution
costs of the TEE’s transaction (on entry point Response)
which contains outputs outp, outpattr and signatures σ, σattr
(entirely 2 × 70 bytes). Also, the gas costs grow up with in-
creasing participating providers. Note that encrypted input data
and predictions are transmitted off-chain, and thus the mag-
nitude of query makes negligible effect on the gas costs. We
only test the gas costs by simulating 6 providers (on MNIST).
Specifically, part (1) totally spends 510, 815 units gas, includ-
ing 389, 373 units for Deposit, 102, 200 units for Request
and 19, 242 units for Response. The gas costs for sending
the response transaction in part (2) are about 74, 370 units.

TABLE VI: Comparison of adversaries’ attack performance.

Type Target model Precision Recall

Adversary 1
Single 0.996 0.503

Ensemble 0.056 0.054

Adversary 2
Single 0.997 0.504

Ensemble 0.987 0.499

Last, we launch membership inference attacks using
two types of adversaries with increasingly strong attack
capabilities in prior work (i.e., adversary 1 and 2, detailed in
[43]’s TABLE I) and show the attack results. Similar to the
work [43], we adopt three models as an ensemble, but the
difference is that our ensemble strategy is Algorithm 1 rather
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Fig. 4: Time complexity of prediction aggregation inside a TEE.
than stacking. Besides, the used three models are CNN, RNN
and MLP trained on the MNIST dataset. For comparison,
we also conduct the same attacks on the single CNN model.
As shown in TABLE VI, the attack results demonstrate that
ensemble model under Algorithm 1 is able to reduce the attack
performance of adversary 1, but not adversary 2. Concretely,
for adversary 1, the precision drops from 0.996 to 0.056 and
the recall drops from 0.503 to 0.054. But for adversary 2,
there has no effect. It is difficult to suggest certain confident
explanation for the attack results like the previous work [43].

VII. LIMITATION AND FUTURE WORK

Other prediction formats. Our work focuses on the prediction
formats, including top-1 label, ranked labels and posterior
probability, but fails to support other formats, such as text data,
in Natural language processing (NLP) tasks. Taking language
translation as an example, Sequence-to-Sequence models are
usually used, which take as input a sequence of words in
certain language and output another sequence of words in a
target language, where output format belongs to text data.
Adversarial examples. We assume benign input data and do
not consider adversarial examples (AEs), i.e., input data in-
jected with imperceptible perturbations [35]. AEs can mislead
a deep neural network to incorrectly classify an originally
correctly classified input. Recently, a promising approach
against AEs is to create a robust ensemble model by carefully
considering the diversity of individual models [45, 46]. In our
future work, we will follow this direction and take into account
the factors regarding model diversity to refine our incentive
mechanism for FedServing.

VIII. CONCLUSION

In this paper, we present a prediction serving framework,
named as FedServing, towards trained models from various
sources. FedServing enables locally deploying models and
provides collective prediction services for charging users. For
motivating truthful predictions, we customize an incentive
mechanism based on Bayesian game theory. For boosting pre-
diction accuracy, we use truth discovery algorithms working
jointly with the incentive mechanism to eliminate the effect
of low-accuracy predictions. Our proposed design supports
popular prediction formats, including top-1 label, ranked labels
and posterior probability. Besides, we build FedServing on the
blockchain to ensure exchange fairness and leverage TEEs
to securely aggregate predictions as well. With extensive
experiments, we effectively validate the expected properties
of our mechanism and empirically demonstrate its capability
of reducing the risk of certain membership inference attack.
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