

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/145720

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/145720
mailto:wrap@warwick.ac.uk

Trust Trackers for Computation Offloading in
Edge-Based IoT Networks

Matthew Bradbury
Department of Computer Science,

University of Warwick
M.Bradbury@warwick.ac.uk

Arshad Jhumka
Department of Computer Science,

University of Warwick
H.A.Jhumka@warwick.ac.uk

Tim Watson
WMG,

University of Warwick
tw@warwick.ac.uk

Abstract—Wireless Internet of Things (IoT) devices will be
deployed to enable applications such as sensing and actuation.
These devices are typically resource-constrained and are unable
to perform resource-intensive computations. Therefore, these jobs
need to be offloaded to resource-rich nodes at the edge of the IoT
network for execution. However, the timeliness and correctness
of edge nodes may not be trusted (such as during high network
load or attack). In this paper, we look at the applicability of
trust for successful offloading. Traditionally, trust is computed
at the application level, with suitable mechanisms to adjust for
factors such as recency. However, these do not work well in IoT
networks due to resource constraints. We propose a novel device
called Trust Tracker (denoted by Σ) that provides higher-level
applications with up-to-date trust information of the resource-
rich nodes. We prove impossibility results regarding computation
offloading and show that Σ is necessary and sufficient for
correct offloading. We show that, Σ cannot be implemented
even in a synchronous network and we compute the probability
of offloading to a bad node, which we show to be negligible
when a majority of nodes are correct. We perform a small-scale
deployment to demonstrate our approach.

I. INTRODUCTION

As part of the Internet of Things (IoT), a large number of
networked devices are expected to be deployed for a variety of
purposes such as monitoring and actuation. The Cisco Annual
Internet Report (2018–2023) predicts that by 2023 there are
expected to be 14.7 billion machine-to-machine connections [1].
These include devices deployed in a variety of domains from
healthcare [2], smart cities [3] and industrial applications [4].
Many of the IoT devices deployed will be resource-constrained
with limited processing power, storage, energy availability, or
a combination of these three and others.

Due to these resource constraints, it may be infeasible for
computational and memory intensive tasks to be executed on
the IoT device itself and they will instead need to be offloaded
to more capable devices. Resource-rich devices that will process
offloaded tasks include services accessed via the internet (e.g.,
a Cloud service) or via Edge nodes which are present in the
same network as the resource-constrained devices. Certain tasks
will have low latency requirements, meaning that Edge nodes
become preferable over Cloud services.

When there exists multiple resource-rich Edge nodes, a
problem that resource-constrained IoT nodes need to solve
is which Edge node should a task be submitted to. This has
typically been addressed [5, 6] by assessing a measure of

behavioural trust that a resource-constrained node has in a
resource-rich node to correctly execute a task correctly. A
correctly executed task by a resource-rich node returns results
that satisfy the user requirements. The evaluation of trust is
typically performed at the application level. A node that requires
trust information about other nodes will need to keep track of
a history of its interactions with those nodes.

Unfortunately, such approaches do not scale in IoT networks
due to the imposed resource constraints. Further, as trust is
evaluated at the application level, interactions may be sporadic.
As such, the trust models are enhanced with a decay model to
model that relevancy of trust values may have decreased, i.e.,
to address the recency problem of the recorded interactions.

Existing trust-based evaluation approaches typically use a
history of interactions to derive a trust value. For example,
in the Beta Reputation System [7] interactions are classified
as good or bad and the history of interactions is used to
calculate the expected likelihood of a future event being good
or bad. Logging interaction history is a reactive measure for
trust evaluation. To circumvent the problem posed by resource
constraints and interaction recency, in this work we propose
a proactive approach for trust evaluation, which periodically
challenges a resource-rich node with a non-trivial task.

To achieve this, we adapt the notion of failure detectors [8]
for trust evaluation. We propose a novel device, called a Trust
Tracker (denoted by Σ), that proactively records the nodes that
can be trusted (or not). We investigate the power of Σ in solving
the offloading problem and show equivalence between the two
problems. In this paper, we make the following contributions:

1) We formalise the problem of trusted offloading and show
that it is impossible in an asynchronous system.

2) We propose a powerful device namely a Trust Tracker
Σ, and show that it is both necessary and sufficient to
solve the trusted offloading problem.

3) We unfortunately show that it is impossible to implement
Σ even in a synchronous system.

4) We propose a weaker specification for trusted offloading,
that of probabilistic offloading problem, and show that
the probability of offloading to an untrusted node is
negligible in sufficiently large networks.

5) A demonstration is performed on a deployment of 6
wireless sensor nodes and 6 Raspberry Pis, showing
that resource-constrained nodes are able to identify a

misbehaving resource-rich node with high accuracy and
select an appropriate alternative to offload tasks to.

The remainder of this paper is structured as follows. Related
work on trust evaluation and task offloading is presented in
Section II and the formalisation of the system and fault models
in Section III. In Section IV the offloading problem and its
impossibility condition is described. In Section V we present
Trust Tracker to identify resource-rich nodes believed to be
bad. We show that Trust Tracker cannot be implemented in a
synchronous system and define a probabilistic version of the
offloading problem in Section VI. In Section VII we describe
the experimental setup used to gather results presented in
Section VIII. Finally, we conclude with Section IX.

II. RELATED WORK

A. Trust

Trust has different meanings in different contexts. For ex-
ample, identity trust describes the ability for nodes to verify the
authenticity of senders via “certificate-based frameworks” [9]
which could be provided via message authentication codes or
digital signatures. In this work we consider behaviour trust,
which can be described as “the subjective belief, from the
perspective of a trustor agent, that a trustee agent will act as
they say they will do in a given context” [5, 7].

The Beta Reputation System (BRS) [7] uses the Beta
distribution to model how a trustee is expected to behave
based on past interactions classified as either good or bad.
The expected value of the distribution can be used to predict
the likelihood future event will be good. The BRS supports
combining feedback from other agents, discounting unreliable
feedback, and forgetting of older interactions which have
become less relevant. Evaluation of trust is reactive based
on previously observed interactions.

A limitation of the BRS is the assumption of stable system
behaviour over time [10]. Forgetting (also called decay) can
been used to weight recent events higher (e.g., with an exponen-
tially weighted moving average [11]). However, for unstable
systems (i.e., where behaviour changes frequently) this can lead
to error in the prediction of the true system behaviour [12].
Alternatively, a finite state Hidden Markov Model (HMM)
allows capturing dynamic behaviour of systems with lower
error than Beta distribution-based trust models [10, 13]. Other
approaches do not require a direct interaction with the trustee
to form an opinion. Trust can be established from overhearing
interactions between other agents [14].

However, there has been little work considering unreliability
and resource constraints of nodes evaluating trust in general.
A specific example, is the Collection Tree Protocol [15]
for routing which use a combination of reactively assessing
potentially unreliable communication links based on previously
received messages and proactive assessment via beacons.

B. Task Offloading

In vehicular and cellular networks the task offloading
problem is referred to as Multi-access Edge Computing (MEC)
(previously Mobile Edge Computing) [16]. Whilst the scale of

the compute may differ between highly resource-constrained
IoT devices and vehicles/mobile phones, both involve a device
that has insufficient knowledge or compute capability to execute
a task so needs to offload it to a more capable device to perform
the compute. A difference between highly resource-constrained
IoT devices (such as embedded wireless sensor nodes) and
devices associated with MEC is that the resource constraints of
the IoT devices (e.g., 32 KiB of RAM) make expensive Edge
evaluation techniques infeasible to implement.

A variety of different machine learning approaches have been
used to evaluate trust. One approach is to frame trust evaluation
as a classification problem. In [17] support vector machines
were trained offline and used to facilitate behavioural trust
classification. A downside is that a (potentially) large quality
of labelled data may needed to train a model, which may not
be available or representative of behaviour that will occur. Q-
learning (a model-free reinforcement learning technique) was
used to learn an offloading policy in [18] by providing a reward
based on the action taken in states defined by the proposed
system model. An advantage of this approach is training data
is not required to design the reward function.

Linear programming (LP) has also been applied where the
system is modelled as a LP and solvers are used to find an
optimal allocation of tasks based on specified constraints. For
example, [19] optimised according to bandwidth restrictions
and [20] to minimise task latency. A downside is that LP is
performed at one central location and needs global knowledge,
requiring the cost of IoT nodes disseminating state.

Offloading can also be approached from a game theoretic
viewpoint [21] where a plan is produced and typically a Nash
equilibrium is sought. Games can involve non-cooperative or
cooperative behaviour and be centralised or decentralised. As
with LP, different performance metrics can be considered.

Different works have focused on optimising task offloading
for different constraints such as bandwidth [19], latency [20],
energy [22] and privacy [17]. Some of these works have framed
offloading as a trust evaluation task, with different definitions
of what a trustor is evaluating in a trustee. Therefore, there
needs to be a clear understanding of what is being assessed
by trust and how it is being assessed.

III. MODELS: SYSTEM AND FAULT

In this section we present the system and fault models that
will be used to describe the system and the ways in which it
can fail. We then use these models to identify the properties
of a strong trust detector.

A. System and Network Model

We assume a system that contains two classes of nodes:
• VR = {r1, r2, . . . , rn} is the set of resource-rich edge

nodes that execute jobs.
• VC = {c1, c2, . . . , cm} is the set of resource-constrained

IoT devices that submit jobs.
• A resource-rich node is not a resource-constrained node

and vice versa VR ∩ VC = ∅.
• The set of all nodes is given by V = VR ∪ VC .

2

Thus, the network is modelled as a bipartite graph G =
(VC , VR, E), where E ⊆ (VC × VR). An edge (c, r) is in E if
c can communicate with r and vice versa.

A system is said to be asynchronous if no bound is known on
the message delivery time and the time between the execution
of two consecutive instructions. It is synchronous if a bound is
known for both. A system can be asynchronous, for example
due to resource-constrained nodes sleeping because of duty
cycling where bounding the sleep time is difficult. Another
example could be that the network might be loaded, making
bounding round trip time difficult. In an asynchronous system,
we assume the existence of a fictitious clock device that returns
the current time, to ease explanation. In a synchronous system
we assume that the execution happens in well-defined rounds.

In this network the IoT devices are assumed to be highly
resource-constrained, where devices may be similar to sensor
nodes with limited CPU, RAM and energy storage. For example,
the Zolertia RE-Mote [23] has a 32 MHz CPU, 32 KiB of
RAM, a 800 mAh battery and optional support for an SD
card (potentially meaning no stable storage). Communication
in such devices is typically performed using IEEE 802.15.4,
Bluetooth Low Energy or LoRaWAN.

We assume that there is an appropriate system which facilit-
ates message encryption (if needed) and message authentication
(such as via a message authentication code or digital signature)
providing identity trust. We assume a task to be a program
that requires computational and communication resources that
are not available on an IoT device.

B. Process, Process Failure and Trust

In this paper, we assume nodes can behave arbitrarily, i.e.,
byzantine nodes [24]. This behaviour may have a malicious
(e.g., network attacks) or benign cause (e.g., network load).

A failure pattern F is a function F : T → 2VR , where F(t)
denotes the set of resource-rich processes that are bad at time
t. We say a resource-rich process r turns good at time t if
r 6∈ F(t) and r is bad at time t if r ∈ F(t). We say that a
resource-rich process r fails (or turns bad) at time t if r is good
at time t−1 and r is bad at time t (i.e., r 6∈ F(t−1)∧r ∈ F(t)).
We say that r recovers at time t ≥ 1 if r is bad at time t− 1
and r is good at time t (i.e., r ∈ F(t − 1) ∧ r 6∈ F(t)). A
process r can be classified (according to F) as always-good,
eventually-good, eventually-bad and unstable as follows:

Given a specification (or guarantee) ¶r by r,

• Always Good: r always executes according to ¶r.
• Eventually Good: r can initially violate ¶r, but ∃t > 0

after which r is always good.
• Eventually Bad: ∃t > 0 after which r always violates ¶r.
• Unstable: r alternates between being violating and execut-

ing according to ¶r.

Definition III.1 (Trusted). A process r is trusted if it always
good or is eventually good in a finite amount of time. A process
is untrusted if it is not trusted.

We denote the set of trustworthy, untrustworthy and un-
stable processes in F by TRUST(F), UNTRUST(F) and
UNSTABLE(F) respectively.

C. Failure and Trust Detectors

A failure detector is a (software) device that is responsible
for the detection of node crashes in a distributed system [25].
A higher level application will query the failure detector to
obtain failure information.

Similarly, we define a device called a trust detector that can
be queried at any time t ∈ T . When queried, it returns the set
of processes it suspects to be bad at a time t. A trust detector
history H : VC × T → 2VR denotes the value of the trust
detector for process c at time t, i.e., if the trust detector at a
resource-constrained process c is queried at time t, then H(c, t)
contains the set of resource-rich processes that c suspects to
be bad at time t.

A trust detector D : F → 2H maps a failure pattern F
to a set of trust detector histories, i.e., D(F) returns the the
set of possible trust detector histories permitted by D for F .
However, not all possible trust detector histories are useful.
For example, trust detector histories where node failures are
not detected are not useful. There is not just one type of trust
detector, but many possible types depending on what properties
they provide, that is, depending on their strengths.

To reason on the usefulness of a trust detector history, we
generally require them to satisfy certain properties, similar to
failure detectors [25]. The completeness property of a trust
detector captures its ability to detect correct node failures
and the accuracy property captures the ability to avoid wrong
suspicions. Due to the uncertainty in an asynchronous system,
these properties cannot be taken for granted, giving rise to
different degrees of completeness and accuracy. For example,
in an IoT network, uncertainty can arise due to wireless
interference or network load. In such a case, a trust detector
may report that a node has failed when it is actually correct.

Definition III.2 (Strong Trust Detector). A strong trust detector
has the following two properties:

• Strong accuracy: No resource-rich process r is suspected
by any resource-constrained process c before it fails.
∀F ,∀H ∈ D(F),∀t ∈ T ,∀r ∈ VR, r 6∈ F(t),∀c ∈ VC ·
r 6∈ H(c, t).

• Strong completeness: Every resource-rich process r that
fails is eventually permanently suspected by all resource-
constrained process c.
∀F ,∀H ∈ D(F),∀r ∈ VR, r ∈ UNTRUST(F),∀c ∈
VC ,∃t ∈ T ,∀t′ ≥ t · r ∈ H(c, t′).

We call a trust detector that satisfies both the strong
completeness property and the strong accuracy property a
perfect trust detector. The accuracy property refers to the
ability of the trust detector to avoid incorrect suspicions while
the completeness property addresses the ability of the trust
detector to detect failing (resource-rich) nodes.

3

D. Algorithms and Computation

Chandra and Toueg [8] define a computation (or execution)
to be a tuple C = (F ,D, I,S, T) where F is a failure pattern,
D is a failure1 detector, I is the system’s initial state, S is a
sequence of algorithm steps, and T is a sequence of increasing
time values when the algorithm steps are taken. In this paper,
we will study algorithms that make use of devices similar to
failure detectors. However, our definition of computation will
be slightly different [26], but equivalent to that of Chandra
and Toueg [8]. We define two functions: a step function As
from T to the set of all algorithm steps that occurred at that
time, and a process function Ap from T to V . In other words,
function Ap(t) denotes the process that takes a step at time
t and As(t) identifies the step that was taken. If no process
takes a step at time t, both the step function and the process
function evaluate to ⊥. Without loss of generality, we assume
at most one process taking a step at any one time.

To account for the possibility of misbehaviours, we augment
our notion of computation with a further set Ftr of (faulty) steps
to become possible. The actions in Ftr model (resource-rich)
node failures [27] when they become Byzantine. A computation
C ′ in the presence of faults (or a faulty computation) is thus
given as C ′ = (F ,D, I, A′s, Ap), where A′s(t) returns the step,
possibly faulty, taken by a process at time t and Ap(t) returns
the process that takes the step at time t.

A specification is a set of computations. A program P
satisfies a specification ¶ if every computation of P is in ¶.
Alpern and Schneider [28] state that every specification can be
described as the conjunction of a safety and liveness property.
A safety property states that something bad should not happen;
a liveness property states that something good will eventually
happen. Formally, the safety property identifies a set of finite
computation prefixes that should not appear in any computation.
A liveness property identifies a set of computation suffixes that
every computation should include.

IV. OFFLOADING PROBLEM

The offloading problem can be explained as follows: A node
c ∈ VC has a job j to execute. The computational requirements
of j cannot be met by node c, therefore, c needs to find a
resource-rich node r ∈ VR to execute j on its behalf. We say
that a node c offloads a job j to a node r when node r sends a
special control message OFFLOAD〈j〉 from c. Thus, if c sends
OFFLOAD〈j〉 to r at time t0, then r will receive OFFLOAD〈j〉
at a time t1 where t1 > t0.

Definition IV.1 (Offloading Problem). Given a resource-
constrained node c ∈ VC and a task j, the offloading problem
of j by c is defined as follows: There exists a resource-rich
node r ∈ VR such that:
• Correctness: c offloads j to r only if c trusts r.
• Trust: Eventually, c trusts r permanently2.

1In this paper, it will represent a trust detector.
2Permanently (in this setting) does not mean forever after some point, but

long enough for the system to make progress.

We define a software device, which we call an offloading
engine and which we denote by O, that is responsible for job
offloading. The properties of O are thus as follows:
• Safety: O only returns a set Tr ⊆ Vr of trusted nodes,

i.e., ∀F , Tr ⊆ TRUST(F).
• Liveness: Eventually, O returns a set Tr ⊆ Vr of resource-

rich nodes.
Once the set Tr is available, then O chooses an edge node

from that list. We now present our first important result.

Theorem 1 (Impossibility of Offloading). Given an asynchron-
ous network G = (V,A), V = VC ∪ VR where all nodes
c ∈ VC are equipped with a perfect trust detector, a job j,
then it is impossible to solve the offloading problem of j by c.

Proof. We assume such a deterministic offloading algorithm
A exists and then show a contradiction.

Consider a failure pattern F0 where there are no failures
and consider a computation E0 = (F0,D, I, As, Ap) which
occurs as follows. At time t0, a node c has a job j to offload.
Since A is correct and there are no failures, the trust detector
at c returns ∅ (at all times) and c eventually offloads j onto a
node r at time t1 > t0 and r receives OFFLOAD〈j〉 at t2 > t1.

Now, consider a different failure pattern F1 where a set
Br ⊂ VR are untrusted in F1. Assume that F1 is identical
to F0 until t1. Assume that the node r becomes bad at time
t1, i.e., r ∈ F1(t1). Now, consider an computation E1 which
is identical to E0 until t1. Since A is deterministic, A will
choose r for offloading. However, as r turns bad at t1, A needs
to offload before t1 else it will violate the correctness problem
of the offloading problem. This means that the system needs
to be synchronous to meet this time bound, which contradicts
our assumption of an asynchronous system.

The issues here are that resource-rich nodes can be unstable
and the system being asynchronous. It can be observed that
even if the system is synchronous, unstable nodes will always
be a problem. Thus, we need a device which is strictly stronger
than a perfect trust detector to solve the offloading problem.

V. Σ: A TRUST TRACKER DEVICE

A perfect trust detector returns a list of nodes it suspects to
be bad. Unfortunately, the inability to discriminate between a
bad node and an unstable node can lead to violations. As such,
we propose a new device, called a trust tracker, that returns
a list of nodes believed to be bad and also an epoch vector
Ep : VR → N0 which captures the number of times the trust
tracker believes a resource-rich node has failed and recovered
(and vice versa).

Thus, the trust tracker device has the following properties:
• Completeness: for all bad resource-rich processes r ∈ VR

and for all process c ∈ VC , either c eventually permanently
suspects r or r’s epoch number at c is unbounded.

• Accuracy: For some good resource-rich process r ∈ VR
and for every process c ∈ VC , eventually c permanently
trusts r and r’s epoch number at c stops changing.

4

O: Offloading Engine

Σ: Trust Tracker

Application

GTrustR

EP BL

EP

Algorithm 2 Algorithm1

Figure 1: Architecture for sufficiency and necessity proofs.

The completeness property of the trust detector captures
issues caused by untrusted nodes (i.e., bad and unstable nodes).
It associates edge nodes with an epoch number to detect
unstable nodes. On the other hand, the accuracy properties
stipulates that (eventually) good nodes are permanently trusted.
We denote the trust tracker device by Σ. At this point, we wish
to determine the role played by Σ in the offloading problem.
We now present our second main result.

Theorem 2 (Necessity and Sufficiency of Σ). Given a syn-
chronous system G = (VR ∪ VC , A), it is possible to solve the
offloading problem if and only if each node c ∈ VC is equipped
with Σ, i.e., O and Σ are equivalent.

Proof.
• Sufficiency: To prove that Σ is sufficient to solve the

offloading problem, we provide an algorithm (see Al-
gorithm 1) that uses Σ to construct O.

• Necessity: To prove the necessity of Σ to solve the offload-
ing problem, we develop an algorithm (see Algorithm 2)
that emulates Σ using the output of O.

The relation between O and Σ is shown in Figure 1.

A. Sufficiency of Σ

Algorithm 1 shows how to transform the output of Σ (Line 6)
to obtain the output of O, the offloading engine, as represented
in Figure 1. Line 6 (of Algorithm 1) represents the input which
Σ submits to O. At the start of every synchronous round, Σ
samples each resource-rich node. As it receives messages from
resource-rich nodes, it updates its list of bad nodes (BL) and
the list of unstable nodes (via the epoch vector) and outputs
it to O. We assume a threshold σ to identify unstable nodes.
When O is ready to select an edge node for offloading, Σ
outputs the list GtrustR of trusted nodes (those that are good
or eventually good), as well as the epoch vector.

B. Necessity of Σ

To prove the necessity of Σ to solve the offloading problem,
Algorithm 2 shows how to transform the output of the
offloading engine O (see Figure 1) to obtain the output of
Σ, the trust tracker device. The offloading engine O returns
a list of trusted nodes and the epoch vector. The output of O
is (Tr, E), which are then inputs to Algorithm 2. Using the
epoch vector, Algorithm 2 computes the set of unstable nodes
and, using the set of trusted nodes Tr, it then computes the set
BL of bad nodes. The algorithm then outputs (BL,E) for Σ.

Algorithm 1 Sufficiency: Σ sufficient to solve O
. Output of Σ to obtain offloading engine

1: function INIT
2: START(off , δ) . Timer
3: Ep ← VR × {0} . Ep ∈ VR → N0

. Trusted nodes in one round
4: trustR ← VR . trustR ∈ 2VR

. Those identified as trusted over multiple rounds
5: GtrustR ← VR . GtrustR ∈ 2VR

6: event EVALUATED(BL,E) → . BL: bad list, E: Epoch
7: Ep, trustR ← E, VR . Reset
8: UR ← {u | u ∈ VR ∧ E(u) ≥ σ} . Unstable nodes
9: trustR ← trustR \BL . Remove bad nodes

10: trustR ← trustR \ UR . Remove unstable nodes
. Nodes that are permanently good

11: GtrustR ← GtrustR ∩ trustR
12: timeout (off) → . Offloading decision time
13: if GtrustR 6= ∅ then
14: return (GtrustR,Ep)
15: else
16: START(off , δ)
17: GtrustR ← trustR

Algorithm 2 Necessity: Σ necessary to solve O
. Output of offloading engine to obtain Σ

1: function OUTPUT(Tr, E)
2: UR ← {u | u ∈ VR ∧ E(u) ≥ σ}
3: BL ← VR \ (UR ∪ Tr)
4: return (BL,E)

VI. IMPLEMENTING Σ AND PROBABILISTIC OFFLOADING

The use of Σ makes it possible to solve the offloading
problem, however, it still needs to be understood if it is possible
to implement Σ in a synchronous system. Unfortunately, the
answer is negative. Our third major result is thus:

Theorem 3 (Impossibility of implementing Σ). Given a
synchronous system, it is impossible to implement Σ.

Proof. We assume an algorithm A exists for Σ and then show
a contradiction.

Consider a failure pattern F0 where there are no failures and
consider a computation E0 = (F0,D, I, As, Ap) of Σ which
occurs as follows: At time t0 (start of a synchronous round),
Σ collects information about all nodes r ∈ VR and returns
information at the end of the round. Since A is correct and
there is no failure, Σ will return (∅, VR × {0}).

Consider a failure pattern F1 where there is a failure of a
single node r sometime during the first synchronous round
and turns good before the end of the round. Consider a
computation of Σ E1 = (F1,D, I, As, Ap). Since E0 and
E1 are indistinguishable for Σ, Σ will return (∅, VR × {0}).
This contradicts the fact that there has been a failure in E1.

Because of the impossibility of implementing Σ, we require

5

resource-constrained processes to test edge nodes at regular
intervals. To increase the chance of detecting every failure,
the sampling periods at the sensor processes should be set
sufficiently small so that all edge node failures can be detected.
Because fault occurrences are random, even arbitrarily small
sampling period may miss faults.

Therefore, we introduce a weaker version of the offloading
problem, that of probabilistic offloading. The probabilistic
version of the offloading problem is a weaker version of the
more general problem in that it only requires the offloading
problem to be satisfied with high probability, i.e., it allows the
offloading problem to fail.

Definition VI.1 (Probabilistic Offloading Problem). Given a
resource-constrained node c ∈ VC and a task j, the offloading
problem of j by c is defined as follows: There exists a resource-
rich node r ∈ VR such that:
• Correctness: c offloads j to r only if c trusts r with high

probability pc.
• Trust: Eventually, c trusts r permanently with high

probability pt.

To calculate the value of pc and pt, we need to understand
the probability of Σ to return incorrect information to O.

We now compute the value of pc, the probability that the
correctness condition of offloading is not violated. For this to
happen, the output variable GtrustR needs to contain at least
one node that keeps failing but cannot be detected.

The main factor that will affect pc is when an unstable
node appears to be good. This happens when a node turns
bad shortly after being sample but turns good before it is next
sampled. We refer to such a node as a fake node.

Denote by p the probability of a node to be fake in a
synchronous round of Σ. The expected number of fake nodes
in any round is thus pR, where R = |VR|. Let F be a random
variable that denotes the number of fake nodes in a single
round. We assume F to follow a Poisson distribution.

F ∼ Po(λ) where λ = pR (1)

The probability of at least one fake node in a round is:

p≥1 = Pr (F ≥ 1) = Pr (F 6= 0) = 1− exp(−pR) (2)

Denote by σ, the number of rounds before an offloading
decision is made. The probability that the same node is fake
over the duration before offloading (p+) is less than or equal
to the probability that at least one node is fake for σ rounds:

p+ ≤ (p≥1)σ = (1− exp(−pR))σ (3)

Since |GtrustR| ≥ 1, it means that the probability of choosing
a fake node (pv) is:

pv ≤
p+

|GtrustR|
=

(1− exp(−pR))σ

|GtrustR|
(4)

Then, the probability that the correctness condition of offloading
is not violated is given by pc ≥ 1−pv . As |GtrustR| increases
pc → 1. The graphs in Figure 2 show the value of pc for
various parameterisations. When there are a large number of

Algorithm 3 Algorithm for Σ based on Challenge-response
from a resource-constrained node. Protocol at a resource-
constrained node c.

1: cs ← ∅ . Mapping of VR to challenges
2: challenge-response ← ∅ . Mapping of VR to timers
3: BL ← ∅ . Set of bad rr nodes
4: E ← VR × {0} . Epoch number for each rr node
5: function INIT
6: START(challenge-timer, τ)
7: timeout (challenge-timer) →
8: for vr ∈ VR do
9: cs[vr] ← CREATECHALLENGE()

10: send Challenge
〈
cs[vr]

〉
to vr

11: START(challenge-response[vr], ∆) . Start timeout
12: START(challenge-timer, τ)
13: receive ChallengeResponse

〈
cr
〉

from vr →
14: if ISRUNNING(challenge-response[vr]) then
15: STOP(challenge-response[vr])
16: if VALIDATE(cs[vr], cr) then
17: EVALUATE(vr, Succeeded)
18: else
19: EVALUATE(vr, Failed)
20: timeout (challenge-response[vr]) →
21: EVALUATE(vr, Timeout)
22: function EVALUATE(vr, res)
23: if res = Succeeded then
24: if vr ∈ BL then . Was previously bad
25: E[vr] ← E[vr] + 1
26: BL ← BL \ {vr} . Remove from bad list
27: else
28: if vr 6∈ BL then . Was previously good
29: E[vr] ← E[vr] + 1
30: BL ← BL ∪ {vr} . Add to bad list
31: signal EVALUATED

(
BL,E

)
. To Algorithm 1 Line 6

Algorithm 4 Algorithm for Σ based on Challenge-response
from a resource-constrained node. Protocol at a resource-rich
node r.

1: cq ← [] . cq is a queue of challenges and VC nodes
2: receive Challenge

〈
c
〉

from vc →
3: cq ← cq _ (c, vc) . _ to append to queue
4: event DOCHALLENGE :: cq 6= [] →
5: (c, vc) ← POP(cq)
6: cr ← COMPUTERESPONSE(c)
7: send ChallengeResponse

〈
cr
〉

to vc

trusted nodes (such as when |GTrustR| = R/2) there is a
low probability of offloading to a fake node. When there is a
small number of trusted nodes, the probability of offloading
to a fake node significantly increases as the probability that a
resource-rich node is fake (p) increases.

6

p

0.
05

0.
10

0.
15

0.
20

R

2.5

5.0
7.5

10.0

12.5

15.0

p c

0.6

0.7

0.8

0.9

1.0

GTrustR=2 σ = 8

p

0.
05

0.
10

0.
15

0.
20

R

2.5

5.0
7.5

10.0

12.5

15.0

p c

0.6

0.7

0.8

0.9

1.0

GTrustR=2 σ = 18

p

0.
05

0.
10

0.
15

0.
20

R

2.5

5.0
7.5

10.0

12.5

15.0

p c

0.6

0.7

0.8

0.9

1.0

GTrustR=R/2 σ = 8

p

0.
05

0.
10

0.
15

0.
20

R

2.5

5.0
7.5

10.0

12.5

15.0

p c

0.6

0.7

0.8

0.9

1.0

GTrustR=R/2 σ = 18

Figure 2: The probability of a correct offload (pc) when varying: the number of resource-rich nodes (R), the probability of a
resource-rich node being fake (p), the number of samples performed (σ), and the number of trustworthy nodes (|GTrustR|).

VII. EXPERIMENTAL SETUP

A small deployment of 6 Zolertia RE-Mote Rev.B were
used to perform testing, with the following roles: 1 as the
root, 2 and 6 as resource-rich Edge nodes, and 3, 4 and 5
as resource-constrained IoT nodes. All the sensor nodes were
present within each other’s communication range. Each of the
RE-Motes were connected to their own Raspberry Pi to log
output. The Raspberry Pi connected to the root node provided
network services (such as facilitating Edge node discovery) and
the Raspberry Pis connected to the Edge nodes ran the Edge
applications which required additional compute capability. A
sample application3 was implemented using [29] and performed
periodic environment monitoring every 1 min.

A simple challenge and response was implemented similar
to proof-of-work mining in blockchain [30]:

1) The resource-constrained node generates a random 32
bytes b, chooses a difficulty d and a deadline t and sends
this to the resource-rich node.

2) The resource-rich node searches for a prefix p to b such
that the first d bytes of SHA256(p‖b) are 0.

3) If the resource-rich node finds such a prefix within the
deadline t it returns that prefix to the resource-constrained
node, otherwise returns an empty byte string.

4) On receipt of the prefix, the resource-constrained node
validates the response by checking that the first d bytes
of SHA256(p‖b) are 0.

In these experiments, the difficulty d was set to 2 and the
deadline t was set to 40 s. If a correct response was received
after the deadline t it was not considered towards a positive
trust evaluation. A challenge was sent every 2 min to one
resource-rich node and then moves to the next resource rich
node in a circular list. In this scenario a challenge was sent to
a resource-rich node every 4 min.

Three sets of experiments were performed; (i) both resource-
rich nodes are permanently good, (ii) one resource-rich node
is permanently good and the other is permanently bad, and
(iii) one resource-rich node is permanently good and the other
is unstable. When a resource-rich node is unstable it switches
between acting good and bad every 20 min. When acting good

3Source code: https://github.com/MBradbury/iot-trust-task-alloc.

it correctly executes and responds to challenges. When acting
bad the resource-rich node chooses randomly between sending
an invalid response or not sending a response.

VIII. RESULTS

A. Cost of Executing Challenge

The graphs in Figure 3 show the cost of executing the
challenge. Both nodes were good, i.e., they correctly execute
the challenge and returned a response. The average number of
iterations to find a solution was 72 000± 11 700 (3 sf) with
an average execution duration of 1.52 s± 0.25 s (3 sf). These
values include 95% confidence intervals. Figure 3b shows that
the challenge generation does not greatly bias the difficulty of
the generated jobs submitted to different resource-rich nodes.

B. Two Good Resource-Rich Nodes

When both resource-rich nodes behave well there are few
events that cause a resource-constrained node to lose trust
in that resource-rich node. Two events that could happen are
due to network unreliability, where an acknowledgement of
receipt of a task fails to be received at the resource-constrained
node or the completed task fails to be delivered. These errors
are respectively named NO_ACK and TIMEOUT. When a loss
of trust occurs it is represented by a grey region, when a
resource-rich node is trusted it is indicated by a green region.

As can be seen in Figure 4 there are a few events that
cause temporary loss of trust in a resource-rich node. These
bad events cause the epoch number to increase, as does the
subsequent recovery. Without network unreliability issues these
instances would not have been observed. However, these results
show that the resource-constrained nodes are able to recover
from these transient network failures.

C. One Good and One Bad Resource-Rich Node

When there is one resource-rich node that is always good
and another that is always bad, the resource-constrained nodes
are able to classify them as such as shown in Figure 5. Once
a node is classified as untrustworthy it is not possible for
a resource-constrained node to ever change that opinion as
the resource-rich node will never produce a valid challenge
response in the future. As before, nodes that always behave

7

0 100000 200000 300000 400000 500000 600000 700000 800000
Iterations

0

2

4

6

8

10

12

14

16

T
im

e
T

ak
en

(s
ec

s)

wsn2

wsn6

(a) The number of prefixes searched to find
a solution versus the time taken.

wsn2 wsn6
Resource Rich Nodes

0

100000

200000

300000

400000

500000

600000

700000

800000

It
er

at
io

ns

(b) A comparison between the load caused
by the challenge on two different resource-
rich nodes.

Figure 3: Challenge performance when
both resource-rich nodes are good.

13:00 13:15 13:30 13:45 14:00 14:15 14:30 14:45 15:00
Time

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

E
p

o
ch

N
um

b
er

wsn3 evaluating rr2

wsn3 evaluating rr6

wsn4 evaluating rr2

wsn4 evaluating rr6

wsn5 evaluating rr2

wsn5 evaluating rr6

(a) Evolution of the Epoch number over time.

13:00 13:15 13:30 13:45 14:00 14:15 14:30 14:45 15:00
Time

wsn3
eval rr2

wsn3
eval rr6

wsn4
eval rr2

wsn4
eval rr6

wsn5
eval rr2

wsn5
eval rr6

S
ta

tu
s

ChallengeResponseType.NO ACK

ChallengeResponseType.TIMEOUT

(b) Times at which resource-constrained
nodes trusted resource-rich node. Events that
led to loss of trust are indicated.

Figure 4: Results for when both
resource-rich nodes 2 and 6 are good.

16:30 17:00 17:30 18:00 18:30 19:00
Time

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

E
p

o
ch

N
um

b
er

wsn3 evaluating rr2

wsn3 evaluating rr6

wsn4 evaluating rr2

wsn4 evaluating rr6

wsn5 evaluating rr2

wsn5 evaluating rr6

(a) Evolution of the Epoch number over time.

16:30 17:00 17:30 18:00 18:30 19:00
Time

wsn3
eval rr2

wsn3
eval rr6

wsn4
eval rr2

wsn4
eval rr6

wsn5
eval rr2

wsn5
eval rr6

S
ta

tu
s

ChallengeResponseType.NO ACK

ChallengeResponseType.TIMEOUT

ChallengeResponseType.RESPONSE

(b) Times at which resource-constrained
nodes trusted a resource-rich node. Events
that led to loss of trust are indicated.

Figure 5: Results for when resource-rich
node 2 is good and 6 is bad.

well can become suspect due to network unreliability, but the
resource-constrained nodes can eventually recover. An issue
here is that due to a lack of redundancy in the resource-rich
nodes available, a resource-constrained node may have no
suitable target to offload jobs to. Networks should be suitably
provisioned with sufficient resource-rich nodes such that the
likelihood of there being insufficient nodes to offload to is low.

In addition to the two previous errors that can cause a
resource-rich node to be added to the bad list, the RESPONSE
error is also present. This error occurs when a resource-rich
node returns an incorrect result that does not successfully
complete the challenge.

D. One Good and One Unstable Resource-Rich Node
Figure 6 shows results for when resource-rich node 2 was

always stable and resource-rich node 6 was unstable. Figure 6c
shows that while rr6 was acting bad, fewer jobs were offloaded
to it and instead rr2 was preferred. This is because the wsn
nodes were able to detect these periods of bad behaviour as
shown by the true negative time blocks in Figure 6d. In general
there is a period of falsely detecting a resource-rich node as
good before detecting it as bad followed by a period of falsely
detecting the resource-rich node as negative. This is caused by
the rate at which challenges are sent to the resource-rich nodes
leading to a period of out-of-date evaluation. The confusion
matrices in Table I show the accuracy of trust evaluation. There
is a high accuracy of identifying the correct behaviour of the

wsn3 wsn4 wsn5

rr2
[T U

AG 0.98 0.02
AB 0.0 0.0

] [T U

AG 0.98 0.02
AB 0.0 0.0

] [T U

AG 0.99 0.01
AB 0.0 0.0

]

rr6
[T U

AG 0.43 0.08
AB 0.08 0.41

] [T U

AG 0.43 0.08
AB 0.08 0.41

] [T U

AG 0.43 0.08
AB 0.08 0.41

]
Table I: Error matrices showing the percentage of time resource-
constrained nodes (wsn) considered resource-rich nodes (rr) as
being trusted or not. T = trusted, U = untrusted, AG = actually
good, AB = actually bad.

good rr2 node (>98%) and a lower but still high accuracy
(84%) in the unstable rr6 node.

It is important to consider the relation between the rate at
which challenges are sent to resource-rich nodes, the deadline
for the challenge, and the duration that resource-rich nodes
remain stable for. When the resource-rich behaviour changes
very frequently, the time between challenges and the duration
allowed for the challenge needs to be small in order to minimise
resource-constrained nodes incorrectly evaluating that status
of a resource-rich node. However, this leads to a high number
of challenge messages being sent, so a trade-off needs to be
made between accuracy and challenge frequency.

IX. CONCLUSION

In this paper, we have proposed a novel device called Σ
to capture trusted resource-rich nodes in an edge-based IoT

8

14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00
Time

0

5

10

15

20

E
p

o
ch

N
um

b
er

wsn3 evaluating rr2

wsn3 evaluating rr6

wsn4 evaluating rr2

wsn4 evaluating rr6

wsn5 evaluating rr2

wsn5 evaluating rr6

(a) Evolution of the Epoch number over time.

14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00
Time

wsn3
eval rr2

wsn3
eval rr6

wsn4
eval rr2

wsn4
eval rr6

wsn5
eval rr2

wsn5
eval rr6

S
ta

tu
s

ChallengeResponseType.NO ACK

ChallengeResponseType.TIMEOUT

ChallengeResponseType.RESPONSE

(b) Times at which resource-constrained nodes trusted resource-rich
nodes. Events that led to loss of trust are indicated.

14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00
Time

rr2

rr6

S
ta

tu
s

0

10

20

30

40

50

60

N
um

b
er

of
ta

sk
s

su
bm

it
te

d

to rr2

to rr6

(c) The true status of resource-rich nodes and the number of tasks
submitted to them in a time window where their behaviour was
stable.

14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00
Time

wsn3
eval rr2

wsn3
eval rr6

wsn4
eval rr2

wsn4
eval rr6

wsn5
eval rr2

wsn5
eval rr6

S
ta

tu
s

TP

TN

FP

FN

(d) Was the trust correctly evaluated? TP = trusted when good, TN
= untrusted when bad, FP = trusted when bad, FN = untrusted when
good.

Figure 6: Results for when resource-rich node 2 is good and 6 is unstable.

networks. We have shown the power of Σ in solving the
offloading problem. Our small scale deployment shows the
applicability of our approach. The main novelty is our approach
targets the lower level of the network stack, to provide trust
information to higher level applications, differently to current
approaches. This approach makes it suitable for resource
constrained IoT networks as extensive interaction histories
are not logged and decay model is eschewed in favour of a
proactive mechanism.

One limitation to our approach is that it only evaluates trust
in a resource-rich node based on its response to the submitted
challenges. This means that a resource-rich node could correctly
respond to a challenge, but then incorrectly respond to a per-
application task. Therefore, in future work we will investigate
a hybrid system of proactive challenges and reactive event
gathering to build a more accurate trust evaluator. We will also
investigate issues of period adjustments during system stability

for network efficiency.

ACKNOWLEDGEMENT

This work was supported by the PETRAS National Centre
of Excellence for IoT Systems Cybersecurity [EPSRC Grant
EP/S035362/1].

REFERENCES

[1] Cisco, “Cisco Annual Internet Report (2018–2023),”
San Jose, CA, USA, White Paper C11-741490-01, Mar.
2020. [Online]. Available: https://www.cisco.com/c/
en/us/solutions/collateral/executive-perspectives/annual-
internet-report/white-paper-c11-741490.pdf

[2] H. Habibzadeh, K. Dinesh, O. Rajabi Shishvan, A. Boggio-
Dandry, G. Sharma, and T. Soyata, “A Survey of Health-
care Internet of Things (HIoT): A Clinical Perspective,”
IEEE Internet of Things Journal, vol. 7, no. 1, pp. 53–71,
2020.

9

[3] L. U. Khan, I. Yaqoob, N. H. Tran, S. M. A. Kazmi,
T. N. Dang, and C. S. Hong, “Edge Computing Enabled
Smart Cities: A Comprehensive Survey,” IEEE Internet
of Things Journal, pp. 1–1, 2020.

[4] T. Qiu, J. Chi, X. Zhou, Z. Ning, M. Atiquzzaman, and
D. O. Wu, “Edge Computing in Industrial Internet of
Things: Architecture, Advances and Challenges,” IEEE
Communications Surveys Tutorials, pp. 1–1, 2020.

[5] P. Taylor, L. Barakat, S. Miles, and N. Griffiths, “Reputa-
tion assessment: a review and unifying abstraction,” The
Knowledge Engineering Review, vol. 33, p. e6, 2018.

[6] H. Yu, Z. Shen, C. Leung, C. Miao, and V. R. Lesser,
“A Survey of Multi-Agent Trust Management Systems,”
IEEE Access, vol. 1, pp. 35–50, 2013.

[7] A. Jøsang and R. Ismail, “The Beta Reputation System,”
in 15th Bled Electronic Commerce Conference, Bled,
Slovenia, 17–19th June 2002.

[8] T. D. Chandra and S. Toueg, “Unreliable Failure Detectors
for Reliable Distributed Systems,” Journal of the ACM,
vol. 43, no. 2, pp. 225–267, Mar. 1996.

[9] E. Aivaloglou, S. Gritzalis, and C. Skianis, “Trust Estab-
lishment in Ad Hoc and Sensor Networks,” in Critical
Information Infrastructures Security, J. Lopez, Ed. Berlin,
Heidelberg: Springer, 2006, pp. 179–194.

[10] E. ElSalamouny, V. Sassone, and M. Nielsen, “HMM-
Based Trust Model,” in Formal Aspects in Security and
Trust, P. Degano and J. D. Guttman, Eds. Berlin,
Heidelberg: Springer, 2010, pp. 21–35.

[11] Y. Wang, I. Chen, J. Cho, and J. J. P. Tsai, “Trust-Based
Task Assignment With Multiobjective Optimization in
Service-Oriented Ad Hoc Networks,” IEEE Transactions
on Network and Service Management, vol. 14, no. 1, pp.
217–232, 2017.

[12] E. ElSalamouny, K. T. Krukow, and V. Sassone, “An
analysis of the exponential decay principle in probabilistic
trust models,” Theoretical Computer Science, vol. 410,
no. 41, pp. 4067–4084, 2009.

[13] E. ElSalamouny and V. Sassone, “An HMM-Based Repu-
tation Model,” in Advances in Security of Information and
Communication Networks, A. I. Awad, A. E. Hassanien,
and K. Baba, Eds. Berlin, Heidelberg: Springer, 2013,
pp. 111–121.

[14] M. J. Probst and Sneha Kumar Kasera, “Statistical trust
establishment in wireless sensor networks,” in 2007
International Conference on Parallel and Distributed
Systems, 2007, pp. 1–8.

[15] O. Gnawali, R. Fonseca, K. Jamieson, M. Kazandjieva,
D. Moss, and P. Levis, “CTP: An Efficient, Robust, and
Reliable Collection Tree Protocol for Wireless Sensor
Networks,” ACM Trans. Sen. Netw., vol. 10, no. 1, pp.
16:1–16:49, Dec. 2013.

[16] P. Mach and Z. Becvar, “Mobile Edge Computing: A
Survey on Architecture and Computation Offloading,”
IEEE Communications Surveys Tutorials, vol. 19, no. 3,
pp. 1628–1656, 2017.

[17] D. Wu, G. Shen, Z. Huang, Y. Cao, and T. Du, “A

Trust-Aware Task Offloading Framework in Mobile Edge
Computing,” IEEE Access, vol. 7, pp. 150 105–150 119,
2019.

[18] S. Pan, Z. Zhang, Z. Zhang, and D. Zeng, “Dependency-
Aware Computation Offloading in Mobile Edge Comput-
ing: A Reinforcement Learning Approach,” IEEE Access,
vol. 7, pp. 134 742–134 753, 2019.

[19] F. Samie, V. Tsoutsouras, L. Bauer, S. Xydis, D. Soudris,
and J. Henkel, “Computation offloading and resource
allocation for low-power IoT edge devices,” in 3rd World
Forum on Internet of Things. IEEE, 2016, pp. 7–12.

[20] M. Chen and Y. Hao, “Task Offloading for Mobile Edge
Computing in Software Defined Ultra-Dense Network,”
IEEE Journal on Selected Areas in Communications,
vol. 36, no. 3, pp. 587–597, 2018.

[21] A. Shakarami, A. Shahidinejad, and M. Ghobaei-Arani,
“A review on the computation offloading approaches in
mobile edge computing: A game-theoretic perspective,”
Software: Practice and Experience, vol. 50, no. 9, pp.
1719–1759, 2020.

[22] J. Li, M. Dai, and Z. Su, “Energy-aware Task Offloading
in Internet of Things,” IEEE Wireless Communications,
pp. 1–6, 2020.

[23] Zolertia, “Zolertia RE-Mote Revision B Internet of
Things hardware development platform, for 2.4-GHz and
863-950MHz IEEE 802.15.4, 6LoWPAN and ZigBee®
Applications,” Barcelona, Spain, Datasheet ZOL-RM0x-B,
Sep. 2016, v1.0.0.

[24] L. Lamport, R. Shostak, and M. Pease, “The byzantine
generals problem,” ACM Transactions on Programming
Languages and Systems, vol. 4, no. 3, pp. 382–401, Jul.
1982.

[25] T. D. Chandra, V. Hadzilacos, and S. Toueg, “The Weakest
Failure Detector for Solving Consensus,” Journal of the
ACM, vol. 43, no. 4, pp. 685–722, Jul. 1996.

[26] F. C. Gärtner and S. Pleisch, “Failure Detection Sequen-
cers: Necessary and Sufficient Information about Failures
to Solve Predicate Detection,” in Distributed Computing,
D. Malkhi, Ed. Berlin, Heidelberg: Springer, 2002, pp.
280–294.

[27] A. Arora and S. S. Kulkarni, “Detectors and correctors:
a theory of fault-tolerance components,” in Proceedings.
18th International Conference on Distributed Computing
Systems (Cat. No.98CB36183), 1998, pp. 436–443.

[28] B. Alpern and F. B. Schneider, “Defining liveness,”
Information Processing Letters, vol. 21, no. 4, pp. 181–
185, 1985.

[29] M. Bradbury, A. Jhumka, and T. Watson, “Trust Assess-
ment in 32 KiB of RAM: Multi-application Trust-based
Task Offloading for Resource-constrained IoT Nodes,” in
Proceedings of the Symposium on Applied Computing,
ser. SAC’21. ACM, 22–26 March 2021, pp. 1–10, To
Appear.

[30] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic
Cash System,” techreport, 2008. [Online]. Available:
https://bitcoin.org/bitcoin.pdf

10

