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Universitat Politècnica de Catalunya

Barcelona, Spain
pbarlet@ac.upc.edu

Abstract—Current web tracking practices pose a constant
threat to the privacy of Internet users. As a result, the research
community has recently proposed different tools to combat well-
known tracking methods. However, the early detection of new,
previously unseen tracking systems is still an open research
problem. In this paper, we present TrackSign, a novel approach
to discover new web tracking methods. The main idea behind
TrackSign is the use of code fingerprinting to identify common
pieces of code shared across multiple domains. To detect tracking
fingerprints, TrackSign builds a novel 3-mode network graph
that captures the relationship between fingerprints, resources
and domains. We evaluated TrackSign with the top-100K most
popular Internet domains, including almost 1M web resources
from more than 5M HTTP requests. Our results show that
our method can detect new web tracking resources with high
precision (over 92%). TrackSign was able to detect 30K new
trackers, more than 10K new tracking resources and 270K new
tracking URLs, not yet detected by most popular blacklists.
Finally, we also validate the effectiveness of TrackSign with more
than 20 years of historical data from the Internet Archive.

Index Terms—web tracking, code signature, fingerprinting,
network graph, 3-mode graph

I. INTRODUCTION

Although online privacy has brought much attention in
the recent years (e.g. [1], [2]), the fast evolution [3] and
inherent complexity of the Internet [4] make it very difficult
to develop effective privacy protection methods. Web tracking
–a collection of techniques developed to identify users across
multiple domains, browsers and devices– is the main tool used
by web services to compile large amounts of personal data
about their users [5]. Previous works have shown that the
collected information is used for many purposes, such as tar-
geted advertisement [6] and search customization [7], but also
for more obscure practices, including price discrimination [8],
credit scoring [9] or personal financial assessment [10].

Over the last decade, the research community has made
great efforts to combat web tracking (e.g., [11]–[20]). Al-
though some of these works have succeeded in the detection
of well-known tracking techniques, the early detection of
new, previously unseen web tracking methods still remains an
open research problem. Nowadays, the only reliable way to
discover new tracking systems falls to human experts with the
daunting task of analyzing millions of websites. Fortunately,
there are ways to narrow down the search to a manageable
number under specific circumstances. For instance, experts can
study the characteristics introduced by new web standards and
programming languages that could potentially be exploited by

new tracking methods. Although the community has developed
some privacy measurement tools to facilitate this task (e.g.
[13], [21]), all the process requires a high degree of expertise
and it is both, hard and time consuming.

In this work, we seek to transform this blind chase for new
web tracking mechanisms into a guided hunt that can lead to
results in a much faster and effective way. The intuition behind
our proposal is based on the observation that: (i) there are
relatively few tracking approaches, but they are shared across
many different domains, and (ii) different Internet resources
including the same or similar tracking methods share some
fragments of code (e.g., JavaScript API calls used to perform
the actual tracking). If we could focus our lens on relevant
pieces of code with those characteristics from all the resources
available on the Internet, there would be a high chance they
belong to tracking systems.

Based on this observation, we present TrackSign, a new
web tracking discovery system that automatically crawls the
Internet in the search of small pieces of code that are shared
across multiple domains. To this end, we use a file partition
method based on Rabin Fingerprinting [22], which allows us
to split the Internet resources (e.g., HTML, JavaScript files)
in an unambiguous way based on its content. To distinguish
between fingerprints with higher probability to belong to
tracking systems from other shared code (e.g., JavaScript
libraries), TrackSign builds a 3-mode network graph of the
Internet, which captures the relationship between the com-
puted fingerprints and the resources and domains that use
them. With the 3-mode network graph and the generated
code signatures, TrackSign automatically analyzes the most
popular code looking for “dirty” fingerprints; signatures with
a high probability of pertaining to web tracking algorithms.
Once discovered, all the resources using those signatures are
automatically classified as new tracking systems as well.

We used TrackSign to explore the top 100K most popular
domains as per the Alexa’s list [23]. The resulting data set
contains about 933K resources and 73M signatures collected
from more than 5M HTTP requests. The data set and source
code of TrackSign and ORM (described later in this paper)
is publicly available on [24]. The resources were also labeled
using the most popular URL pattern lists currently available.
Our results show that our method can detect new tracking
resources with high precision (over 92%). After exploring the
100K most popular domains, TrackSign was able to detect
30.000 new trackers, almost 12.000 new tracking JavaScript
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files and more than 273K new tracking URLs, which are not
recognized by the exiting pattern lists. Finally, in order to show
the potential of TrackSign in the detection of new tracking
systems raising over time, we explored more than 20 years of
historical data from the top 500 most popular websites using
the Internet Archive’s Wayback Machine [25].

The rest of the paper is organized as follows. Section II
reviews the most relevant related work. Section III describes
the fundamentals behind TrackSign. The design of the mea-
surement system is introduced in Section IV, while Section V
presents the evaluation. Section VI discusses limitations and
future work. Finally, Section VII concludes the paper.

II. RELATED WORK

This section reviews the related work most relevant to
TrackSign. Many previous works tried to block web tracking
methods using machine learning (ML). In contrast, our pro-
posal tries to discover new tracking algorithms and resources
using a completely different approach. Thus, TrackSign can be
seen as complementary to previous literature.

1) JavaScript and DOM properties: Acar et al. in [13] and
Ikram et al. in [16] proposed ML classifiers to inspect specific
JavaScript API calls that could be used for browser or device
fingerprinting. Similarly, Wu et al. in [11] use support vector
machines trained with tracking JavaScript code to differentiate
between tracking and functional code. All of them base their
classification on static code analysis, making them vulnerable
to obfuscation techniques [15].

Iqbal et al. propose in [12] a method based on the instru-
mentation of Google Chromium called AdGraph. It makes use
of a complex combination of JavaScript code unit attribution,
HTML DOM inspection and network link annotation to char-
acterize changes being executed in the document. With the
obtained output they train a random forest with high accuracy
replicating the labels of human-generated filter lists. However,
in those cases where there is a dispute between them (the
classification does not match) the rate of false positives and
false negatives is higher than the tracking lists themselves.

2) Network properties: In [20] Gugelmann et al. present a
system developed to improve filter lists using network mea-
surements to characterize web trackers. The system looks the
behavior of the explored website requests (e.g., received bytes,
#referrers) and aggregates them by domain. With the collected
information they train several ML algorithms and select the
best performing one. The resulting system presents mixed
results, with a high precision in the detection of some new
web tracking domains, but a lack of fine-grained classification.

Kalavri et al. explore in [14] the network as a bipartite
graph, where nodes are either the main site opened by the
user, or the resource URL called from the main site. The edges
then indicate a relationship between a domain and its loaded
URLs. Using a projection of the graph, they find that subsets
of web trackers form well-defined communities. Based on this
property, they develop a system with high accuracy finding
those web trackers. However, the method is unable to find

trackers outside the communities (e.g., tracking systems using
quickly changing domains to serve the content).

3) URL properties: Yu et al. in [18] and Metwalley et al.
in [19] present both similar systems based on the detection
of unique identifiers inside URL requests. For this purpose,
they compare the requests of multiple users accessing the
same domain, looking for parameters that could be used as an
identifier. Thanks to this collaborative approach, the method
presents high accuracy finding possible identifiers. However,
despite the high accuracy, they are only able to detect tracking
based on direct identification, which does not include more
complex techniques like fingerprinting.

On the other hand, popular content-blockers, such as Ad-
Block Plus [26], Ghostery [27], uBlock Origin [28] and Dis-
connect [29], block resources at the URL level. Despite their
differences, all of them use filter lists, such as the well-known
EasyList [30] or EasyPrivacy [31], to block host tracking
resources. The maintenance of those lists is done manually by
the community. The main advantage of this approach is that
URL filtering is lightweight and easy to deploy in browsers.
However, their main drawback is the manually-curated and
static nature of the filter lists, which significantly slows down
the detection of new web tracking systems. Moreover, this
approach can be easily circumvented by changing periodically
the domains used to serve the tracking resources.

4) Measurement frameworks: The research community
has also developed tools and frameworks to perform large-
scale studies on web tracking topics. For instance, Englehardt
et al. present in [21] a framework to explore a large number of
websites and analyze the calls or parameters of special interest
to the user. In [32] Lécuyer et al. share a framework to audit
DOM objects to study the relation between the data sent by
the browser and the advertisements received as result. Li et al.
present in [33] an instrumented version of Google Chromium
designed for forensic studies, recording the website loading
process in a way that it can be reconstructed.

III. TRACKSIGN

A. The concept

In this paper we introduce TrackSign, a new technique to
discover new web tracking mechanisms. The basis of our
proposal is to use signatures to massively compare code of
millions of online resources and find pieces of code shared by
multiple non-related websites. Our proposal is based on two
observations; First, there is a limited number of ways for web
tracking systems to legitimately obtain user information. For
instance, using HTML or JavaScript programming languages
to obtain user data restricts the tracking possibilities to the
HTML or the JavaScript API calls respectively. Thus, web
tracking systems based on those languages will necessarily
share some common code making use of those API calls.
Second, any new effective web tracking algorithm will, at
some point, become popular enough to be present in multiple
websites. Considering both of them, if we are able to find
common code shared by different websites, there is a high
chance that web tracking code is included in it.



Fig. 1. Restricted 3-mode network graph: Represents the relation between
the resources loaded by each domain and the code included in each resource.
Domain and Fingerprint nodes could not have edges connecting them.

There is a clear obstacle, though. Resources sharing pieces
of code are probably not limited to tracking resources, but
also include functional resources. To be able to identify
them we can use the source of the fingerprint, differentiating
between signatures pertaining to web tracking resources and
fingerprints obtained from non-tracking files. Unfortunately,
the inherent distributed nature of the Internet allows the same
file to be hosted in several different servers and linked by many
different URLs. Accounting for them as different resources
would artificially inflate the actual figure of code included
in that resource, whether it is tracking or not. This would
modify its popularity and break the correct classification of
the corresponding fingerprints. To solve it, we make use
of the Online Resource Mapper (ORM), a new open-source
framework designed to explore the web from the perspective
of its resources (described later in Section IV).

B. Network graph

ORM defines the web as a 3-mode network graph focused
on resources and fingerprints. A 3-mode or tripartite graph is
defined as a graph G = (U, V,W,E) whose nodes can be
divided into three disjoint and independent sets U , V and W
such that every edge E connects a vertex in one of the sets
to a vertex in other different set. In our model, each of the
node sets corresponds to domains, resources and fingerprints.
Edges between resource and fingerprint nodes symbolize the
relation between the resource file and its code pieces. On the
other hand, edges between domain and resource nodes state
the relation between the domain and the resources loaded by
that domain, regardless the host, country, URL or server where
they are hosted. Figure 1 shows the structure of the graph. In
our case, the resulting graph is a restricted 3-mode graph,
where there should not be edges going from domain nodes to
fingerprint nodes and vice versa.

Looking at the network from this perspective has several
advantages. First, it solves the problem exposed above, aggre-
gating all the different URLs pointing to the same file in only
one resource node. Moreover, the indegree (incoming edges)
of each node represents the popularity of that node. This allows

Fig. 2. File partition and signature example. Three files with different hash
values share most part of the code. Fingerprinting algorithm finds shared code
by deciding breakpoints based on the contents of the file.

us to easily know the most popular resources and fingerprints
looking only at the degree of each node. Furthermore, in-
specting the resources connected to each fingerprint node we
can quantify the number of tracking resources containing the
fingerprint, useful for the classification process.

C. File partition

TrackSign is based on computing code signatures in order
to compare online content. The comparison could be done
dividing the files into fixed-size, non-overlapping blocks, and
then calculate the prevalence of such blocks. However, intro-
ducing only one character at the first position of the file would
generate completely different blocks making the comparison
to fail. Instead, we divide the file into variable-length content
blocks based solely on the content of the file. The selected
algorithm, similar to the solution presented in [34] to dedupli-
cate file blocks on a network file system, computes a rolling
hash over a 48-byte sliding window of the content. A rolling-
hash is nothing more than a hash function computed over a
sliding window. Any hash function can be used, but the most
appropriate functions compute the next value directly from the
current value and the new received byte. We selected Rabin
fingerprinting [22] as our hash function, because it is based on
polynomials and meets the condition explained above. A Rabin
fingerprint fp is the modulo of a polynomial representation of
the string and a predetermined prime polynomial.

The signature generation process begins by the start of the
file and moves towards the end one byte at a time. The content
block length is determined probabilistically selecting a break-
point bp value. When the signature fp matches the breakpoint
(fp ≡ bp (mod a)) the block finishes and the fingerprint
computed until that point is assigned as the signature of the
block. Figure 2 shows a visual example of three files sharing
common pieces of code whose fingerprints mostly match
although the files are not completely equal. The algorithm
ensures that, if the same substring is present in different files,
the fingerprint computed to identify the substring will be the
same independently of its position in the files.



Fig. 3. Dirt level graph convergence: Representation of the iterative detection algorithm. Each two steps form a new iteration. The first step updates the
Dirt Level of each fingerprint. The second step searches non-tracking resources connected to a dirty fingerprint and classifies them as tracking.

Thanks to this probabilistic partition approach, the algorithm
permits to setup an average block length; assuming random
content, the probability that a signature fp is equal to the
breakpoint bp (mod a) is 1/a. Unfortunately, this also implies
that may be cases where the blocks are very short or very long,
selecting only a few characters or all the file if the breakpoint
value is not present. To solve it, the algorithm permits to set
a minimum and maximum block length.

D. Web tracking detection

Unknown web tracking can be grouped in three categories:
(i) completely new web tracking algorithms with previously
unseen code, (ii) unknown tracking files based on already
known tracking methods or (iii) known tracking files on
unknown URLs. TrackSign detection algorithm is able to
detect (ii) and (iii) in a fully automatic fashion, and highlight
the code with a high probability of belonging to (i), so that
an expert can further verify it.

Our method first focuses on the popularity of the signatures
of the graph. If a new fingerprint becomes popular, chances
are that it pertains to a new popular service or it is part of
a new web tracking system. Either way, it is a new point of
special interest to be revised and correctly classified. We define
the popularity as the number of different domains loading
resources that contain the inspected fingerprint. In other words,
we are accounting for the number of domain nodes that are at
distance 2 of the fingerprint node. The formal definition is:

Popularity = |{d|d ∈ D, distance(d, fp) = 2}|

To discover “popular” signatures we setup a threshold on
the number of domains to be considered as new relevant
content. For completely new files, not sharing code with any
previously classified resource, human experts have to discover

the reason for the increase in popularity. In this context, the
popularity threshold provides a way to automatically narrow
down the search to the most important resources. The lower
the threshold the earlier we will discover the new code. Thus,
the threshold value represents a trade-off between the amount
of code we want the algorithm to focus on, and the human
resources available to revise the obtained content.

However, for new signatures becoming popular but shared
by already known resources, TrackSign permits to automat-
ically classify them. To this end, we can take advantage of
the source of each obtained fingerprint. The intuition behind
it is that, if a popular fingerprint is mostly present in files
performing tracking, there is a high probability that new files
containing the same fingerprint are also performing tracking.
In order to calculate that probability, we explore all the
resource nodes connected to each fingerprint, quantifying the
percentage of them that were already classified as trackers.
We called that probability the Dirt level of the fingerprint.
The formal definition is given by:

Dirt level =

∑
r∈Neighborhood(fp) is tracking(r)

deg−(fp)

Once we have quantified the Dirt level of all the popular fin-
gerprints, we setup a threshold based on their “dirtiness”. All
the resources connected to a dirty fingerprint are automatically
classified as tracking resources. Note that reclassifying some
resources modifies again the Dirt level of each fingerprint
connected to those resources, starting over the cycle again.
This iterative algorithm is executed until the graph converges
and all the resources connected to fingerprints exceeding the
selected threshold are classified as tracking.

Figure 3 shows an example of this iterative process using
a threshold of 60%. In the first step the system computes



Fig. 4. TrackSign high level detection diagram

the Dirt level for each fingerprint using the labeled ground-
truth (red→tracking, green→non-tracking). The second step
classifies as tracking all the resources connected to fingerprints
with a Dirt level higher than the selected threshold. In the
figure there is only one dirty fingerprint (66%) connected to
a resource not already classified as tracking. The third step
starts the iteration process again updating the Dirt level of
the fingerprints connected to new tracking resources found
in step 2. The fourth step searches again for new resources
connected to dirty fingerprints. This process allows us to detect
resources with a high probability of performing web tracking.
As we will show in Section V, selecting the correct threshold
ensures a high precision while detecting thousands of new web
tracking resources. Figure 4 includes a high level diagram of
the TrackSign detection algorithm.

IV. SYSTEM DESIGN

In this section, we present the design and implementation
of the Online Resource Mapper (ORM), an open source large-
scale web measurement framework specifically designed to
explore the web as a 3-mode graph of the resources contained
in it. ORM builds on similar technologies as many previous
platforms, but with key design differences that allows it to
aggregate information at the resource level. We divided the
data collector system in two modules: driver managers which
are in charge of browsing the web, and data managers which
explore the network events looking for new resources and
aggregate the graph information sent to the database. The
analysis is done using individual scripts in a post-processing
phase. This modular implementation allows the system to
be executed in parallel and perform large-scale experiments.
Python is the language used to build the entire platform. A
high level diagram of the system is depicted in Figure 5.

1) Driver manager: ORM uses driver managers to artifi-
cially explore the web and obtain data. Each driver manager
maintains an instance of Selenium [35] running a full-fledged
browser on an independent process. The selected browser
is Chromium, the open source version of Google Chrome.
This combination was selected to be able to automatize the
collection process while maintaining compatibility with all
the technologies needed to load current websites. Moreover,

Fig. 5. ORM high-level structure diagram

Chromium supports Google’s DevTools protocol, allowing us
to access all the internal parameters and communications made
by the browser. Driver managers are also in charge of provid-
ing stability to the system. Selenium is known to crash under
some circumstances. The unpredictability of network events,
and the presence of website code not following the standards
can make the driver to hang. Driver managers detect those
cases and reboot the Selenium driver, skipping the website
presenting the problem. Finally, the collected information is
sent to data managers.

2) Data manager: Data managers receive all the network
events produced by the DevTools protocol and inspect them
looking for URLs being loaded by the browser. The found
URLs are independently downloaded, compressed and saved
inside the database. For each file the system computes a
hash value used as a primary key. This serves to deduplicate
files and aggregate information on the same resource nodes.
Furthermore, the system also computes a fuzzy-hash value to
correlate different versions of the same file, very common be-
tween popular libraries like JQuery. Finally, the data manager
stores the information aggregated by resource in the database,
including the relation between the resource and the domain
that made the call, and the relation between the resource and
the URL that pointed to it.

3) Analysis scripts: Code fingerprinting is not embedded
inside the data managers to detach the data acquisition process
from the experimental phase. Moving it to the analysis phase
permits us to test several different parameters and configura-
tions with a single exploration of websites. For other analyses,
a simple access to the database provides large amounts of



Fig. 6. Fingerprinting parametrization comparison

information that can be extracted with specific analysis scripts.

V. EVALUATION

A. Setup

To evaluate the system, we launched ORM to collect an
initial ground-truth of the top 100K most popular websites as
per Alexa’s list [23]. We decided to focus on JavaScript code
(including code embedded in HTML) as previous works found
that most tracking methods are based on it [5]. Nevertheless,
our system is flexible enough to be applied also to other lan-
guages, such as HTML or CSS. The exploration was executed
from an educational network infrastructure operating at several
Gbit/s. We setup a timeout of 30 seconds for each explored
web, usually long enough to request all the documents. From
the initial population of 100K websites we ended up scraping
successfully a total of 90.637 domains. The corresponding data
set has more than 5.2M unique URLs and almost 933K online
resources. All the data was collected on the period May∼June
of 2020. The labeling process was performed using uBlock
Origin [28], one of the most popular content-blockers on the
market. It has been recommended by many works (e.g. [36],
[37]) as one of the best privacy protecting tools currently
available. uBlock Origin checks by default over a dozen dif-
ferent pattern lists including the two most popular and precise:
EasyList [30] and EasyPrivacy [31]. It detected about 585K
(≈11%) URLs performing tracking. Each resource loaded by
those URLs was labeled as a tracking resource, giving a total
sum of 318K (≈34%) tracking resources. To mitigate the
effects of minification and obfuscation techniques [15], all the
files are prettified using JSBeautifier [38]. This allows us to
also find shared code between minified and non-minified files.

B. Parametrization

In a second phase we computed the code signatures for
each resource, executing the fingerprinting modules over the
collected ground-truth. As described in Section III-C, the
module has three main configuration parameters: the minimum,
average and maximum block length. The combination of them
defines the length of the code block to be translated to a
fingerprint. To investigate the influence of these parameters
on the results we first executed manually a series of small
experiments with a subset of only a few thousand resources.

Fig. 7. Web tracking detection results: Bars represent the total new tracking
resources detected for each Dirt threshold. The line states the detection
precision based on manual validation (top 50 more and top 50 less popular
detected resources)

As expected, setting small values partitions the code in too
small pieces, oversizing the graph and losing the lexical value
of the language. On the contrary, selecting large values results
in entire files considered as a single code block. Thus, we
selected empirically a minimum block length of at least 64
bytes and a maximum block length of 4 Kbytes. Moreover,
according to our observations selecting non-optimal values for
the average and maximum block length parameters forces the
algorithm to prematurely cut some code blocks that normally
would have a different fingerprint. This can be easily verified
looking at the number of fingerprints having length equal to the
maximum block length parameter. The cut makes the algorithm
to start computing the next fingerprint from a code point where
usually the algorithm would not start. Consequently, the code
belonging to the new fingerprint may partially appear inside
other fingerprints. In summary, this opens the door to create
some additional fingerprints containing repeated code.

To minimize the effect, we executed a battery of tests with
different configurations over a subset of 200K resources to
explore the real effect on the fingerprints. Figure 6 presents
the obtained results. For most of the selected combinations
the results were equivalent, presenting about 3∼4% of finger-
prints with maximum length. The combination of 256B-1K-
2K shows the worst result with more than 16% of fingerprints
being cut prematurely. This suggests a relation with the small
difference between the average and the maximum block length,
where the second is just twice the first one. In the rest of the
configurations the maximum block length is at least 4 times the
average block length. Finally, the best result corresponds to
the 64B-512B-4K combination, reducing the prematurely cut
fingerprints to only a 0.2%. Thus, we selected it to fingerprint
the entire resource collection. It took about one week to
process all the resources, and the resulting data set includes
more than 73M of code fingerprints.

C. Results

The system was evaluated trying different Dirt thresholds
(80%∼99%) over the entire data set. The Dirt level of the
fingerprint accounts the percentage of resources that were
previously classified as web tracking and contain this specific



TABLE I
WEB TRACKING DETECTION

Resources Fingerprints URLs Trackers
Total 932.711 73.660.398 5.231.228 -

Pattern lists
(uBlock Origin) 318.084 - 585.475 43.824

TrackSign (Dirt 96%)
1st iteration 320.960 12.641.415 847.892 71.007

TrackSign (Dirt 96%)
Graph convergence 330.068 13.603.663 858.771 73.641

Fig. 8. Top new trackers detected

fingerprint. To compute it we executed the iterative algorithm
(Section III-D) until the graph converges. Figure 7 depicts the
obtained results. Bars represent the number of new tracking
resources detected for each selected Dirt threshold. Even if
only fingerprints “dirtier” than 99% are considered, the method
finds more than 4.000 new tracking resources. This number
increased until 12.000 for a threshold of 96%. Starting at 95%,
the number of resources rapidly increases up to more than
135.000 for a Dirt threshold value of 80%.

To verify the precision of the web tracking detection, we
selected the subset containing the 50 most popular and 50 less
popular new tracking resources detected for each threshold.
The resulting subset (containing a total of 800 resources) was
manually verified by an expert analyzing the code of each file
individually looking for tracking patterns. The black line in
Figure 7 shows the detection precision for the 800 manually
verified resources. The figure indicates that the method obtains
good precision (over 90%) for threshold values until 96%.
For a Dirt level threshold of 95% the precision decreases to
79%. From this point on the precision keeps decreasing until
stabilizing for thresholds about 80% and 85%.

Table I compares the results obtained by the pattern lists
and TrackSign for a Dirt threshold of 96%. We selected
this threshold to maximize the detection while maintaining
a good precision. TrackSign results are split in two, one
considering only the first iteration before the propagation of
the Dirt level, and the other including the final results once the
graph converges. The graph convergence iterative algorithm
permitted us to detect 1M of new tracking fingerprints and
almost 12.000 new tracking resources. Moreover, our system
was able to detect almost 275K tracking URLs not detected by

Fig. 9. Top trackers heatmap (top): Cells represent the domains using
simultaneously row and column trackers. The diagonal shows domains using
only named tracker. Last column aggregates the total domains per tracker.
Trackers distribution (bottom): Distribution of websites by number of
trackers used. Includes the top-5 trackers in colors.

the lists. From these new URLs, 62% belong to already known
trackers under previously unseen URLs, while the remaining
38% pertain to previously unknown trackers. Overall, our
system was able to detect about 30.000 new web trackers.

Figure 8 shows the top new trackers detected by our method.
Even if all trackers in the figure are currently present in more
than 100 domains, they are not recognized at all by the existing
blacklists. Among the newly detected trackers, we can find re-
cently registered domains like hs-banner.com, quantumdux.io
or trafficbass.com (registered on February and March 2020).
Driftt.com is a new tracking domain owned by drift.com, the
latter already blocked by EasyPrivacy. The same happens with
hsforms.net and hsforms.com the second already included in
EasyPrivacy. 51.la also has patterns included in EasyPrivacy
but only for the subdomains js.51.la and ia.51.la. TrackSign
detected two new tracking subdomains (js.users.51.la and
images.51.la). Other trackers like hs-scripts.com, belonging
to HubSpot, os.tc from One Signal or adrtx.net belonging to
adality.de are marketing tools using analytics scripts to track
user behavior. lpsnmedia.com, helpscout.net and tidiochat.com
are online chats also augmented with analytic files. Finally, we
can find tiktok.com, an increasingly popular social network,



Fig. 10. Wayback Machine fingerprint evolution

especially in Asia.
Another interesting observation from Table I is that the

number of unique URLs pointing to tracking resources is only
about 16% of the total, but more than 35% of all JavaScript
resources contain tracking code. This confirms the relevance
of detecting web tracking at the resource level, instead of
doing it at the URL level as existing content blockers based
on blacklists. The picture at the resource level reveals that
currently more than one third of the JavaScript resources
present on the Internet include tracking algorithms. Overall,
our system detected 73.641 trackers and 86.616 websites using
at least one tracking system. According to those numbers more
than 95% of websites include some sort of tracking algorithm
(86.616 out of 90.637). However, our results show that only
92 trackers are present in more than 1% of websites (549
trackers in more than 0.1%), reinforcing the idea that only a
few trackers will be accessed by the regular user on a daily
basis.

The top chart of Figure 9 presents a heatmap with the
most used web tracker combinations. Each cell represents the
number of domains including tracking systems pertaining to
both, the row and column trackers. Note that the same domain
can be in more than one cell if the number of trackers used by
the domain is higher than two. The diagonal are the number
of domains including only the corresponding tracker. The last
column aggregates the total number of domains using the
tracker. We can see that Google, present in more than 70.000
websites (77%), continues to be the most pervasive tracker on
the Internet. Note also that most websites include more than
one tracker (the diagonal is almost empty). Not surprisingly,
the most usual combinations include trackers from Google,
Doubleclick (also belonging to Google), Facebook, Amazon
and Twitter. All of them are present in more than 10% of the
websites.

The bottom chart of Figure 9 shows the probability dis-
tribution of the number of trackers per domain. As already
discussed, only 4.000 websites are tracker-free and about 7.000
websites load only one tracker. The average number of trackers
per domain is 9.7, with a median of 7 trackers. The distribution
also shows the number of websites loading one of the top-
5 trackers. Surprisingly, websites loading only one or two

TABLE II
MOST POPULAR SERVICES

Service Tracking Domains URLs First detection
Archive.org custom
libraries No 26 127 2000-09

Archive.org analytics Yes 54 276 2001-04
JQuery library No 64 465 2003-02
Flash player
detection library Yes 14 14 2007-09

Google analytics
(library call) Yes 24 52 2009-06

Google tracking Yes 29 2578 2012-04
Facebook events
(library call) Yes 10 10 2015-06

Google Tag Manager
(library call) Yes 31 45 2016-08

Google analytics Yes 14 14 2017-01
Youtube tracking Yes 30 403 2017-03
Zoom.us No 21 21 2020-03

tracking systems seem to use other trackers not in the top-
5. Almost every website loading more than 3 trackers include
at least one of Google or Doubleclick, highlighting once more
their pervasiveness on the Internet.

D. Wayback Machine: detecting new tracking over time

As discussed in Section III-D, TrackSign can automatically
detect new web tracking resources using similar methods to
previously known tracking systems. However, the detection
of completely new methods often requires some human inter-
vention. This more manual process is based on the popularity
level, which experts can tune to detect tracking systems at an
early stage, before becoming widely used.

As the appearance of completely new tracking methods
only happens occasionally, we needed a much larger ground-
truth, spanning several months or even years, to evaluate this
TrackSign feature. Thus, we decided to use the Wayback Ma-
chine [25], which is a digital archive that preserves snapshots
of almost the entire World Wide Web over time. We modified
ORM to scrape the 500 most popular websites from January
2000 to June 2020 from the Wayback Machine. After some
preliminary analysis, we decided to set the popularity threshold
in TrackSign to 10 domains, which represented a good trade-
off between the amount of code to verify and our available
human resources.

Figure 10 shows the evolution of the shared and tracking fin-
gerprints over the last 20 years. We can observe a continuous
increase of shared code across multiple websites. More than
half of this code corresponds to web tracking, confirming our
initial hypothesis that shared code can be indicative of the pres-
ence of tracking. The popularity level highlighted 735 “new”
(i.e., new at that time) resources containing fingerprints shared
by more than 10 domains. Table II presents the list of the
most popular “new” services and “when” they were detected
using TrackSign. After careful inspection, we discovered that
the Wayback Machine dynamically replaces most commonly
used libraries (including most tracking libraries, such Google
Analytics) with its own version, probably as a space-saving
measure. This is why many tracking practices were detected



TABLE III
TRACKING DETECTED

Method Type First
detection

Last
detection Appearances

Storage-based Cookies 2003-02-01 2020-06-01 270
Session-only Session identifier 2003-02-01 2020-03-01 144
Cache-based Web cache 2007-01-01 2020-06-01 170
Fingerprinting Browser version 2007-01-01 2020-06-01 425
Fingerprinting Browser plugins 2007-10-01 2020-01-01 51
Fingerprinting Browser (other) 2007-10-01 2020-01-01 53
Fingerprinting Device 2009-01-01 2020-03-01 26
Fingerprinting Browser dimensions 2009-06-01 2020-03-01 108
Fingerprinting Browsing history 2009-12-01 2020-03-01 34
Storage-based Session storage 2009-12-01 2020-06-01 181
Fingerprinting Browser capabilities 2010-07-01 2020-01-01 9
Storage-based Local storage 2012-06-01 2020-06-01 224
Session-only window.name DOM 2012-08-01 2015-12-01 2
Fingerprinting WebGL capabilities 2015-05-01 2020-01-01 9
Fingerprinting Browser language 2015-10-01 2019-10-01 21
Fingerprinting Canvas 2016-09-01 2019-06-01 27

earlier with our system than their actual appearance (first
two rows in Table II). For example, in the case of Google
Analytics, our system reported new tracking as early as June
2009, but it could not determine it was actually Google
Analytics until January 2017, when the Wayback machine
decided to stop substituting Google Analytics calls by their
own analytics libraries. This is an artifact of the Wayback
machine that would not occur in reality when crawling the
web directly with ORM.

Most detected services in Table II were actually tracking
systems, while non-tracking services like JQuery are very easy
to discard by an expert. Interestingly, the system was also
able to detect an increasing number of websites linking to the
videoconference service Zoom.us in March 2020, probably due
to the social impact of the COVID-19 pandemic.

Table III shows a list of different tracking methods found
within the suspicious files. We found more than 20 “new”
tracking patterns, some of them very intrusive, such as finger-
printing methods. Most of these methods are still used today.

Despite the limitations of the Wayback Machine, our results
demonstrate TrackSign’s ability to focus on new code with
high probability to belong to new tracking systems, which re-
duces significantly the time and resources required by experts
to detect new web tracking systems.

VI. DISCUSSION AND FUTURE WORK

In this section, we discuss some limitations and additional
possibilities of TrackSign. Some of the points introduced here
are part of our future work.

1) Online blocking: Although the system has been de-
signed to discover new web tracking offline, the output of
TrackSign can be used to create a content-blocker with infor-
mation about tracking resources. The plugin would compute
the hash value for each downloaded file and compare it to a
database with all the known resources performing tracking.
In case of a match, the resource would be blocked. The
main advantage of this approach is the robustness against web
tracking systems constantly changing hosting domains, one
of the main vulnerabilities of URL-based content-blockers.
The main drawback, however, is that such blocking must

be performed once the suspicious file has been downloaded,
increasing the time and bandwidth required with respect to
URL-based lists.

2) Enhancing blacklists: In comparison to existing black-
lists, our results show a clear increase in the number of track-
ing URLs of about 46% (273K new URLs). This information
could be used to improve the lists currently used by content-
blockers, including those URLs discovered by TrackSign. This
process could be easily automated with our system.

3) Crowd-sourcing: The Popularity level presented in this
work introduces a delay between the appearance of a new
service and its detection, as it needs to become popular
before it can be detected. This delay can be mitigated at
some extent by reducing the popularity threshold. However,
for very small thresholds the number of popular fingerprints
can increase significantly. A possible approach would be to
rely on the force behind an active community, as in similar
open-source projects, that could contribute to classify larger
volumes of suspicious code than those we were able to analyze
in Section V-D. This would probably increase even further the
already huge (and disheartening) figure of tracking code in the
Internet.

VII. CONCLUSIONS

In this work we presented TrackSign, a novel approach
to discover new web tracking methods by means of code
signatures. To this end, we propose a combination of a content-
based file partition method, with a 3-mode network graph of
the resources hosted online. Our algorithm then computes the
popularity and the “dirtiness” of each signature to find web
resources with a high probability of including tracking code.
To evaluate our method, we developed ORM, a new open
source framework specifically designed to explore the web
and gather information about the resources therein.

Our results after analyzing the 100K most popular websites
demonstrate the ability of our system to automatically detect
new web tracking methods. The algorithm discovered 30.000
new trackers, some of them already present in more than 100
domains, but not detected by current pattern lists. The system
also detected almost 12.000 new tracking resources and 275K
new tracking URLs. We also observed an inexorable increase
in the use of web tracking methods over the last 20 years
using historical data from the Internet Archive. According to
our results, at the time of this writing at least 95% of the
websites include some sort of web tracking system. Moreover,
we discovered that more than one third of all JavaScript
resources hosted on the Internet include some sort of tracking
code inside. The source code and data set collected for this
study is publicly available at [24].
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