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Abstract—We consider a many-to-one wireless architecture for
federated learning at the network edge, where multiple edge
devices collaboratively train a model using local data. The un-
reliable nature of wireless connectivity, together with constraints
in computing resources at edge devices, dictates that the local
updates at edge devices should be carefully crafted and com-
pressed to match the wireless communication resources available
and should work in concert with the receiver. Thus motivated, we
propose SGD-based bandlimited coordinate descent algorithms
for such settings. Specifically, for the wireless edge employing
over-the-air computing, a common subset of k-coordinates of
the gradient updates across edge devices are selected by the
receiver in each iteration, and then transmitted simultaneously
over k sub-carriers, each experiencing time-varying channel
conditions. We characterize the impact of communication error
and compression, in terms of the resulting gradient bias and mean
squared error, on the convergence of the proposed algorithms. We
then study learning-driven communication error minimization
via joint optimization of power allocation and learning rates.
Our findings reveal that optimal power allocation across different
sub-carriers should take into account both the gradient values
and channel conditions, thus generalizing the widely used water-
filling policy. We also develop sub-optimal distributed solutions
amenable to implementation.

I. INTRODUCTION

In many edge networks, mobile and IoT devices collecting
a huge amount of data are often connected to each other or
a central node wirelessly. The unreliable nature of wireless
connectivity, together with constraints in computing resources
at edge devices, puts forth a significant challenge for the com-
putation, communication and coordination required to learn an
accurate model at the network edge. In this paper, we consider
a many-to-one wireless architecture for distributed learning at
the network edge, where the edge devices collaboratively train
a machine learning model, using local data, in a distributed
manner. This departs from conventional approaches which
rely heavily on cloud computing to handle high complexity
processing tasks, where one significant challenge is to meet
the stringent low latency requirement. Further, due to privacy
concerns, it is highly desirable to derive local learning model
updates without sending data to the cloud. In such distributed
learning scenarios, the communication between the edge de-
vices and the server can become a bottleneck, in addition to
the other challenges in achieving edge intelligence.

In this paper, we consider a wireless edge network with M
devices and an edge server, where a high-dimensional machine
learning model is trained using distributed learning. In such

a setting with unreliable and rate-limited communications,
local updates at sender devices should be carefully crafted
and compressed to make full use of the wireless communi-
cation resources available and should work in concert with
the receiver (edge server) so as to learn an accurate model.
Notably, lossy wireless communications for edge intelligence
presents unique challenges and opportunities [1], subject to
bandwidth and power requirements, on top of the employed
multiple access techniques. Since it often suffices to compute
a function of the sum of the local updates for training the
model, over-the-air computing is a favorable alternative to
the standard multiple-access communications for edge learn-
ing. More specifically, over-the-air computation [2], [3] takes
advantage of the superposition property of wireless multiple-
access channel via simultaneous analog transmissions of the
local messages, and then computes a function of the messages
at the receiver, scaling signal-to-noise ratio (SNR) well with
an increasing number of users. In a nutshell, when multiple
edge devices collaboratively train a model, it is plausible to
employ distributed learning over-the-air.

We seek to answer the following key questions: 1) What is
the impact of the wireless communication bandwidth/power on
the accuracy and convergence of the edge learning? 2) What
coordinates in local gradient signals should be communicated
by each edge device to the receiver? 3) How should the
coordination be carried out so that multiple sender devices can
work in concert with the receiver? 4) What is the optimal way
for the receiver to process the received noisy gradient signals
to be used for the stochastic gradient descent algorithm? 5)
How should each sender device carry out power allocation
across subcarriers to transmit its local updates? Intuitively, it
is sensible to allocate more power to a coordinate with larger
gradient value to speed up the convergence. Further, power
allocation should also be channel-aware.

To answer the above questions, we consider an integrated
learning and communication scheme where multiple edge
devices send their local gradient updates over multi-carrier
communications to the receiver for learning. Let K denote
the number of subcarriers for communications, where K is
determined by the wireless bandwidth. First, K dimensions
of the gradient updates are determined (by the receiver) to
be transmitted. Multiple methods can be used for selecting
K coordinates, e.g., selecting the top-k (in absolute value)
coordinates of the sum of the gradients or randomized uni-
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Fig. 1. A bandlimited coordinate descent algorithm for distributed learning over wireless multi-access channel

form selection. This paper will focus on randomly uniform
selection (we elaborate further on this in Section V). Dur-
ing the subsequent communications, the gradient updates
are transmitted only in the K-selected dimensions via over-
the-air computing over K corresponding sub-carriers, each
experiencing time-varying channel conditions and hence time-
varying transmission errors. The devices are subject to power
constraints, giving rise to a key question on how to allocate
transmission power across dimension, at each edge device,
based on the gradient update values and channel conditions.
Thus, we explore joint optimization of the power allocation
and the learning rate to obtain the best estimate of the gradient
updates and minimize the impact of the communication error.
We investigate a centralized solution to this problem as a
benchmark, and then devise sub-optimal distributed solutions
amenable to practical implementation. We note that we have
also studied the impact of errors of synchronization across
devices in this setting (we omit the details due to limited
space).

The main contributions of this paper are summarized as
follows:
• We take a holistic approach to study federated learning

algorithms over wireless MAC channels, and the pro-
posed bandlimited coordinated descent(BLCD) algorithm
is built on innovative integration of computing in the
air, multi-carrier communications, and wireless resource
allocation.

• We characterize the impact of communication error and
compression, in terms of its resulting gradient bias and
mean squared error (MSE), on the convergence perfor-
mance of the proposed algorithms. Specifically, when the
communication error is unbiased, the BLCD algorithm
would converge to a stationary point under very mild
conditions on the loss function. In the case the bias in the
communication error does exist, the iterates of the BLCD
algorithm would return to a contraction region centered
around a scaled version of the bias infinitely often.

• To minimize the impact of the communication error, we
study joint optimization of power allocation at individual

devices and learning rates at the receiver. Observe that
since there exists tradeoffs between bias and variance,
minimizing the MSE of the communication error does
not necessarily amount to minimizing the bias therein.
Our findings reveal that optimal power allocation across
different sub-carriers should take into account both the
gradient values and channel conditions, thus generalizing
the widely used water-filling policy. We also develop
sub-optimal distributed solutions amenable to implemen-
tation. In particular, due to the power constraints at
individual devices, it is not always feasible to achieve
unbiased estimators of the gradient signal across the
coordinates. To address this complication, we develop
a distributed algorithm which can drive the bias in the
communication error to (close to) zero under given power
constraints and then reduce the corresponding variance as
much as possible.

II. RELATED WORK

Communication-efficient SGD algorithms are of great in-
terest to reduce latency caused by the transmission of the
high dimensional gradient updates with minimal performance
loss. Such algorithms in the ML literature are based on
compression via quantization [4]–[7], sparsification [8]–[10]
and federated learning [11] (or local updates [12]), where
lossless communication is assumed to be provided. At the
wireless edge, physical-layer design and communication loss
should be taken into consideration for the adoption of the
communication-efficient algorithms.

Power allocation for over-the-air computation is investigated
for different scenarios in many other works [13]–[17] includ-
ing MIMO, reduced dimensional MIMO, standard many to one
channel and different channel models. In related works on ML
over wireless channels, [18]–[25] consider over-the-air trans-
missions for training of the ML model. The authors in [21]
propose sparsification of the updates with compressive sensing
for further bandwidth reduction, and recovered sum of the
compressed sparse gradients is used for the update. They also
apply a similar framework for federated learning and fading



channels in [22]. [18] considers a broadband aggregation for
federated learning with opportunistic scheduling based on the
channel coefficients for a set of devices uniformly distributed
over a ring. Lastly, [25] optimize the gradient descent based
learning over multiple access fading channels. It is worth
noting that the existing approaches for distributed learning in
wireless networks do not fully account for the characteristics
of lossy wireless channels. It is our hope that the proposed
BLCD algorithms can lead to an innovative architecture of dis-
tributed edge learning over wireless networks that accounts for
computation, power, spectrum constraints and packet losses.

III. FEDERATED LEARNING OVER WIRELESS
MULTI-ACCESS NETWORKS

A. Distributed Edge Learning Model

Consider an edge computing environment with M devices
M = {1, . . . ,M} and an edge server. As illustrated in Figure
1, a high-dimensional ML model is trained at the server by
using an SGD based algorithm, where stochastic gradients are
calculated at the devices with the data points obtained by the
devices and a (common) subset of the gradient updates are
transmitted through different subcarriers via over-the-air.

The general edge learning problem is as follows:

min
w∈Rd

f(w) :=
1

M

M∑
m=1

Eξm [l(w, ξm)], (1)

in which l(·) is the loss function, and edge device m has access
to inputs ξm. Such optimization is typically performed through
empirical risk minimization iteratively. In the sequel, we let wt
denote the parameter value of the ML model at communication
round t, and at round t edge device m uses its local data
ξm,t to compute a stochastic gradient gmt (wt) := ∇l(wt, ξm,t).
Define gt(wt) = 1

M

∑M
m=1 g

m
t (wt). The standard vanilla SGD

algorithms is given as
wt+1 = wt − γgt(wt) (2)

with γ being the learning rate. Nevertheless, different updates
can be employed for different SGD algorithms, and this study
will focus on communication-error-aware SGD algorithms.

B. Bandlimited Coordinate Descent Algorithm

Due to the significant discrepancy between the wireless
bandwidth constraint and the high-dimensional nature of the
gradient signals, we propose a sparse variant of the SGD
algorithm over wireless multiple-access channel, named as
bandlimited coordinate descent (BLCD), in which at each iter-
ation only a common set of K coordinates, I(t) ⊂ {1, . . . , d}
(with K � d), of the gradients are selected to be transmitted
through over-the-air computing for the gradient updates. The
details of coordinate selection for the BLCD algorithm are
relegated to Section VI. Worth noting is that due to the
unreliable nature of wireless connectivity, the communication
is assumed to be lossy, resulting in erroneous estimation of
the updates at the receiver. Moreover, gradient correction is
performed by keeping the difference between the update made
at the receiver and the gradient value at the transmitter for
the subsequent rounds, as gradient correction dramatically

Algorithm 1 Bandlimited Coordinate Descent Algorithm
1: Input: Sample batches ξm,t, model parameters w1, initial

learning rate γ, sparsification operator Ct(.), ∀m =
1, . . . ,M ;∀t = 1, . . . , T.

2: Initialize: rmt := 0.
3: for t = 1 : T do
4: for m = 1 : M do
5: gmt (wt) := stochasticGradient(f(wt, ξm,t))
6: umt := γgmt (wt) + rmt
7: rmt+1 := umt − Ct(umt )
8: Compute power allocation coefficients b∗km,∀k =

1, . . . ,K.
9: Transmit b∗ � Ct(umt )

10: end for
11: Compute gradient estimator Ĝt(wt)
12: wt+1 := wt − Ĝt(wt).
13: Broadcast wt+1 back to all transmitters.
14: end for

improves the convergence rate with sparse gradient updates
[9].

For convenience, we first define the gradient sparsification
operator as follows.

Definition 1. CI : Rd → Rd for a set I ⊆ {1, . . . , d} as
follows: for every input x ∈ Rd,

(
CI(x)

)
j

is (x)j for j ∈ I
and 0 otherwise.

Since this operator CI compress a d-dimensional vector
to a k-dimension one, we will also refer this operator as
compression operator in the rest of the paper.

With a bit abuse of notation, we let Ct denote CI(t) for
convenience in the following. Following [26], we incorporate
the sparsification error made in each iteration (by the compres-
sion operator Ct) into the next step to alleviate the possible
gradient bias therein and improve the convergence possible.
Specifically, as in [26], one plausible way for compression
error correction is to update the gradient correction term as
follows:

rmt+1 = umt − Ct(umt ), (3)

umt , γgmt (wt) + rmt (4)
which rmt+1 keeps the error in the sparsification operator that
is in the memory of user m at around t, and umt is the scaled
gradient with correction at device m where the scaling factor γ
is the learning rate in equation (2). (We refer readers to [26] for
more insights of this error-feedback based compression SGD.)
Due to the lossy nature of wireless communications, there
would be communication errors and the gradient estimators
at the receiver would be erroneous. In particular, the gradient
estimator at the receiver in the BLCD can be written as

Ĝt(wt) =
1

M

M∑
m=1

Ct (umt ) + εt, (5)

where εt denotes the random communication error in round t.
In a nutshell, the bandlimited coordinate descent algorithm is
outlined in Algorithm 1.



Recall that gt(wt) = 1
M

∑M
m=1 g

m
t (wt) and define rt ,

1
M

∑M
m=1 r

m
t . Thanks to the common sparsification operator

across devices, the update in the SGD algorithm at communi-
catioon round t is given by

wt+1 = wt −
[
Ct(γgt(wt) + rt) + εt

]
. (6)

To quantify the impact of the communication error, we use
the corresponding communication-error free counterpart as the
benchmark, defined as follows:

ŵt+1 = wt − Ct(γgt(wt) + rt). (7)
It is clear that wt+1 = ŵt+1 − εt.

For convenience, we define w̃t , wt − rt. It can be shown
that w̃t+1 = w̃t − γgt(wt) − εt. Intuitively, wt+1 in (6) is a
noisy version of the iterate ŵt+1 in (7), which implies that
w̃t+1 is a noisy version of the compression-error correction of
ŵt+1 in (7), where the “noisy perturbation” is incurred by the
communication error.

C. BLCD Coordinate Transmissions over Multi-Access Chan-
nel

Fig. 2. A multi-access communication protocol for bandlimited coordinate
selection and transmission.

A key step in the BLCD algorithm is to achieve co-
ordinate synchronization of the transmissions among many
edge devices. To this end, we introduce a receiver-driven
low-complexity multi-access communication protocol, as il-
lustrated in Fig. 2, with the function Ct(x) denoting the
compression of x at round t. Let I(t) (of size K) denote
the subset of coordinates chosen for transmission by the
receiver at round t. Observe that the updates at the receiver
are carried out only in the dimensions I(t). Further, the edge
receiver can broadcast its updated iterate to participant devices,
over the reverse link. This task is quite simple, given the
broadcast nature of wireless channels. In the transmissions,
each coordinate of the gradient updates is mapped to a specific

subcarrier and then transmitted through the wireless MAC
channel, and the coordinates transmitted by different devices
over the same subcarrier are received by the edge server in the
form of an aggregate sum. It is worth noting that the above
protocol is also applicable to the case when the SGD updates
are carried out for multiple rounds at the devices.

When there are many edge devices, over-the-air computa-
tion can be used to take advantage of superposition property
of wireless multiple-access channel via simultaneous analog
transmissions of the local updates. More specifically, at round
t, the received signal in subcarrier k is given by:

yk(t) =

M∑
m=1

bkm(t)hkm(t)xkm(t) + nk(t) (8)

where bkm(t) is a power scaling factor, hkm(t) is the channel
gain, and xkm(t) is the message of user m through the
subcarrier k, respectively, and nk(t) ∼ N (0, σ2) is the channel
noise.

To simplify notation, we omit (t) when it is clear from
the context in the following. Specifically, the message xkm =
(Ct(u

m
t ))l(k), with a one-to-one mapping l(k) = (I(t))k,

which indicates the k-th element of I(t), transmitted through
the k-th subcarrier. The total power that a device can use
in the transmission is limited in practical systems. Without
loss of generality, we assume that there is a power constraint
at each device, given by

∑K
k=1 |bkmxkm|

2 ≤ Em, ∀m ∈
{1, . . . ,M}. Note that bkm hinges heavily upon both hm =
[h1m, . . . , hKm]> and xm = [x1m, . . . , xKm]>, and a key
next step is to optimize bkm(hm,xm). In each round, each
device optimizes its power allocation for transmitting the se-
lected coordinates of its update signal over the K subcarriers,
aiming to minimize the communication error so as to achieve
a good estimation of Gt(wt) (or its scaled version) for the
gradient update, where

Gt(wt) ,
1

M

M∑
m=1

Ct(u
m
t ).

From the learning perspective, based on {yk}Kk=1, it is
of paramount importance for the receiver to get a good
estimate of Gt(wt). Since nk(t) is Gaussian noise, the optimal
estimator is in the form of(

Ĝt(wt)
)
k

=

{
αl(k)yl(k), k ∈ I(t)

0 otherwise
(9)

where {αk}Kk=1 are gradient estimator coefficients for subcar-
riers. It follows that the communication error (i.e., the gradient
estimation error incurred by lossy communications) is given
by

εt = Ĝt(wt)−Gt(wt). (10)

We note that {αk}Kk=1 are intimately related to the learning
rates for the K coordinates, scaling the learning rate to be
{γαk}Kk=1. It is interesting to observe that the learning rates
in the proposed BLCD algorithm are essentially different
across the dimensions, due to the unreliable and dynamically
changing channel conditions across different subcarriers.



IV. IMPACT OF COMMUNICATION ERROR AND
COMPRESSION ON BLCD ALGORITHM

Recall that due to the common sparsification operator across
devices, the update in the SGD algorithm at communication
round t is given by

wt+1 = wt −
[
Ct(γgt(wt) + rt) + εt

]
.

Needless to say, the compression operator Ct plays a critical
role in sparse transmissions. In this study, we impose the
following standard assumption on the compression rate of the
operator.

Assumption 1. For a set of the random compression operators
{Ct}Tt=1 and any x ∈ Rd, it holds

E ‖x− Ct(x)‖2 ≤ (1− δ) ‖x‖2 (11)
for some δ ∈ (0, 1].

We impose the following standard assumptions on the
non-convex objective function f(·) and the corresponding
stochastic gradients gmt (wt) computed with the data samples
of device m in round t. (We assume that the data samples
{ξm,t} are i.i.d. across the devices and time.)

Assumption 2. (Smoothness) A function f : Rd → R is L-
smooth if for all x, y ∈ Rd, it holds

|f(y)− f(x)− 〈∇f(x), y − x〉| ≤ L

2
‖y − x‖2 . (12)

Assumption 3. For any x ∈ Rd and for any m = 1, . . . ,M ,
a stochastic gradient gmt (x),∀t, satisfies

E[gmt (x)] = ∇f(x), E ‖gmt (x)‖2 ≤ G2 (13)
where G > 0 is a constant.

It follows directly from [26] that E[‖rt‖22] ≤ 4(1−δ)
δ2 γ2G2.

Recall that w̃t+1 = w̃t − γgt(wt) − εt and that w̃t+1 can be
viewed as a noisy version of the compression-error correction
of ŵt+1 in (7), where the “noisy perturbation” is incurred by
the communication error. For convenience, let Et[εt] denote
the gradient bias incurred by the communication error and
Et[‖εt‖22] be the corresponding mean square error, where Et
is taken with respect to channel noise.

Let η = L−1+2γ
γ(2−ργ) with 0 < ρ < 2. Let f∗ denote the globally

minimum value of f . We have the following main result on
the iterates in the BLCD algorithm.

Theorem 1. Under Assumptions 1, 2 and 3, the iterates {wt}
in the BLCD algorithm satisfies that

1

T+1

T∑
t=0

‖∇f(wt)‖2−η‖Et[εt]︸ ︷︷ ︸
bias

‖2


2

≤ 1

T+1

T∑
t=0

 Lη

L−1+2γ
Et[‖εt‖22]︸ ︷︷ ︸

MSE

+
(
1+η2

)
‖Et[εt]︸ ︷︷ ︸

bias

‖22


+

2

T+1

f(w0)−f∗

γ(2−ργ)
+

(
L

ρ

2(1−δ)
δ2

+
1

2

)
2LγG2

2− ργ
. (15)

Proof. Due to the limited space, we outline only a few main
steps for the proof. Recall that w̃t = wt − rt. It can be

shown that w̃t+1 = w̃t − γgt(wt) − εt. As shown in (14),
using the properties of the iterates in the BLCD algorithm
and the smoothness of the objective function f , we can
establish an upper bound on Et[f(w̃t+1)] in terms of f(w̃t)
the corresponding gradient ∇f(wt), and the gradient bias
and MSE due to the communication error. Then, (15) can be
obtained after some further algebraic manipulation.

Remarks. Based on Theorem 1, we have a few observations
in order.

• We first examine the four terms on the right hand side
of (15): The first two terms capture the impact on the
gradient by the time average of the bias in the commu-
nication error εt and that of the corresponding the mean
square, denoted as MSE; the two items would go to zero
if the bias and the MSE diminish; the third term is a
scaled version of f(w0) − f∗ and would go to zero as
long as γ = O(T−β) with β < 1; and the fourth term is
proportional to γ and would go to zero when γ → 0.

• If the right hand side of (15) diminishes as T → ∞,
the iterates in the BLCD algorithm would “converge”
to a neighborhood around η‖Et[εt]‖2, which is a scaled
version of the bias in the communication error. For
convenience, let ε̄ = lim supt‖Et[εt]‖2, and define a
contraction region as follows:

Aγ = {wt : ‖∇f(wt)‖2 ≤ (η + ∆)ε̄} .
where ∆ > 0 is an arbitrarily small positive number.
It then follows that the iterates in the BLCD algorithm
would “converge” to a contraction region given by Aγ ,
in the sense that the iterates return to Aγ infinitely often.
Note that f is assumed to be any nonconvex smooth
function, and there can be many contraction regions, each
corresponding to a stationary point.

• When the communication error is unbiased, the gradients
would diminish to 0 and hence the BLCD algorithm
would converge to a stationary point. In the case the
bias in the communication error does exist, there exists
intrinsic tradeoff between the size of the contraction
region and η‖Et[εt]‖2. When the learning rate γ is small,
the right hand side of (15) would small, but η can be large,
and vice verse. It makes sense to choose a fixed learning
rate that would make η small. In this way, the gradients
in the BLCD algorithm would “concentrate” around a
(small) scaled version of the bias.

• Finally, the impact of gradient sparsification is captured
by δ. For instance, when (randomly) uniform selection is
used, δ = k

d . We will elaborate on this in Section VI.

Further, we have the following corollary.

Corollary 1. Under Assumptions 1, 2, and 3, we have that if
Et[εt] = 0 and γ = 1√

T+1
, the BLCD algorithm converges to

a stationary point and satisfies that
1

T+1

T∑
t=0

‖∇f(wt)‖22



Et[f(w̃t+1)]≤f(w̃t)+〈∇f(w̃t),Et[w̃t+1−w̃t]〉+
L

2
Et[‖w̃t+1 − w̃t‖2]

= f(w̃t)−〈∇f(w̃t), γEt[gt(wt)]+Et[εt]〉+
L

2
Et[‖γgt(wt)‖2]+

L

2
Et[‖εt‖2]+LEt[〈γgt(wt), εt〉]

= f(w̃t)−〈∇f(wt), γEt[gt(wt)]+Et[εt]〉−〈∇f(w̃t)−∇f(wt), γEt[gt(wt)]+Et[εt]〉+
L

2
Et[‖εt‖22]+LEt[〈γgt(wt), εt〉]+

L

2
Et[‖γgt(wt)‖2

≤ f(w̃t)−γ‖∇f(wt)‖22−〈∇f(wt),Et[εt]〉+
ρ

2
‖γ∇f(wt)+Et[εt]‖22+

L2

2ρ
Et[‖rt‖22]+

L

2
Et[‖εt‖22]+L〈∇f(wt),Et[εt]〉+

Lγ2

2
Et‖gt(wt)‖22

≤ f(w̃t)−γ‖∇f(wt)‖22+(L− 1)‖∇f(wt)‖‖Et[εt]‖+
ρ

2

(
γ2‖∇f(wt)‖22+‖Et[εt]‖22+2γ〈∇f(wt),Et[εt]〉

)
+
L2

2ρ
Et[‖rt‖22]+

L

2
Et[‖εt‖22]+

Lγ2

2
G2

≤ f(w̃t)− γ‖∇f(wt)‖22 + (L− 1 + 2γ)‖∇f(wt)‖‖Et[εt]‖+
γ2ρ

2
‖∇f(wt)‖22 +

L2

2ρ
Et[‖rt‖22] + ‖Et[εt]‖22 +

L

2
Et[‖εt‖22] +

Lγ2

2
G2

= f(w̃t)− γ
[
1−

ρ

2
γ
]
‖∇f(wt)‖22 + (L− 1 + 2γ)‖∇f(wt)‖‖Et[εt]‖+

L2

2ρ
Et[‖rt‖22] + ‖Et[εt]‖22 +

L

2
Et[‖εt‖22] +

Lγ2

2
G2 (14)

≤ 1

2− ρ√
T+1

{
2(f(w0)−f∗)√

T + 1
+

2LG2

√
T+1

(
L

ρ

2(1−δ)
δ2

+
1

2

)

+
L

T + 1

T∑
t=0

Et[‖εt‖22]︸ ︷︷ ︸
MSE

 (16)

V. COMMUNICATION ERROR MINIMIZATION VIA JOINT
OPTIMIZATION OF POWER ALLOCATION AND LEARNING

RATES

Theorem 1 reveals that the communication error has a
significant impact on the convergence behavior of the BLCD
algorithm. In this section, we turn our attention to minimizing
the communication error (in term of MSE and bias) via joint
optimization of power allocation and learning rates.

Without loss of generality, we focus on iteration t (with
abuse of notation, we omit t in the notation for simplicity).
Recall that the coordinate updates in the BLCD algorithm,
sent by different devices over the same subcarrier, are re-
ceived by the edge server as an aggregate sum, which is
used to estimate the gradient value in that specific dimen-
sion. We denote the power coefficients and estimators as
b , [b11, b12, . . . , b1M , b21, . . . , bKM ] and α , [~α1, . . . , ~αK ].
In each round, each sender device optimizes its power al-
location for transmitting the selected coordinates of their
updates over the K subcarriers, aiming to achieve the best
convergence rate. We assume that the perfect channel state
information is available at the corresponding transmitter, i.e.,
hm = [h1m, . . . , hKm]> is available at the sender m only.

Based on (10), the mean squared error of the communication
error in iteration t is given by

Et[‖εt‖22] = E
[ ∥∥∥Ĝt(wt)−Gt(wt)∥∥∥2

]
(17)

where the expectation is taken over the channel noise. For
convenience, we denote Et[‖εt‖22] as MSE1, and after some
algebra, it can be rewritten as the sum of the variance and the
square of the bias:

MSE1(α, b)=

K∑
k=1

[ M∑
m=1

(
αkbkmhkm−

1

M

)
xkm︸ ︷︷ ︸

bias in kth coordinate

]2

+

K∑
k=1

σ2α2
k︸ ︷︷ ︸

variance

(18)

Recall that {αk}Kk=1 are intimately related to the learning rates
for the K coordinates, making the learning rate effectively
{γαk}Kk=1.

A. Centralized Solutions to Minimizing MSE (Scheme 1)

In light of the above, we can cast the MSE minimization
problem as a learning-driven joint power allocation and learn-
ing rate problem, given by

P1: min
α,b

MSE1(α, b) (19)

s.t.
K∑
k=1

|bkmxkm|2 ≤ Em, ∀m (20)

bkm ≥ 0, αk ≥ 0 ∀k,m (21)
which minimizes the MSE for every round.

The above formulated problem is non-convex because the
objective function involves the product of variables. Neverthe-
less, it is biconvex, i.e., for one of the variables being fixed,
the problem is convex for the other one. In general, we can
solve the above bi-convex optimization problem in the same
spirit as in the EM algorithm, by taking the following two
steps, each optimizing over a single variable, iteratively:
P1-a: min

α
MSE1(α, b) s.t. αk ≥ 0, ∀k

P1-b: min
b

MSE11(α, b)

s.t.
K∑
k=1

|bkmxkm|2 ≤ Em ∀m, bkm ≥ 0 ∀k,m.

Since (P1-a) is unconstrained,for given {bkm}, the optimal
solution to (P1-a) is given by

α∗k=max

{(∑M
m=1 xkm

)(∑M
m=1 bkmhkmxkm

)
M
[
σ2 +

(∑M
m=1 bkmhkmxkm

)2] , 0

}
. (22)

Then, we can solve (P1-b) by optimizing b only. Solving the
sub-problems (P1-a) and (P1-b) iteratively leads to a local
minimum, however, not necessarily to the global solution.

Observe that the above solution requires the global knowl-
edge of xkm’s and hkm’s of all devices, which is difficult
to implement in practice. We will treat it as a benchmark
only. Next, we turn our attention to developing distributed sub-
optimal solutions.

B. Distributed Solutions towards Zero Bias and Variance
Reduction (Scheme 2)

As noted above, the centralized solution to (P1) requires
the global knowledge of xkm’s and hkm’s and hence is not
amenable to implementation. Further, minimizing the MSE
of the communication error does not necessarily amount



to minimizing the bias therein since there exists tradeoffs
between bias and variance. Thus motivated, we next focus on
devising distributed sub-optimal solutions which can drive the
bias in the communication error to (close to) zero, and then
reduce the corresponding variance as much as possible.

Specifically, observe from (18) that the minimization of
MSE cost does not necessarily ensure Ĝ to be an unbiased es-
timator, due to the intrinsic tradeoff between bias and variance.
To this end, we take a sub-optimal approach where the opti-
mization problem is decomposed into two subproblems. In the
subproblem at the transmitters, each device m utilizes its avail-
able power and local gradient/channel information to compute
a power allocation policy in terms of {b1m, b2m, . . . , bKm}.
In the subproblem at the receiver, the receiver finds the best
possible αk for all k = 1, . . . ,K. Another complication is that
due to the power constraints at individual devices, it is not
always feasible to achieve unbiased estimators of the gradient
signal across the coordinates. Nevertheless, for given power
constraints, one can achieved unbiased estimators of a scaled
down version of the coordinates of the gradient signal. In light
of this, we formulate the optimization problem at each device
(transmitter) m to ensure an unbiased estimator of a scaled
version ζm of the transmitted coordinates, as follows:

Device m: max
{bkm}k=1:K

ζm (23)

s.t.
K∑
k=1

b2kmx
2
km ≤ Em, bkm≥0, (24)

ζmxkm − bkmhkmxkm = 0, ∀k = 1, . . . ,K, (25)
where maximizing ζm amounts to maximizing the corre-
sponding SNR (and hence improving the gradient estimation
accuracy). The first constraint in the above is the power
constraint, and the second constraint is imposed to ensure
that there is no bias of the same scaled version of the
transmitted signals across the dimensions for user m. The
power allocation solution can be found using Karush-Kuhn-
Tucker (KKT) conditions as follows:

ζ∗m =

√√√√ Em∑K
k=1

x2
km

h2
km

, b∗km =
ζ∗m
hkm

, ∀k. (26)

Observe that using the obtained power allocation policy in
(66), all K transmitted coordinates for device m have the same
scaling factor ζm. Next, we will ensure zero bias by choosing
the right α for gradient estimation at the receiver, which can
be obtained by solving the following optimization problem
since all transmitted gradient signals are superimposed via the
over-the-air transmission:

Receiver side: min
{αk},

K∑
k=1

ν2
k(αk, {b∗km}) (27)

s.t. ek(αk, {b∗km}) = 0, αk ≥ 0,∀k = 1, . . . ,K, (28)
where ek and ν2

k denote the bias and variance components,
given as follows:

ek(αk, {b∗km}) = αk

(
M∑
m=1

ζ∗mxkm

)
− 1

M

M∑
m=1

xkm,

ν2
k(αk, {b∗km}) = α2

kσ
2, (29)

for all k = 1, . . . ,K. For given {ζ∗m}, it is easy to see that

α∗k =
1
M

∑M
m=1 xkm∑M

m=1 ζ
∗
mxkm

' 1∑M
m=1 ζ

∗
m

, ∀k. (30)

We note that in the above, from an implementation point of
view, since {xkm} is not available at the receiver, it is sensible
to set α†k '

1∑M
m=1 ζ

∗
m

. Further, {ζ∗m} is not readily available
at the receiver either. Nevertheless, since there is only one
parameter ζ∗m from each sender m, the sum

∑M
m=1 ζ

∗
m can be

sent over a control channel to the receiver to compute α†k. It
is worth noting that in general the bias exists even if Em is
the same for all senders.

Next, we take a closer look at the case when the number of
subchannels K is large (which is often the case in practice).
Suppose that {xkm} are i.i.d. across subchannels and users,
and so are {hkm}. We can then simplify ζ∗m further. For ease of
exposition, we denote E[x2

km] = ϕ2 + x̄2 and E
[

1
h2
km

]
= $2.

When K is large, for every user m we have that:

ζ∗m =

√
Em√∑K
k=1

x2
km

h2
km

=⇒
when K
is large

ζ∗m ≈
√
Em√

K(ϕ2 + x̄2)$2
(31)

As a result, the bias and variance for each dimension k could
be written as,

ek(α∗k, {b∗km}) =

M∑
m=1

[ √
Em∑M

m=1

√
Em
− 1

M

]
xkm,∀k. (32)

ν2
k =

K$2(ϕ2 + x̄2)(∑M
m=1

√
Em

)2σ
2,∀k. (33)

Observe that when Em is the same across the senders, the bias
term Et[εt] = 0 in the above setting according to (32).

C. A User-centric Approach Using Single-User Solution
(Scheme 3)

In this section, we consider a suboptimal user-centric ap-
proach, which provides insight on the power allocation across
the subcarriers from a single device perspective. We formulate
the single device (say user m) problem as

P2: min
{bkm},{αk}

K∑
k=1

[(
αkbkmhkm − 1

)
xkm

]2

+ σ2
K∑
k=1

α2
k

s.t.
K∑
k=1

|bkmxkm|2 ≤ Em; bk ≥ 0, αk ≥ 0,∀k.

Theorem 2. The optimal solution {b∗km, α∗k} to (P2) is given
by

(b∗km)2 =

[√
σ2

λx2
kmh

2
km

− σ2

h2
kmx

2
km

]+

,∀k, (34)

α∗k =
b∗kmhkmx

2
k

σ2 + (b∗km)2h2
kmx

2
km

, ∀k, (35)

where λm is a key parameter determining the waterfilling
level:

K∑
k=1

[√
1

λm

√
x2
kmσ

2

h2
km

− σ2

h2
km

]+

= Em. (36)



The proof of Theorem 2 is omitted due to space limitation.
Observe that Theorem 2 reveals that the larger the gradient
value (and the smaller channel gain) in one subcarrier, the
higher power the it should be allocated to in general, and
that {xkm/hkm)} can be used to compute the water level for
applying the water filling policy.

Based on the above result, in the multi-user setting, each
device can adopt the above single-user power allocation so-
lution as given in Theorem 2. This solution can be applied
individually without requiring any coordination between de-
vices.

Next, we take a closer look at the case when the number
of subchannels K is large. Let Ēm denote the average power
constraint per subcarrier. When K is large, after some algebra,
the optimization problem P2 can be further approximated as
follows:

P3: min
bkm

E
[

x2
kmσ

2

b2kmh
2
kmx

2
km + σ2

]
s.t. E

[
b2kmx

2
km

]
≤ Ēm, bkm ≥ 0, (37)

where the expectation is taken with respect to {hkm} and
{xkm}.

The solution for k = 1, . . . ,K is obtained as follows:

b∗km=

√[
σ|xkm|−1

hkm
√
λm
− σ2

x2
kmh

2
km

]+

(38)

λm<
h2
kmx

2
km

σ2
k

⇒b∗km>0 (39)

We can compute the bias and the variance accordingly.

VI. COORDINATE SELECTION FOR BANDLIMITED
COORDINATE DESCENT ALGORITHMS

The selection of which coordinates to operate on is crucial
to the performance of sparsified SGD algorithms. It is not hard
to see that selecting the top-k (in absolute value) coordinates
of the sum of the gradients provides the best performance.
However, in practice it may not always be feasible to obtain
top-k of the sum of the gradients, and in fact there are different
solutions for selecting k dimensions with large absolute values;
see e.g., [22], [27]. Note that each device individually transmit-
ting top-k coordinates of their local gradients is not applicable
to the scenario of over-the-air communications considered
here. Sequential device-to-device transmissions provides an
alternative approach [28], but these techniques are likely to
require more bandwidth with wireless connection.

Another approach that is considered is the use of compres-
sion and/or sketching for the gradients to be transmitted. For
instance, in [22], a system that updates SGD via decompress-
ing the compressed gradients transmitted through over-the-air
communication is examined. To the best of our knowledge,
such techniques do not come with rigorous convergence guar-
antees. A similar approach is taken in [27], where the sketched
gradients are transmitted through an error-free medium and
these are then used to obtain top-k coordinates; the devices
next simply transmit the selected coordinates. Although such
an approach can be taken with over-the-air computing since
only the summation of the sketched gradients is necessary; this

requires the transmission of O(k log d) dimensions. To provide
guarantees with such an approach O(k log d + k) up-link
transmissions are needed. Alternatively, uniformly selected
O(k log d + k) coordinates can be transmitted with similar
bandwidth and energy requirements. For the practical learning
models with non-sparse updates, uniform coordinate selection
tend to perform better. Moreover, the common K dimen-
sions can be selected uniformly via synchronized pseudo-
random number generators without any information transfer.
To summarize, uniform selection of the coordinates is more
attractive based on the energy, bandwidth and implementation
considerations compared to the methods aiming to recover top-
k coordinates; indeed, this is the approach we adopt.

VII. EXPERIMENTAL RESULTS

In this section, we evaluate the accuracy and convergence
performance of the BLCD algorithm, when using one of the
following three schemes for power allocation and learning rate
selection (aiming to minimize the impact of communication
error): 1) the bi-convex program based solution (Scheme 1),
2) the distributed solution towards zero bias in Section V.
(Scheme 2); 3) the single-user solution (Scheme 3). We
use the communication error free scheme as the baseline to
evaluate the performance degradation. We also consider the
naive scheme (Scheme 4) using equal power allocation for all

dimensions, i.e., bkm =
√
E/
∑K
k=1 x

2
km.

In our first experiment, we consider a simple single layer
neural network trained on the MNIST dataset. The network
consists of two 2-D convolutional layers with filter size 5× 5
followed by a single fully connected layer and it has 7840
parameters. K = 64 dimensions are uniformly selected as
the support of the sparse gradient transmissions. For conve-
nience, we define Eavg as the average sum of the energy
(of all devices) per dimension normalized by the channel
noise variance, i.e., Eavg = EM E[h2

km]/Kσ2. Without loss
of generality, we take the variance of the channel noise as
σ2 = 1 and {hkm} are independent and identically distributed
Rayleigh random variables with mean 1. The changes on
Eavg simply amount to different SNR values. In Fig. 3,
we take K = 64, M = 8, batch size 4 to calculate each
gradient, and the learning rate γ = 0.01. In the second
experiment, we expand the model to a more sophisticated 5-
layer neural network and an 18-layer ResNet [29] with 61706
and 11175370 parameters, respectively. The 5-layer network
consists of two 2-D convolutional layers with filter size 5× 5
followed by three fully connected layers. In all experiments,
we have used a learning rate of 0.01. the local dataset of
each worker is randomly selected from the entire MNIST
dataset. We use 10 workers with varying batch sizes and we
utilize K = 1024 sub-channels for sparse gradient signal
transmission.

It can be seen from Fig. 3 that in the presence of the
communication error, the centralized solution (Scheme 1)
based on bi-convex programming converges quickly and per-
forms the best, and it can achieve accuracy close to the ideal
error-free scenario. Further, the distributed solution (Scheme



Fig. 3. Testing accuracy over training iterations for αk = 1/8, Eavg = 0.1
and a batch size of 4. Training model consists of a single layer neural network
with 7840 differentiable parameters.

Fig. 4. Testing accuracy over training iterations for 10 workers and a batch
size of 256. Training model consists of a 5-layer deep neural network with
61706 differentiable parameters.

2) can eventually approach the performance of Scheme 1,
but the single-user solution (Scheme 3) performs poorly, so
does the naive scheme using equal power allocation (Scheme
4). Clearly, there exists significant gap between its resulting
accuracy and that in the error-free case, and this is because
the bias in Scheme 3 is more significantly.

Next, Figures 4, 5 and 6 depict the results in the second
experiment using much larger-scale deep neural networks. It
can be observed from Figs. 4, 5 and 6 that the SNR can
have significant impact on the final accuracy. As expected, the
convergence on the ResNet network is slower in comparison
to other DNNs due to the huge number of parameters and
small batch size. Nevertheless, it is clear that the learning
accuracy improves significantly at high SNR. (The solution
of the distributed algorithm for Eavg = 10 is omitted in Fig.
6, since it is indistinguishably close to error-free solution.)
It is interesting to observe that when the SNR increases, the
distributed solution (Scheme 2) can achieve accuracy close to
the ideal error-free case, but the single-user solution (Scheme
3) would not. It is worth noting that due to the computational
complexity of bi-convex programming in this large-scale case,
Scheme 4 could be solved effectively (we did not present it
here). Further, the batch size at each worker can impact the
convergence rate, but does not impact the final accuracy.

VIII. CONCLUSIONS

In this paper, we consider a many-to-one wireless archi-
tecture for distributed learning at the network edge, where

Fig. 5. Testing accuracy over training iterations for 10 workers and a batch
size of 4. Training model consists of a 5-layer deep neural network with
61706 differentiable parameters.

Fig. 6. Testing accuracy over training iterations for 10 devices and a batch
size of 4. Training model consists of an 18-layer ResNet network with more
than 11 million differentiable parameters.

multiple edge devices collaboratively train a machine learning
model, using local data, through a wireless channel. Observing
the unreliable nature of wireless connectivity, we design
an integrated communication and learning scheme, where
the local updates at edge devices are carefully crafted and
compressed to match the wireless communication resources
available. Specifically, we propose SGD-based bandlimited
coordinate descent algorithms employing over-the-air com-
puting, in which a subset of k-coordinates of the gradient
updates across edge devices are selected by the receiver in
each iteration and then transmitted simultaneously over k sub-
carriers. We analyze the convergence of the algorithms pro-
posed, and characterize the effect of the communication error.
Further, we study joint optimization of power allocation and
learning rates therein to maximize the convergence rate. Our
findings reveal that optimal power allocation across different
sub-carriers should take into account both the gradient values
and channel conditions. We then develop sub-optimal solutions
amenable to implementation and verify our findings through
numerical experiments.

ACKNOWLEDGEMENTS

The authors thank Gautam Dasarathy for stimulating discus-
sion in the early stage of this work. This work is supported in
part by NSF Grants CNS-2003081, CNS-CNS-2003111, CPS-
1739344 and ONR YIP N00014-19-1-2217.



REFERENCES

[1] G. Zhu, D. Liu, Y. Du, C. You, J. Zhang, and K. Huang, “Towards
an intelligent edge: Wireless communication meets machine learning,”
arXiv preprint arXiv:1809.00343, 2018.

[2] M. Goldenbaum and S. Stanczak, “Robust analog function computation
via wireless multiple-access channels,” IEEE Transactions on Commu-
nications, vol. 61, no. 9, pp. 3863–3877, 2013.

[3] O. Abari, H. Rahul, and D. Katabi, “Over-the-air function computation
in sensor networks,” arXiv preprint arXiv:1612.02307, 2016.

[4] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “Qsgd:
Communication-efficient sgd via gradient quantization and encoding,”
in Advances in Neural Information Processing Systems, 2017, pp. 1709–
1720.

[5] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li, “Terngrad:
Ternary gradients to reduce communication in distributed deep learning,”
in Advances in Neural Information Processing Systems, 2017, pp. 1509–
1519.

[6] J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandkumar,
“Signsgd: Compressed optimisation for non-convex problems,” in In-
ternational Conference on Machine Learning, 2018, pp. 559–568.

[7] J. Wu, W. Huang, J. Huang, and T. Zhang, “Error compensated quantized
sgd and its applications to large-scale distributed optimization,” in
International Conference on Machine Learning, 2018, pp. 5321–5329.

[8] A. F. Aji and K. Heafield, “Sparse communication for distributed
gradient descent,” in Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, 2017, pp. 440–445.

[9] S. U. Stich, J.-B. Cordonnier, and M. Jaggi, “Sparsified sgd with
memory,” in Advances in Neural Information Processing Systems, 2018,
pp. 4447–4458.

[10] D. Alistarh, T. Hoefler, M. Johansson, N. Konstantinov, S. Khirirat,
and C. Renggli, “The convergence of sparsified gradient methods,” in
Advances in Neural Information Processing Systems, 2018, pp. 5973–
5983.
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APPENDIX

A. Proof of Theorem 1

We here restate equations (6) and (7) as follows:
wt+1 =wt − [Ct(γgt(wt) + rt) + εt] (40)
ŵt+1 =wt − Ct(γgt(wt) + rt) (41)

It is clear that wt+1 = ŵt+1 − εt. For convenience, we define w̃t = wt − rt = ŵt − rt − εt−1. It can be shown that
w̃t+1 = w̃t − γgt(wt)− εt.

Et[f(w̃t+1)] ≤f(w̃t)+ < ∇f(w̃t),Et[w̃t+1 − w̃t] > +
L

2
Et[||w̃t+1 − w̃t||2] (42)

=f(w̃t)− < ∇f(w̃t), γEt[gt(wt)] + Et[εt] > +
L

2
Et[||γgt(wt)||2]

+
L

2
Et[||εt||2] + LEt[< γgt(wt), εt >] (43)

=f(w̃t)− < ∇f(wt), γEt[gt(wt)] + Et[εt] > − < ∇f(w̃t)−∇f(wt), γEt[gt(wt)] + Et[εt] >

+
L

2
Et[||εt||22] + LEt[< γgt(wt), εt >] +

L

2
Et[||γgt(wt)||2 (44)

≤f(w̃t)− γ‖∇f(wt)‖22 − 〈∇f(wt),Et[εt]〉+
ρ

2
‖γ∇f(wt) + Et[εt]‖22 +

L2

2ρ
Et[‖rt‖22]

+
L

2
Et[‖εt‖22] + L〈∇f(wt),Et[εt]〉+

Lγ2

2
Et‖gt(wt)‖22 (45)

≤f(w̃t)− γ‖∇f(wt)‖22 + (L− 1)‖∇f(wt)‖‖Et[εt]‖+
ρ

2

(
γ2‖∇f(wt)‖22 + ‖Et[εt]‖22 + 2γ〈∇f(wt),Et[εt]〉

)
+
L2

2ρ
Et[‖rt‖22] +

L

2
Et[‖εt‖22] +

Lγ2

2
G2 (46)

≤f(w̃t)− γ‖∇f(wt)‖22 + (L− 1 + 2γ)‖∇f(wt)‖‖Et[εt]‖+
γ2ρ

2
‖∇f(wt)‖22

+
L2

2ρ
Et[‖rt‖22] + ‖Et[εt]‖22 +

L

2
Et[‖εt‖22] +

Lγ2

2
G2 (47)

=f(w̃t)− γ
[
1− ρ

2
γ
]
‖∇f(wt)‖22 + (L− 1 + 2γ)‖∇f(wt)‖‖Et[εt]‖

+
L2

2ρ
Et[‖rt‖22] + ‖Et[εt]‖22 +

L

2
Et[‖εt‖22] +

Lγ2

2
G2 (48)

Based on [26], we have that

Et[‖rt‖22] ≤ 4(1− δ)
δ2

γ2G2. (49)
It follows that

1

T + 1

T∑
t=0

{
γ(1− ρ

2
γ)‖∇f(wt)‖22 − (L− 1 + 2γ)‖Et[εt]‖‖∇f(wt)‖

}
≤ 1

T + 1
[f(w0)− f∗] +

L2

ρ

2(1− δ)
δ2

γ2G2 +
Lγ2

2
G2 +

1

T + 1

T∑
t=0

[
‖Et[εt]‖22 +

L

2
Et[‖εt‖22]

]
(50)

Through some further algebraic manipulation, we have that
1

T + 1

T∑
t=0

(
‖∇f(wt)‖2 −

L− 1 + 2γ

γ(2− ργ)
‖Et[εt]‖2

)2

≤ 2

T + 1

f(w0)− f∗

γ(2− ργ)
+

(
L

ρ

2(1− δ)
δ2

+
1

2

)
2LγG2

2− ργ

+
1

T + 1

T∑
t=0

[
L

γ(2− ργ)
Et[‖εt‖22] +

(
1 +

(L− 1 + 2γ)2

γ2(2− ργ)2

)
‖Et[εt]‖22

]
(51)

For convenience, let η = L−1+2γ
γ(2−ργ) , and define a contraction region as follows:

Cβ = {‖∇f(wt)‖2 ≥ (η + ∆)‖Et[εt]‖2} .
It follows from (51) that iterates in the BLCD algorithm returns to the contraction region infinitely often with probability one.
Further, when setting γ = 1√

T+1
, we have that



1

T + 1

T∑
t=0

(
‖∇f(wt)‖2 −

L− 1 + 2γ

γ(2− ργ)
‖Et[εt]‖2

)2

≤ f(w0)− f∗

(1− 1
2ργ)

+
1√
T + 1

(
L

ρ

2(1− δ)
δ2

+
1

2

)
2LG2

2− ργ

+
L

(2− ργ)

1

T + 1

T∑
t=0

Et[‖εt‖22] +

(
1 +

(L− 1 + 2γ)2

γ2(2− ργ)2

)
1

T + 1

T∑
t=0

‖Et[εt]‖22 (52)

B. Solution of Problem (P1-a)

Since the problem (P1-a) is convex, the Lagrangian function is given as:

L1a(α,λ) = MSE1(b,α) +

K∑
k=1

λkαk. (53)

Then, the Karush-Kuhn-Tucker (KKT) conditions are given as follows:
∂L1a(α,λ)

∂αk
=2

( M∑
m=1

bkmhkmxkm

)( M∑
m=1

(
αkbkmhkm −

1

M

)
xkm

)
+ 2σ2αk + λk = 0, (54)

λk ≥ 0, λkα
∗
k = 0, α∗k ≥ 0. (55)

It follows that

α∗k = max

{(∑M
m=1 xkm

)(∑M
m=1 bkmhkmxkm

)
M
[
σ2 +

(∑M
m=1 bkmhkmxkm

)2] , 0

}
, max

{
x̄kβk
σ2 + β2

k

}
, (56)

where the auxiliary variables are defined as βk =
∑M
m=1 bkmhkmxkm and x̄k =

∑M
m=1 xkm/M .

C. Proof of Theorem 2

Proof. Observing that the problem (P2) is defined only in terms of b2k, we define the auxiliary variables b̃k = b2k, h̃k = h2
k/σ

2

and x̃k = 1/x2
k, and re-formulate (P2) as:

P2-1: min
b̃

K∑
k=1

(b̃kh̃k + x̃k)−1

s.t.
K∑
k=1

b̃k
x̃k
≤ E

b̃k ≥ 0, ∀k,
which is convex and can be solved in closed form. Then, we have the Lagrangian as

L22(b̃,λ,µ) =

K∑
k=1

(b̃kh̃k + x̃k)−1 + λ(
b̃k
x̃k
− E)−

K∑
k=1

µk b̃k, (57)

which leads to the following KKT conditions:
∂L12(b̃,λ,µ)

∂b̃k
= −h̃k(b̃kh̃k + x̃k)−2 +

λ

x̃k
− µk = 0

K∑
k=1

b̃∗k
x̃k
≤ E, b̃∗k ≥ 0

λ ≥ 0, µk ≥ 0

λ

(
E −

K∑
k=1

b̃∗k
x̃k

)
= 0, µk b̃

∗
k = 0.

For µk=0, and λ > 0, we have that

b̃∗k = max

{√ h̃kx̃k
λ − x̃k
h̃k

, 0

}
=

[√ h̃kx̃k
λ − x̃k
h̃k

]+

(58)

with E =
∑K
k=1

b̃∗k
x̃k

. By combining (58) and E =
∑K
k=1

b̃∗k
x̃k

, we obtain the following result:

E =

K∑
k=1

[√
h̃kx̃kλ

′ − x̃k
h̃kx̃k

]+

(59)

for λ′ =
√

1/λ. (59) can be solved by using the water-filling algorithm, where the solution can be found by increasing λ′

until the equality is satisfied. The optimal λ′ can be plugged int b̃∗k to yield b∗k =
√
b̃∗k as a solution to (P2).



D. Distributed Solutions towards Zero Bias and Variance Reduction (Scheme 2)

The over-the-air gradient estimation requires a more comprehensive estimator design. To this end, a generalized optimization
problem is defined for computing the optimal estimator. We define the MSE cost for the communication error, εt, in terms of
the received signal y = [y1, y2, . . . , yK ] as

E[(Ĝ−G)2] = E[(α� y −G)2] =
1

K

K∑
k=1

[
αk

(
M∑
m=1

bkmhkmxkm + nk

)
−Gk

]2

(60)

=
1

K

K∑
k=1

(
E

[
αk

(
M∑
m=1

bkmhkmxkm + nk

)]
− E

[
1

M

M∑
m=1

xkm

])
︸ ︷︷ ︸

ek

2

+ E

(αk( M∑
m=1

bkmhkmxkm + nk

)
− E

[
αk

(
M∑
m=1

bkmhkmxkm + nk

)])2


︸ ︷︷ ︸
ν2
k

, (61)

where the estimator is Ĝ = αk

(∑M
m=1 bkmhkmxkm + nk

)
for k = 1, 2, . . . ,K. In (61), αk, bkm, hkm and nk respectively

denote the correction factor for recovering the kth dimension of the true gradient, the power allocation for the kth dimension of
the local gradient xkm in the mth transmitter, the channel fading coefficient of the kth sub-channel between the mth transmitter
and the receiver, and the thermal additive noise for the kth sub-channel. Further, ν2

k and ek denote the estimator variance and
bias, respectively. As apparent in (61), the minimization of the MSE cost does not ensure Ĝk to be an unbiased estimator of
Gk. To resolve this issue, we formulate the unbiased optimization problem as

argmin
{αk},{bkm}

K∑
k=1

ν2
k(αk, {bkm}) (62)

subject to ek(αk, {bkm}) = 0,

K∑
k=1

b2kmx
2
km ≤ Em, bkm ≥ 0, αk ≥ 0, ∀k = 1, . . . ,K; ∀m = 1, . . . ,M, (63)

where Em denotes the power budget of the mth transmitter. We note that Em, {x1m, x2m, . . . , xKm} and {b1m, b2m, . . . , bKm}
are only available to the mth transmitter and αk,∀k, are only available to the receiver. The optimization problem defined in
(60)-(61) can then be decomposed into two stages. In the first stage, each transmitter m utilizes all of its available power and
the local gradient information to compute the optimal power allocation {b1m, b2m, . . . , bKm}. In the second stage, the receiver
solves a consecutive optimization problem for finding the optimal αk for all k = 1, . . . ,K. The optimization problem at each
transmitter is formulated as

argmax
{bkm}k=1:K

ζm (64)

subject to E
[
(ζmxkm − bkmhkmxkm)

2
]

= 0,

K∑
k=1

b2kmx
2
km ≤ Em, bkm ≥ 0, ∀k = 1, . . . ,K. (65)

The first constraint in (65) ensures that there is no additive bias in the transmitted signal (i.e., the bias can be removed by
a multiplicative factor), while the second constraint is the power constraint. The first constraint can be restated in a simpler
form as ζm = bkmhkm, and then the solution can simply be obtained via the KKT conditions as

Lagrangian: L({bkm}, {λk}, ϑ, {βk}) = ζm −
K∑
k=1

λk(bkmhkm − ζm)− ϑ

(
K∑
k=1

b2kmx
2
km − Em

)
+

K∑
k=1

βkbkm

Stationarity:
∂L
∂bkm

= 0− λkhkm − 2ϑx2
kmbkm + βk = 0→ bkm =

βk − λkhkm
2ϑx2

km

Primal Feasibility: bkmhkm = ζm,

K∑
k=1

b2kmx
2
km ≤ Em, bkm ≥ 0, ∀k = 1 . . . ,K,

Dual Feasibility: ϑ ≥ 0, βk ≥ 0, ∀k = 1, . . . ,K,

Comp. Slackness: ϑ

(
K∑
k=1

b2kmx
2
km − Em

)
= 0,

K∑
k=1

βkbkm = 0.



Then, the corresponding solution is given by

ζ∗m =

√√√√ Em∑K
k=1

x2
km

h2
km

, b∗km =
ζm
hkm

, ∀k = 1, . . . ,K. (66)

(66) illustrates that the mth transmitter utilizes all of its power budget to amplify its transmitted local gradient signal. Then,
the corresponding received signal is equivalent to the ζ∗m times of the local gradient signal, inducing a multiplicative bias. Yet,
this bias can be removed by multiplying the received signal with α in the receiver. However, the received signal at the receiver
is a superposition of all transmitted signals because of the over-the-air transmission. Therefore, a single vector of optimal α
must be computed for removing the bias and minimizing the estimator variance. To this end, in the second stage, the receiver
solves the following optimization problem

argmin
{αk},

K∑
k=1

ν2
k(αk, {b∗km}) (67)

subject to ek(αk, {b∗km}) = 0, αk ≥ 0, ∀k = 1, . . . ,K. (68)
Next, we derive ek(αk, {b∗km}) and ν2

k(αk, {b∗km}). For ease of exposition, the cumbersome steps are omitted here:

ek(αk, {b∗km}) = E

[
αkyk −

1

M

M∑
m=1

xkm

]
= E

[
αk

(
M∑
m=1

hkmb
∗
kmxkm + nk

)
− 1

M

M∑
m=1

xkm

]

= αk

(
M∑
m=1

hkmb
∗
kmxkm

)
− 1

M

M∑
m=1

xkm = αk

(
M∑
m=1

ζ∗mxkm

)
− 1

M

M∑
m=1

xkm

ν2
k(αk, {b∗km}) = E

(αk( M∑
m=1

hkmb
∗
kmxkm + nk

)
− E

[
αk

(
M∑
m=1

hkmb
∗
kmxkm + nk

)])2
 (69)

= E

(αk( M∑
m=1

hkmb
∗
kmxkm − hkmb∗kmxkm + nk

))2
 = α2

kσ
2, (70)

where the expectation is taken with respect to nk for the realizations of all xkm and σ2 = E[n2
k]. By solving the KKT

conditions, we obtain the following solution

α∗k =
1
M

∑M
m=1 xkm∑M

m=1 hkmb
∗
kmxkm

=
1
M

∑M
m=1 xkm∑M

m=1 ζ
∗
mxkm

. (71)

From the implementation point of view, it is sensible to set α†k '
1∑M

m=1 ζ
∗
m

since {xkm} is not available at the receiver.

We herein also notice that ζ∗m, for all m = 1, . . . ,M , are not available at the receiver as well. Luckily, α†k is a function of∑M
m=1 ζ

∗
m, and hence a subchannel could be allocated for the over-the-air transmission of

∑M
m=1 ζ

∗
m. Subsequently, it follows

that the bias is given by

ek(α∗k, {b∗km}) = E

[
1∑M

m=1 ζ
∗
m

yk −
1

M

M∑
m=1

xkm

]
= E

[
1∑M

m=1 ζ
∗
m

(
M∑
m=1

hkmb
∗
kmxkm + nk

)
− 1

M

M∑
m=1

xkm

]

= E

[
1∑M

m=1 ζ
∗
m

(
M∑
m=1

ζ∗mxkm + nk

)
− 1

M

M∑
m=1

xkm

]
= E

[∑M
m=1 ζ

∗
mxkm + nk∑M
m=1 ζ

∗
m

− 1

M

M∑
m=1

xkm

]
. (72)

Assuming that the distributions of {xkm}, for all k = 1, . . . ,K;m = 1, . . . ,M , are identical across the subchannels and users,
and so are {hkm}, ζ∗m can be simplified. For ease of exposition, we denote E[x2

km] = ϕ2 + x̄2 and E
[

1
h2
km

]
= $2. When the

number of subchannels, K, is large, we have that

ζ∗m =

√
Em√∑K
k=1

x2
km

h2
km

=⇒
when K is large

ζ∗m =

√
Em√

KE[x2
km]E

[
1

h2
km

] =

√
Em√

K(ϕ2 + x̄2)$2
(73)

ek(α∗k, {b∗km}) = E

[∑M
m=1 ζ

∗
mxkm + nk∑M
m=1 ζ

∗
m

− 1

M

M∑
m=1

xkm

]
=

M∑
m=1

[ √
Em∑M

m=1

√
Em
− 1

M

]
xkm. (74)

Then, the norm ‖Et[εt]‖22 in Theorem 1 can be expressed in terms of ek,∀k, as ‖Et[εt]‖22 =
∑K
k=1 Et[εt]2k =

∑K
k=1 e

2
k.

Similarly, the variance ν2
k can also be computed as

ν2
k (α∗k, {b∗km}) = α∗k

2σ2 =

 1∑M
m=1

√
Em

K$(ϕ2+x̄2)

2

σ2 =
K$2(ϕ2 + x̄2)(∑M

m=1

√
Em

)2σ
2. (75)



Finally, the MSE cost in Theorem 1 can be written as Et[‖εt‖22] =
∑K
k=1(ν2

k + e2
k).

E. Alternative Formulations and Baselines

A Receiver Centric Approach. In what follows, we take a receiver-centric approach by selecting a fixed estimator, αk =
1
Mp ,∀k, at the receiver. Given the fixed estimator, the MSE objective function is set as

MSE(1/(Mp), b) =

K∑
k=1

M∑
m=1

(bkmhkm
Mp

− 1

M

)2
x2
km

+

K∑
k=1

M∑
m=1

M∑
m′=1
m′ 6=m

(bkmhkm
Mp

− 1

M

)
×
(bkm′hkm′

Mp
− 1

M

)
xkmxkm′ + σ2 K

M2p2
.

We note that the first term can be decomposed for different devices and be solved in a distributed manner. The second term
is coupled across different users, and the third term is only expressed in terms of the variable p. If there were no power
constraints, the solution would be bkmhkm = p for a very large p. With this intuition, it is sensible to assign most (if not all)
of the multipliers ( bkmhkmMp − 1

M ) zero. That is to say, p should be selected so that it fits most users to provide enough power
for the transmission of all the dimensions, while every user individually solves the power allocation problem using the first
term for a given value of p, i.e.,

P2-1: min
{bkm}

K∑
k=1

(bkmhkm
Mp

− 1

M

)2
x2
km

s.t.
K∑
k=1

b2kmx
2
km ≤ E.

The optimal solution {b∗km} to the problem (P2-1) can be obtained by finding λ∗ ≥ 0 satisfying the following two inequalities:

K∑
k=1

(b∗km)2x2
km ≤ E, b∗km =

x2
kmp

hkm(x2
km −M2p2λ∗m)

. (76)

When λ∗ = 0, then the solution is b∗km = p/hkm, the objective function is minimized to 0 and the power constraint is satisfied
with strict inequality. On contrary, when λ∗ > 0, then the power constraint is satisfied with equality and the optimal solution
b∗km deviates from p/hkm. Then, the optimal solution {b∗km} to the problem (P2-1) can be obtained by finding λ∗ > 0 satisfying
the following two equalities:

K∑
k=1

(b∗km)2x2
km = E, b∗km =

x2
kmp

hkm(x2
km −M2p2λ∗m)

. (77)

An equal power allocation approach. For comparison, we also consider the equal power allocation scheme, in which
equal power is allocated to each dimension, i.e., we set bkm = bm. Enforcing the power constraint of the devices, e.g.,∑K
k=1 b

2
kmx

2
km = E, leads to the equal power solution that can be written as b∗m =

√
E/
∑K
k=1 x

2
km. Therefore, each device

applies the power b∗m in each dimension, taking the advantage of the distribution of the data which is independent and identical.
An Alternative Formulation to P3.
When K is large, the channel coefficients {hkm} and the local gradients {xkm} are independent and identically distributed

(i.i.d.) across all users and subchannels. Hence, the optimization problem P3 can be further simplified via the law of large
numbers as

P4: min
b̃

E
[

1

b̃kmh̃km + x̃km

]
s.t. E[b̃km/x̃km] ≤ Ēm,

b̃km ≥ 0. (78)
We here notice that the general law of large numbers only applies if all b̃km are identically distributed. By further noting that
b̃km depends on x̃km and h̃km, we conclude that the objective function for any k is identically distributed in (78) . Then, (78)
simplifies as

P4-1: min
b̃km

E
[

1

b̃kmh̃km + x̃km

]
s.t. E

[
b̃km
x̃km

]
≤ Ēm,



b̃km ≥ 0. (79)
Subsequently, the KKT conditions are written as

Lagrangian: L = E
[

1

b̃kmh̃km + x̃km

]
+ λm

(
E

[
b̃km
x̃km

]
− Ēm

)
− βb̃km (80)

Stationarity:
∂L
∂b̃km

= E

[
λm
x̃km

− h̃km

(b̃kmh̃km + x̃km)2

]
= 0⇐ λ∗m

x̃km
=

h̃km

(b̃kmh̃km + x̃km)2
(81)

Primal Feasibility: E

[
b̃km
x̃km

]
≤ Ēm, b̃km ≥ 0, (82)

Dual Feasibility: λm ≥ 0, β ≥ 0, (83)

Comp. Slackness: λm

(
E

[
b̃km
x̃km

]
− Ēm

)
= 0, − βb̃km = 0. (84)

Then, the solution is computed as follows

b̃km =

[√
x̃km

λ∗mh̃km
− x̃km

h̃km

]+

⇒ bkm =

√√√√[ σ

hkm|xkm|
√
λ∗m
− σ2

x2
kmh

2
km

]+

(85)

λ∗m <
h̃km
x̃km

⇒ b̃km > 0 and λ∗m <
h2
kmx

2
km

σ2
⇒ bkm > 0 (86)

E

[
b̃km
x̃km

]
=

∫ ∞
0

∫ ∞
0

b̃km
x̃km

p(h̃km)p(x̃km)dh̃kmdx̃km (87)

=

∫ ∞
0

∫ λmx̃km

0

(√
1

λ∗mh̃kmx̃km
− 1

h̃km

)
p(h̃km)p(x̃km)dh̃kmdx̃km = Ēm (88)

E
[
b2kmx

2
km

]
=

∫ ∞
−∞

∫ ∞
0

[
σ

hkm|xkm|
√
λ∗m
− σ2

x2
kmh

2
km

]+

x2
kmp(hkm)p(xkm)dhkmdxkm (89)

=

∫ ∞
−∞

∫ ∞√
σ2λ∗m
x2
km

(
|xkm|σ
hkm

√
λ∗m
− σ2

h2
km

)
p(hkm)p(xkm)dhkmdxkm = Ēm. (90)

By using the results above, the bias term, ek, is derived as

ek(α∗k, {bkm}) =E [α∗kyk]− 1

M

M∑
m=1

xkm = E

[
M∑
m=1

(
α∗kbkmhkm −

1

M

)
xkm + α∗knk

]
(91)

=E

 M∑
m=1

 1

M

√√√√[ σ

|xkm|hkm
√
λ∗m
− σ2

x2
kmh

2
km

]+

hkm −
1

M

xkm +
nk
M

 (92)

=
1

M

∑
m∈S†

(√
σhkm

|xkm|
√
λ∗m
− σ2

x2
km

− 1

)
xkm, (93)

where S† represents the set of transmitters for which (86) is satisfied. To compute the MSE cost, we compute the variance
ν2(α∗k, {bkm}) by taking the expectation with respect to xkm

ν2
k(α∗k, {bkm}) =E

( M∑
m=1

α∗kbkmhkmxkm + α∗knk − E

[
M∑
m=1

α∗kbkmhkmxkm

])2
 (94)

= E


 M∑
m=1

1

M


√√√√[ σhkm

|xkm|
√
λ∗m
− σ2

x2
km

]+

xkm −

√√√√[ σhkm

|xkm|
√
λ∗m
− σ2

x2
km

]+

xkm

+
nk
M


2 =

σ2

M2
. (95)

Consequently, the cost Et
[
‖εt‖22

]
in Theorem 1 is computed as Et[‖εt‖22] =

∑K
k=1(e2

k + ν2
k).
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