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Abstract—In mobile edge computing (MEC) systems, users
offload computationally intensive tasks to edge servers at base
stations. However, with unequal demand across the network,
there might be excess demand at some locations and underutilized
resources at other locations. To address such load-unbalanced
problem in MEC systems, in this paper we propose virtual
machines (VMs) sharing across base stations. Specifically, we
consider the joint VM placement and pricing problem across base
stations to match demand and supply and maximize revenue at
the network level. To make this problem tractable, we decompose
it into master and slave problems. For the placement master
problem, we propose a Markov approximation algorithm MAP
on the design of a continuous time Markov chain. As for
the pricing slave problem, we propose OPA - an optimal VM
pricing auction, where all users are truthful. Furthermore, given
users’ potential untruthful behaviors, we propose an incentive
compatible auction iCAT along with a partitioning mechanism
PUFF, for which we prove incentive compatibility and revenue
guarantees. Finally, we combine MAP and OPA or PUFF to solve
the original problem, and analyze the optimality gap. Simulation
results show that collaborative base stations increases revenue by
up to 50%.

Index Terms—Edge Computing, Network Economics

I. INTRODUCTION

Mobile Edge Computing (MEC) is an enabler of excit-
ing new technologies and applications like deep learning on
devices, virtual and augmented reality, and smart city data
analytics. These exciting new technologies and applications
have high computation requirements. MEC enables them by
allowing users to offload computationally intensive tasks to
the network edge (e.g., base stations in cellular networks and
access points in WiFi networks), which are equipped with
computing capability by connecting to the edge servers [1].
With servers placed at the network edge near the end users,
Wide-area-network (WAN) delay is avoided, allowing it to
meet the stringent latency requirements of delay sensitive
tasks, that cloud computing is unable to [2].

Unlike cloud computing, the computational resources at the
edge server are limited. Hence optimizing resource allocation
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in MEC is an important research question. In particular, de-
mand for computation is uneven across the network. Leading
to excess demand at some coverage areas, and underutilized
resources at others. In this load-unbalanced scenario, there
are users not being served, and from the network operator’s
perspective, resources are not efficiently utilized and revenue
is not maximized. This prompts a global optimization and
organization of resources over the network, to place resources
more effectively in light of the network’s demand pattern.

Virtual machine (VM) migration is perceived as a promising
way to solve the load-unbalanced scenario [3]. There have
been works on VM migration in MEC [4]–[8]. These works
investigate at the level of a single user, in response to user
mobility. In contrast, there has been a lack of work from
the global perspective. To this end, we propose the idea of
“Collaborative Base Stations”, where base stations share their
VMs with each other. This involves the migration of VMs, in
accordance with the relative demand across base stations. In
particular, we consider a joint optimization of VM placement
and pricing at base stations to match the demand and supply
from the network level. A joint formulation is used because on
one hand, the price at one base station has an impact on users’
demand, which affects the VM placements. On the other hand,
VM placement determines the resource supply at one base
station. This way, users’ demand will be satisfied as much as
possible and the revenue across the network is maximized.

However, some difficulties arise when solving the formu-
lated joint VM Migration and Pricing for Profit maximization
problem (MPP). Firstly, there is a sophisticated coupling of
the price and VM placement variables, making it difficult
to solve MPP directly. Secondly, MPP is a combinatorial
optimization problem, with the number of VMs deployed at
each base station being integers. It could be intractable, when
the number of base stations increases and the total number
of VMs deployed at the edge increases. Thirdly, the pricing at
one base station is affected by the demand and bid information
reported by the user. Users’ potential untruthful behaviors
make pricing at base stations challenging.

To tackle these difficulties, we first use primal decom-
position to decouple the variables, decomposing MPP into
the slave problem NP - Normalized Pricing problem, and
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master problem VP - VM Placement problem. Next, we
propose an online Markov approximation enabled algorithm
which solves the combinatorial VP in a distributed manner.
This helps to deal with the potential intractability when the
problem size gets large. It does so by modelling the different
VM configurations as states of a Continuous Time Markov
Chain (CTMC). The VM migrations happen according to the
transition rate of the CTMC, which is in turn dependent on the
performance level (revenue) of the placement configurations.
How is the revenue of the VM placement configurations
obtained? We solve NP to obtain the optimal revenue for each
placement configuration. Specifically, at each base station we
conduct either OPA - the Optimal Pricing Auction, or iCAT -
an incentive CompAtible Truthful auction, which ensures users
are truthful. iCAT guarantees the revenue R, when R is less
than or equal to the optimal. To successfully estimate R, we
further present a user partitioning mechanism. The results of
the auction will be fed back to the base station and network
operator, directly influencing the transition rates of the CTMC.

Our contributions are summarized as follows:

• To deal with unequal demand across the MEC coverage
areas, we formulate a joint VM migration and pricing
problem across base stations to match demand and supply
at the network level. This works towards ensuring that
user demand is met, resource placement is optimized
globally, and the operator’s revenue is maximized.

• Due to 1) the combinatorial nature of the problem, 2) the
coupling of price and placement variables, and 3) users
having the incentive to hide their true valuations, we use
primal decomposition to decompose the problem into a
master and slave problem. For the master VM placement
problem, we present MAP, a Markov approximation-
enabled algorithm which solves the combinatorial prob-
lem in a distributed manner at individual base stations.

• To solve the pricing problem, we present an optimal pric-
ing auction OPA, and prove that it is optimal. Besides, as
users might have an incentive to hide their true valuations,
we present an incentive compatible auction iCAT, prove
that it is dominant strategy incentive compatible and
that its revenue is R, when R is less than or equal
to the optimal. To estimate the target R, we present
a user partitioning algorithm PUFF, and prove that its
competitive ratio is 4.

• We present the combined algorithm cMAP which solves
our original joint VM placement and pricing problem,
with an optimality gap of 1

β log|V|. Following which,
we conduct a perturbation analysis and show that the
optimality gap of the stationary distribution caused by
potential perturbations is bounded by 1−exp(−2βψmax),
where ψmax is the perturbation error.

• Finally, we provide simulation results which show that
our proposed solution cMAP: MAP + OPA converge
to optimality, and analyze the impact of β. While the
performance of cMAP: MAP + PUFF is not optimal, it
has a competitive ratio of 4, as we have proved. Results

show that our mechanism cMAP increases revenue by up
to 50%, compared to the baseline where base stations do
not collaborate and VMs are not migrated.

The rest of this paper is organized as follows. In Section II,
we introduce related works. The system model and problem
formulation are given in Section III, which is followed by
the optimal VM placement algorithm and the auction pricing
algorithms in Sections IV and V. In Section VI, we give
the complete implementation and analysis. In Section VII we
discuss simulations results and in Section VIII we conclude.

II. RELATED WORKS

There are two mainstream ways to address the load-
unbalanced problems for efficient resource utilization in MEC
systems. On this basis we introduce the related works.

The first way is to optimize users’ task offloading decisions,
i.e. whether or not to offload, and which base station the user
offloads to [1], [3]. In this way, the computing resources at
base stations are fixed and the users are handovered among
base stations. For instance, [9]–[11] have optimized task
offloading to strike a balance between energy consumption
and delay from the perspective of users. [12] studied the static
edge server placement problem. [13]–[15] aimed to maximize
the network revenue through task offloading.

This paper considers an alternative way, in which the
computing resources are migrated among base stations to serve
the associated users. Particularly, VM migration in MEC draws
attention in industry and academic fields [3], [16], [17]. (Note
that while there has been work on VM placement or migration
for revenue maximization in clouds [18], [19], these works are
specific with respect to data center topologies.) Most of the
work on VM or service migration in MEC focus on improving
user experience (e.g. reducing delay), in light of user mobility
[4]–[8]. For example in [4] Plachy et al. proposed a dynamic
VM placement and communication path selection algorithm.
In [5] Taleb et al. optimized a policy on the service migration
decision, given the user’s distance. In [6], Ouyang et al.
used Lyapunov optimization to optimize the placements over
different timeslots. Another line of research regarding VM
migration looks at how it can maximize network profit or
revenue. In [20], Sun et al. optimized the tradeoff between
maximizing the migration gain and minimizing the migration
cost. In this work, we investigate from a novel perspective. We
look at VM migration in MEC at a global level, in light of the
network’s demand patterns, for revenue maximization. And we
formulate a joint VM migration and pricing problem because
the price and migration decisions have a coupled impact on
revenue. To the best of our knowledge, we do not know of
many other works which take this approach.

Our proposed incentive compatible auctions and their proofs
borrow from, but are different from the Profit Extractor and
Random Sampling Auction in [21], [22]. Profit Extractor and
Random Sampling Auction cater to fully digital goods, with
zero marginal cost of producing the next good, and hence an
infinite supply. Unlike this, our network has a limited supply
of VMs, resulting in unique novel algorithms and proofs.



III. SYSTEM MODEL AND PROBLEM FORMULATION

Consider an MEC system with K base stations with
heterogeneous computing capability. Each base station k is
equipped with an edge server containing vk VMs. These are
virtualised computing resources which users can offload their
computationally intensive tasks to, at a price of pk. Since the
base stations are controlled by the same network operator,
these VMs can be migrated from one base station to another, to
optimize the utilization of resources. This global coordination
of resources will help to deal with load-unbalanced scenarios
where there are excess demands in one coverage area, and
underutilized resources in another part of the network.

Each base station k has a set of users [1, ..., i, ..., nk] ∈ Uk
which are associated with it. Each user i offloads its com-
putationally intensive tasks to the edge server for auxiliary
processing. Different users require different number of VMs,
with user i at base station k requiring rk,i VMs. At base station
k, different users respond differently to the price pk.

A user i at base station k has willingness to pay uk,i. The
willingness to pay can be viewed as the utility a user gets from
job computation using the VM. Different users have different
willingness to pay. For example, a user with a more urgent job
would have a higher willingness to pay than a user who is not
as urgent. A user who will execute the job no matter what, with
less regard of the price would have a higher willingness to pay
(e.g., IoT sensors’ periodic data analytics). A user will decide
to execute its job if its payoff πk,i = uk,i−pk is non-negative,
i.e. if utility minus payment is greater than 0 (πk,i ≥ 0).
Therefore, the demand (total number of VM requests) at base
station k will be

∑
i∈Uk

rk,i1{uk,i>pk}, where 1{uk,i>pk} is
the indicator function representing whether user i’s willingness
to pay is higher than pk.

The demand for VMs at each base station k could be higher
or lower than the supply vk. Hence, the network operator
would perform a global optimization of VMs, shifting them to
locations with higher demand, to achieve a higher utilization
of resources and to optimize its profit. At the same time, the
network operator sets prices pk differently across coverage
areas, to obtain the highest possible revenue, in light of the
varying demand across the network. The joint Migration and
Pricing for Profit maximization problem (MPP) is as follows:

MPP : max
p,v

K∑
k=1

pk min

{∑
i∈Uk

rk,i1{uk,i≥pk}, vk

}
s.t. vk ∈ Z+

0 , k = 1, ...,K
K∑
k=1

vk = V,

(1)

where V is the total number of VMs, placed by the net-
work operator across K base stations. Besides, Z+

0 indi-
cates the set of non-negative integers. In MPP, the deci-
sion variables are the prices across the various base stations
p = [p1, ..., pk, ..., pK ], in which each element is normalized
(i.e., pk ∈ [0, 1]) without loss of generality, and the VM
placements across the network v = [v1, ..., vk, ..., vK ]. The

objective function is the sum of the revenue obtained across
base stations. In particular, it is the price multiplied by the
number of units of demand which is met with supply.

Some difficulties arise when solving MPP. Firstly, MPP is
a combinatorial optimization problem, with vk being integers.
It could be intractable, when the number of base stations
increases and the total number of VMs increases. Even if we
relax vk to continuous values, the problem is still non-convex.
Secondly, there is a coupling of p and v in the objective
function, making it difficult to solve MPP directly.

To tackle the difficulties in solving MPP, firstly we use
primal decomposition [23], such that MPP is decomposed into
slave problem NP - Normalized Pricing problem, and master
problem VP - VM Placement problem. Specifically, fixing v,
the slave problem is as follows:

NP : max
p

K∑
k=1

pk min

{∑
i∈Uk

rk,i1{uk,i≥pk}, vk

}
. (2)

Given the optimal solution from the slave problem, the master
problem updates the VM migration decisions:

VP : max
v

Φ∗v

s.t. v ∈ V,
(3)

where Φ∗v is the optimal value of NP for the given v and
V = {v|

∑K
k=1 vk = V

⋂
vk ∈ Z+

0 , k = 1, ...,K} is the set of
all possible VM placements across the network, with size |V|.

Following this, we propose a distributed Markov Approxi-
mation implementation to solve VP. And finally, we propose
both optimal and incentive compatible auction mechanisms to
solve NP. We discuss the details in the following sections.

IV. THE OPTIMAL VM PLACEMENT ALGORITHM

In this section, we will show how we solve the master prob-
lem VP. Particularly, we first reformulate and approximate VP
and then, propose a Markov approximation-enabled algorithm,
named MAP - Markov Approx VM Placement algorithm.

A. Reformulating and Approximating VP
The master problem VP can be rewritten as

VP-EQ : max
πv

∑
v∈V

πvΦ∗v

s.t. 0 ≤ πv ≤ 1,∀v ∈ V∑
v∈V

πv = 1,

(4)

where πv could be seen as the proportion of time spent in
configuration v.

VP is an NP hard combinatorial optimization problem,
and hence challenging to solve, even for a centralized im-
plementation. Even if we relax vk to continuous values, the
problem is still non-convex. Therefore, we use the log-sum-
exp approximation f(Φ∗v) = 1

β log(
∑

v∈V exp(βΦ∗v)) to ap-
proximate VP-EQ. This approximation allows for a distributed
implementation at individual base stations. This is useful when
the system dynamics change - when new users enter, or when



users move from coverage area to area. This approximation is
upper bounded by 1

β log|V|, following Proposition 1 [24]:

Proposition 1. For β > 0, we have

max
v

Φ∗v ≤
1

β
log(

∑
v∈V

exp(βΦ∗v)) ≤ max
v

Φ∗v +
1

β
log|V|. (5)

Therefore, maxv Φ∗v = limβ→∞
1
β log(

∑
v∈V exp(βΦ∗v)),

i.e., the approximation tends towards VP-EQ for large β. As
the log-sum-exp function is a closed and convex function,
the conjugate of its conjugate is itself, and hence we have
1
β log(

∑
v∈V exp(βΦ∗v )) =

∑
v πvΦ∗v− 1

β

∑
v πv log πv, accord-

ing to [24], [25]. Therefore the log-sum-exp approximation of
VP-EQ is equivalent to the following problem

VP-approx : max
πv

∑
v

πvΦ∗v −
1

β

∑
v

πv log πv

s.t. 0 ≤ πv ≤ 1,∀v ∈ V∑
v∈V

πv = 1.

(6)

By solving the KKT conditions of VP-approx, the optimal
solution is achieved in Theorem 1.

Theorem 1. The optimal solution to VP-approx is

π∗v =
exp(βΦ∗v)∑

v∈V exp(βΦ∗v)
. (7)

Proof. Let λ be the Lagrange multiplier associated with the
constraint

∑
v∈V πv = 1. The Lagrangian of VP-approx will

then be

L(πv, λ) =
∑
v∈V

πvΦ∗v −
1

β

∑
v∈V

πv log πv − λ(
∑
v∈V

πv − 1). (8)

Therefore, the KKT conditions will be:

Φ∗v −
1

β
(log π∗v + 1)− λ = 0, ∀v ∈ V, (9)∑

v∈V
πv = 1, (10)

λ ≥ 0. (11)

Solving the KKT conditions for the primal and dual op-
timal points π∗v and λ∗, we obtain π∗v = exp(β(Φ∗v −
λ) − 1). Using the constraint

∑
v∈V πv = 1, we obtain

λ∗ = 1
β log

∑
v exp(βΦ∗v − 1). Finally, substituting λ∗ into

π∗v = exp(β(Φ∗v − λ)− 1), we obtain (7).
Therefore, by time-sharing among VM placement config-

urations according to the probability distribution π∗v , we are
able to solve VP-approx, and hence VP-EQ, VP, and MPP
approximately.

B. Solving VP: Algorithm design

The idea consists of designing a Markov Chain, in which
the state space is the space of possible VM placement config-
urations |V|, and the stationary distribution is π∗v , the optimal
solution to VP-approx. This would allow us to solve the joint

VM placement and pricing problem MPP with an optimality
gap of 1

β log|V|. To help us in the construction of the Markov
chain, we use the following result from [25]:

Lemma 1. For any distribution of the form π∗v in (7), there
exists at least one continuous-time time-reversible ergodic
Markov chain whose stationary distribution is π∗v .

A continuous time-reversible markov chain (CTMC) is
completely defined by its state space and transition rate. We
let the state space be the space of possible VM placement
configurations V. The transition rate qvv′ indicates the rate
at which the CTMC shifts from placement configuration v
to v′. According to [25], for the CTMC to converge to
stationary distribution π∗v , it needs to satisfy the following two
conditions: 1) Irreducibility, meaning that any two states of the
CTMC are reachable from each other. 2) Satisfaction of the
detailed balanced equation: for any v, v′ ∈ V, π∗v qvv′ = π∗v′qv′v.
In other words, exp(βΦ∗v)qvv′ = exp(βΦ∗v′)qv′v based on (7).

Condition 1 can be satisfied because any two states (place-
ment configurations) are reachable from each other. For Con-
dition 2, let us set qvv′ = 0 for any two states which involve
the migration of more than one VM from one base station
to another. This is done to reduce the computation required,
especially when the network is large. For states which involve
the migration of only one VM, we have

qvv′ = exp(
1

2
β(Φ∗v′ − Φ∗v)). (12)

The detailed balance equation will be satisfied. The transition
rate qvv′ is exponentially proportional to the performance
of the target minus current VM placement configuration.
Therefore, when the performance (optimal revenue) of the
target configuration is relatively higher than the current, there
will be a higher transition rate, and vice versa.

The performance of each configuration v is equivalent to its
revenue obtained. In the next section, we show how to obtain
the optimal revenue given a VM placement configuration v.
In particular, we propose auction mechanisms to solve the
slave problem NP. Following which, we will show how the
algorithms solving the master problem VP and slave problem
NP are combined to solve the original problem MPP.

V. THE AUCTION PRICING MECHANISMS

In this section, we show how the slave problem NP can be
solved. Specifically, NP defined in (2), can be decomposed
into individual pricing problems for each base station, where
each base station k solves the following problem:

NP-k : max
pk

pk min

{∑
i∈Uk

rk,i1{uk,i≥pk}, vk

}
. (13)

NP-k can be solved by an auction. We provide two solutions,
firstly OPA - Optimal Pricing Auction, which assumes the
users are truthful, submitting bids bk,i equal to their true
valuations uk,i, and then PUFF - Partitioning Users For truth-
Fulness mechanism, which includes an incentive CompAtible
Truthful auction iCAT. Our auction mechanisms are prior



free, since they can be carried out without knowledge on the
distribution of users’ valuations uk,i .

A. The Optimal Pricing Auction (OPA)

The mechanics behind OPA are as follows: users submit
tuple (rk,i, bk,i) to base station k, where rk,i is the amount
of VMs requested by user i at base station k, and bk,i is
the bid indicating the user’s willingness to pay for one VM.
Since all users are truthful, the bid reported by the user is
equal to its valuation (i.e., bk,i = uk,i). At price pk, all users
with valuation uk,i ≥ pk will be willing to participate in the
auction. Then, we prove the optimal price will be p∗k ∈ Bk =
Uk in Theorem 2, where Bk and Uk are the set of bids and
valuations for users at base station k, respectively.

Theorem 2. When all users are truthful, the optimal price of
NP-k, termed as p∗k, is found in Bk = Uk.

Proof. When all users are truthful, we have Bk = Uk. Then,
we prove that p∗k is found in Bk.

For the case with pk > maxi∈Uk
bk,i = maxi∈Uk

uk,i,
1{bk,i≥pk} = 1{uk,i≥pk} = 0 holds, such that all users
would reject to rent the VMs at base station k. There-
fore, the revenue attained at base station k is Rev(pk) =
pk min{

∑
i∈Uk

rk,i1{uk,i≥pk}, vk} = 0.
Then, we analyse the case with pk < maxi∈Uk

bk,i. Rear-
range Bk in descending order and denote the set of ordered
bids by {b1, b2, ..., bnk

}, where bi represents the i-th highest
bid. Using the fact that bk,i = uk,i, we have

Rev(pk = bi − ε) = (bi − ε) min

{∑
i∈Uk

rk,i1{bk,i≥(bi−ε)}, vk

}

< bi min

{∑
i∈Uk

rk,i1{bk,i≥bi}, vk

}
= Rev(pk = bi),

(14)
where ε < bi − bi−1, no new users rent the VMs at
base station k by changing the price from pk = bi to
pk = bi − ε, that is, min

{∑
i∈Uk

rk,i1{bk,i≥(bi−ε)}, vk
}

=

min
{∑

i∈Uk
rk,i1{bk,i≥bi}, vk

}
hold. Based on (14), we thus

conclude that p∗k lies in Bk.
Using this insight that the optimal price belongs to the

set of bids, the structure of our proposed OPA is summa-
rized in Algorithm 1. In detail, after receiving the tuple
(rk,i, bk,i) from all the users, base station k will sort them
into descending order with respect to bk,i. For each unique
bid bk,i, the platform will set p̄k = bk,i, and calculate
the revenue Rev(p̄k) = p̄k min{

∑
i∈Uk

rk,i1{uk,i≥p̄k}, vk}.
Following which, it will optimize over p̄k and achieve p∗k =
argmaxp̄k=bk,i,∀i∈Uk

Rev(p̄k).

B. The Incentive CompAtible Truthful Auction (iCAT)

In reality, users may have an incentive to submit bids
unequal to their true valuations (i.e. bk,i 6= uk,i), hoping
to achieve a higher payoff. Therefore, we present incentive

Algorithm 1 OPA: Optimal Pricing Auction
1: Input: Tuple (rk,i, bk,i),∀i ∈ Uk
2: Sort (rk,i, bk,i) according to descending order with respect

to bk,i.
3: for all unique bk,i do
4: Set p̄k = bk,i
5: Rev(p̄k)← p̄k min{

∑
i∈Uk

rk,i1{uk,i≥p̄k}, vk} . By
Eq. (13)

6: end for
7: Output: p∗k ← argmaxp̄k=bk,i,∀i∈Uk

Rev(p̄k)
8: end

compatible auction mechanism iCAT, by which the user’s
dominant strategy is to be truthful.

Given a target revenue R, the auction mechanism will
post price pk = R

min{
∑

i∈Uk
rk,i,vk} , where

∑
i∈Uk

rk,i is the
total demand of the users currently in the auction. Users
will decide whether or not to accept the offer by weighing
if their payoff pk − uk,i is not lesser than 0 (individual
rationality met). If any user i rejects the offer, he is removed
from future rounds of the auction. Then, the set of users
in the auction is updated as Uk ← Uk \ {i}. The process
repeats: base station k obtains the new demand

∑
i∈Uk

rk,i
of users currently in the auction, and broadcasts the new
price pk = R

min{
∑

i∈Uk
rk,i,vk} . If all users remaining in the

auction accept the offer, they will be the winners, paying
the last offer price pk. Therefore, base station k would rent
min{

∑
i rk,i1{uk,i≥pk}, vk} units of VMs to users with bids

in the set Uk at price pk = R
min{

∑
i∈Uk

rk,i1{uk,i≥pk},vk}
.

The complete iCAT is summarized in Algorithm 2. The
main idea behind this mechanism is that it prunes the set
of auction users until it obtains a set Uk where: the users
in Uk are willing to pay pk = R

min{
∑

i∈Uk
rk,i,vk} , the price

at which the base station obtains revenue R given demand∑
i∈Uk

rk,i. Note that our auction mechanism does not involve
the users submitting any bids bk,i. Truthfulness is ensured
via the structure of the mechanism, as proved in Theorem
3. In particular, we prove that iCAT is dominant strategy
incentive compatible, meaning that being truthful gives the
users a higher payoff compared to any other strategy.

Theorem 3. Mechanism iCAT is dominant strategy incentive
compatible.

Proof. If a user rejects an offer, he will be out of the auction
and unable to participate in the next round, hence getting a
payoff of 0. Therefore rejecting pk, when pk < uk,i, is a
dominated strategy.

Likewise, accepting pk > uk,i is a dominated strategy, since
prices will rise the next round. Therefore the dominant strategy
for every user i is to report his true value uk,i.

The following theorem provides an optimality guaran-
tee for iCAT. It uses the benchmark OptRev≥2(Uallk ) =
maxpk pk min{

∑
i∈Uall

k
rk,i1{uk,i≥pk}, vk}, which has a re-

quirement of at least two users being in the market. This is



Algorithm 2 iCAT: incentive CompAtible Truthful Auction
1: Input: Initialize Uk, the number of VMs required by user
i (rk,i), and target revenue R at base station k.

2: while Uk is not empty do
3: Base station k posts price pk = R

min{
∑

i∈Uk
rk,i,vk} ;

4: if uk,i < pk for any user i ∈ Uk then
5: User i rejects to join in the auction;
6: Base station k updates Uk ← Uk \ {i};
7: else
8: All users in Uk would join in the auction;
9: Exit while loop;

10: end if
11: end while
12: Output: pk ← R

min{
∑

i∈Uk
rk,i, vk} and Rev(pk)← R with

Uk not empty, otherwise, pk ← 0 and Rev(pk)← 0.
13: end

not a serious constraint in light of the number of users at one
base station. Besides, we use Uallk to indicate the initial Uk in
iCAT, that is, the total number of users at base station k.

Theorem 4. The mechanism iCAT achieves a revenue of R if
OptRev≥2(Uallk ) ≥ R, and a revenue of 0 otherwise.

Proof. According to Theorem 2, we have

OptRev≥2(Uallk ) = u∗k,x min

 ∑
i∈U∗k,x

rk,i, vk

 , (15)

for some u∗k,x and U∗k,x = {i|uk,i ≥ u∗k,x}.
If OptRev≥2(Uallk ) > R, then some uk,x not equal to u∗k,x

could be found to obtain a revenue Rev(uk,x) equal to R. On
the contrary, if OptRev≥2(Uallk ) < R, by (15) we will not be
able to find any uk,x satisfying uk,x ≥ R

min{
∑

i∈Uall
k

rk,i,vk} .

According to line 12 in Algorithm 2, a revenue of 0 is obtained
in this case. Besides, for the case with OptRev≥2(Uallk ) = R,
the revenue of R is achieved naturally.

Intuitively, the target revenue R plays a key role in iCAT.
How shall the base station estimate R? For truthfulness, we
want R to be estimated independently of the bidders we run
auction iCAT on. Hence, we further propose a partitioning
mechanism PUFF - Partitioning Users For truthFulness, for
the base station to estimate R while preserving truthfulness.

C. Partitioning Users For Truthfulness (PUFF)

The operations of PUFF are as follows: We partition the set
of all users into two sets. Following which, we calculate the
optimal revenues R1 and R2 for each set. Next, we use the
optimal revenues as ’estimates of R’ for the opposing set and
run iCAT in each set. Note that when the total supply is less
than the total demand, we will run the separate auctions using
bvk/2c and dvk/2e number of VMs. The complete PUFF is
summarized in Algorithm 3.

In the following theorem, we show that PUFF is truthful.

Theorem 5. Mechanism PUFF is dominant strategy truthful.

Algorithm 3 PUFF: Partitioning Users For truthFulness Mech-
anism

1: Input: Initialize Uk and the number of VMs required by
user i (rk,i).

2: Randomly partition Uk into two sets S1 and S2 of equal
size.

3: if
∑
i∈Uk

rk,i > vk then
4: Calculate R1 = optimal revenue of S1 given bvk/2c

VMs, and R2 = optimal revenue of S2 given dvk/2e
VMs;

5: Run auction iCAT(S1, bvk/2c, R2) on set S1, and
iCAT(S2, dvk/2e, R1) on set S2.

6: else
7: Calculate R1 = optimal revenue of S1 given vk VMs,

and R2 = optimal revenue of S2 given vk VMs.
8: Run auction iCAT(S1, vk, R2) on set S1, and

iCAT(S2, vk, R1) on set S2.
9: end if

10: end

Proof. Auction iCAT is truthful when implemented with an
R estimated independently of the users it is run on.

Next, we state a lemma which helps us towards proving
lower bounds on the performance of PUFF.

Lemma 2. The revenue of PUFF is at least min(R1, R2).

Proof. Either R1 > R2, R2 > R1, or R1 = R2 holds in the
PUFF. Therefore, at least one auction out of iCAT(S1, R2)
and iCAT(S2, R1) succeeds, i.e. gets a revenue of above 0,
giving a revenue of min(R1, R2, R1 +R2).

Following which, we prove bounds on the optimality gap
of PUFF, proving that its competitive ratio is 4, in a special
case where all users i request one VM, i.e., rk,i = 1.

Theorem 6. Assume rk,i = 1 for all users. Let Rev be the
expected revenue of PUFF. We will have Rev

OptRev≥2
(Uall

k )
≥ 1

4 .

Proof. We know from Theorem 2 that OptRev≥2(Uallk ) =
u∗k,x min{

∑
i∈U∗k,x

rk,i, vk} for some u∗k,x and U∗k,x =

{i|uk,i ≥ u∗k,x}. Let D =
∑
i∈Uall

k
rk,i and S = vk.

Further, we first analyse the case where D ≥ S. Given this
u∗k,x, we will have R1 ≥ uk,x min{

∑
i∈U∗k,x∩S1

rk,i, bvk/2c}
and R2 ≥ uk,x min{

∑
i∈U∗k,x∩S2

rk,i, dvk/2e}. Therefore, we
deduce that

Rev

OptRev≥2(Uallk )

(a)

≥ E[min(R1, R2)]

u∗k,x min{
∑
i∈U∗k,x

rk,i, vk}
(b)

≥
E[min(u∗k,x min{A, bvk/2c}, u∗k,x min{B, dvk/2e})]

u∗k,x min{
∑
i∈U∗k,x

rk,i, vk}
(c)

≥ min(bvk/2c,E[min{A,B}]
min{

∑
i∈U∗k,x

rk,i, vk}

(d)

≥
min{bvk/2c, 1/4

∑
i∈U∗k,x

rk,i}

min{
∑
i∈U∗k,x

rk,i, vk}
≥ 1

4
.

(16)



In inequality (b), we have A =
∑
i∈U∗k,x∩S1

rk,i and B =∑
i∈U∗k,x∩S2

rk,i. Note that the transition from inequality (c) to
(d) is due to the fact that if we flip k ≥ 2 coins (corresponding
to partitioning the winners into the 2 sets), E[min(H,T )] ≥ 1

4
[22], Chapter 13.

Likewise, for the case where D ≤ S, following the same
logic we have

Rev

OptRev≥2(Uallk )
≥

min{vk, 1/4
∑
i∈U∗k,x

rk,i}

min{
∑
i∈U∗k,x

rk,i, vk}
≥ 1

4
.

(17)
It is emphasized that, iCAT, PUFF and their proofs borrow

from, but are different from the Profit Extractor and Random
Sampling Auction in [21], [22]. Profit Extractor and Random
Sampling Auction cater to fully digital goods, with 0 marginal
cost of producing the next good, and hence an infinite supply.
Unlike this, our network has a limited supply of VMs, resulting
in unique novel algorithms and proofs.

VI. COMBINED ALGORITHM AND ANALYSIS

In this section, we present the combined VM placement
and pricing mechanism, describing its implementation. Next,
we analyse its performance, termed cMAP, and prove bounds
on the optimality gap caused by potential perturbations on Φ∗v .

A. Algorithm Implementation

The distributed and combined Markov Approx VM Place-
ment and Pricing Algorithm (cMAP) is summarized in Algo-
rithm 4 and works as follows: Each round, we randomly select
a base station. The base station k considers potential config-
urations v′ in which it has gained one VM, or sent one VM
to elsewhere. The network operator obtains the target revenue
Φv′ using OPA,PUFF, or via historical data. The base station
then starts exponential clocks for each of these configurations,
following the transition rate qvv′ ← exp(0.5β(Φ∗v′ − Φ∗v)).
When the performance of the target configuration is relatively
higher (or lower) than the current, there will be a higher (or
lower) rate of switching. The process repeats until convergence
to the stationary distribution, the optimal point of VP-approx.
This point approximates the optimal point of MPP with
an optimality gap of 1

β log|V|, according to Proposition 1.
Note that due to its distributed nature, our algorithm is able
to handle the dynamic scenarios when new users enter the
system, or when users shift from region to region.

B. Algorithm Analysis

Our combined mechanism cMAP attains an optimality gap
of 1

β log|V| for the original problem MPP. In practice, the
system may obtain an inaccurate value of Φ∗v , the optimal
revenue under configuration v. This may occur when we
implement the incentive compatible auction mechanism PUFF
and estimate R.

In light of this we analyse the impact of the perturbations,
by bounding the optimality gap caused by the perturbations, on
problem VP-approx. To this end, we construct a new CTMC

Algorithm 4 cMAP: Combined Markov Approx VM Place-
ment and Pricing Algorithm

1: Input: V , the total number of VMs across the network,
{Uk}, the set of users across all base stations, and {rk,i},
the number of VMs required by all users.

2: Initialise a configuration v.
3: Network operator calculates Φ∗v ← OPA(v,{Uk}, {rk,i})

or PUFF(v,{Uk}, {rk,i});
4: while True do
5: Randomly select a base station k.
6: Consider configurations v′ with vk ± 1 VMs at k.
7: for all configurations v′ do
8: Network operator obtains the target revenue Φ∗v′ ←

OPA(v′,{Uk}, {rk,i}) or PUFF(v′,{Uk}, {rk,i});
9: Set clocks with transition rate qvv′ ←

exp(0.5β(Φ∗v′ − Φ∗v));
10: end for
11: The CTMC transits to the next state according to qvv′ ;
12: end while

which takes into account the perturbations, and characterize
its stationary distribution, in the following.

For each state v with optimal revenue Φ∗v , we let Φv be
its corresponding perturbed inaccurate revenue. The pertur-
bation error εv = Φv − Φ∗v lies in the range [−ψv, ψv]. For
each state v, we quantize the error into 2av + 1 potential
values [−ψv, ...,−ψv/av, 0, ..., ψv/av, ..., ψv], where the error
εv = n

avψv with probability ρvn , n = 0,±1, .. ± av, and∑av
n=−av

ρvn = 1. This means that we have constructed a new
CTMC in which each state v of the original CTMC is now
expanded into 2av + 1 states. The transition rate follows the
following equation:

qvnv′
n′

= exp(0.5β(Φ∗v′
n′
− Φ∗vn))ρv′

n′
. (18)

Based on the detailed balanced equation πvnqvnv′
n′

=
πv′

n′
qv′

n′vn
, we have

πvnexp(
1

2
β(Φ∗v′

n′
−Φ∗vn))ρv′

n′
=πv′

n′
exp(

1

2
β(Φ∗vn−Φ∗v′

n′
))ρvn ,

(19)
which results in

πvn exp(βΦ∗v′
n′

)ρv′
n′

= πv′
n′

exp(βΦ∗vn)ρvn . (20)

Because
∑

v′∈V
∑av′
n′=−av′

πv′
n′

= 1, we obtain

πvn =
exp(βΦ∗vn)ρvn∑

v′∈V
∑av′
n′=−av′

exp(βΦ∗v′
n′

)ρv′
n′

. (21)

Letting σv′ =
∑av′
n′=−av′

ρv′
n′

exp(β n′

av′
ψv′), the distribution of

the new perturbed CTMC will be

πv =

av∑
n=−av

πvn =
σv exp(βΦ∗v)∑

v′∈V σv′ exp(βΦ∗v′)
. (22)

We use the Total Variation Distance [26], [27] as a metric to
quantify the optimality gap between the stationary distribution



of the perturbed CTMC πv and π∗v , the optimal solution of
VP-approx, as follows:

dTV (π∗v , πv) =
1

2

∑
v∈V
|π∗v − πv|. (23)

With the stationary distribution of the perturbed CTMC πv,
we use a result in [27], which proved that the total variation
distance is bounded as follows

dTV (π∗v , πv) ≤ 1− exp(−2βψmax), (24)

where ψmax = maxvψv, the largest perturbation error among
states v. The revenue gap is hence bounded as follows:

|π∗v Φ∗v − πvΦv|≤ 2Φmax(1− exp(−2βψmax)), (25)

where Φmax = maxvΦv.
The upper bound on both the Total Variation Distance

between the two distributions dTV (π∗v , πv) and the optimality
gap |π∗v Φ∗v − πvΦv| is independent with respect to ρvn , the
distribution of perturbed revenues, and is independent with re-
spect to |V|, the total number of configurations. This indicates
that the optimality gap does not increase with the network
size and number of configurations |V|. Besides this, using
Markov Approximation enables us to perform a distributed
implementation on this large combinatorial problem.

VII. SIMULATION RESULTS

In this section, we evaluate the performance of our com-
bined mechanisms cMAP: MAP (which solves the VM place-
ment problem) along with either OPA or PUFF (which solve
the normalized pricing problem), and provide some insights.

A. Convergence, and insights on pricing

Firstly, we consider a network in which there are 5 BSs, and
10 VMs being distributed amongst these 5 BSs. The 5 base
stations have (2, 0, 2, 4, 0) users respectively. We set rk,i, the
number of VMs required by user i at BS k, to be between
1 to 3 VMs. uk,i, the willingness to pay of user i at BS k,
follows uniform distribution U [0, 1].

Fig. 1. Convergence of the cMAP.

Under this setup, we run cMAP (the combined Markov
Approximation VM Placement Algorithm) along with auction

OPA. for different values of β. We plot the running average
over a window size of 30 jumps, in comparison with the
optimal value, as seen in Fig 1. The optimal value is obtained
by exhaustive search, evaluating the solution to MPP over
all combinations of v. As seen, for β = 50, we are able
to achieve optimality. For β = 10, the converged stationary
distribution over configurations of v is near optimal. Under
β = 10, the top 5 most common states are v = (2, 0, 2, 5, 1),
(2, 0, 3, 5, 0), (2, 1, 2, 5, 0), (3, 0, 2, 5, 0), (2, 0, 2, 6, 0), which
are best able to meet the total demand of (2, 0, 2, 4, 0). Notice
that as β increases, performance improves: the running average
is closer to the optimal point, and fluctuations decrease. The
fluctuations occur because under our Markov Approximation-
inspired algorithm, we converge not to a specific state of
the CTMC, but to a stationary distribution over the states of
the CTMC. Recall that the converged stationary distribution
has an optimality gap of 1

β log|V| from the optimal point of
the original problem VP. This shows that as β → ∞, the
performance converges to the optimal value of VP. A potential
tradeoff in having a higher β is: if Φ∗v > Φ∗v′ , according to
(12) there will be a lower rate of switching, and a higher
probability of staying in the current state. As β increases, the
network is more likely to stay in the current state. This may
lead to a longer time spent in local minimums, due to the lack
of exploration, and hence a longer convergence time.

Next, with the current setup we compare the performance
of our proposed mechanisms MAP + OPA and MAP + PUFF
to the following baselines:

1) Cooperative BS + Uniform Pricing: Under this scenario,
the base stations are cooperative. They share the VMs with
each other, where the VMs are transferred within the network
via our proposed MAP. Unlike our proposed combined so-
lution, here we use uniform pricing: a common price is set
throughout the network, regardless of the demand pattern. A
benefit of uniform pricing is that it is faster to implement.

2) Non-cooperative BS + Auction: Under this scenario,
the base stations are no longer cooperative - they do not
share the VMs with each other. We obtain the average result
under the non-cooperative scenario, by averaging over all the
possible combinations of v. For each configuration v, we use
the optimal auction OPA to obtain Φ∗v .

3) Non-cooperative BS + Uniform Pricing: Under this
scenario, the base stations not only do not share the VMs
with each other, but also do not consider the demand pattern,
using a common price throughput the network.

We plot the revenue obtained under the various methods,
and show how the performance varies when different prices
are set as the uniform price in Fig. 2. As seen, our proposed
algorithms cMAP outperforms the baselines, especially when
OPA is used as the pricing mechanism. While MAP in com-
bination with PUFF is not near-optimal, we have proved that
PUFF has a competitive ratio of 4. The baselines involving
uniform price perform best when the price is ”neutral” - neither
too low nor too high. If the price is too high, the users (likely
having a lower willingness to pay) would not choose to use the
VMs. If the price is too low, the revenue the network operator



Fig. 2. The effect of different uniform prices on revenue.

obtains will be low. Fig. 2 also shows that resource sharing
among base stations increases the revenue.

B. A larger setup, with insights on willingness to pay and the
demand-supply ratio

Next, we enlarge our setup and compare the performance of
our proposed mechanisms with the different baselines. In this
setup, there are 20 VMs shared amongst the 5 base stations.
The number of users at each base station are randomized,
along with rk,i, the number of VM units each user requests.
We let the users’ willingness to pay uk,i follow a uniform
distribution U [a, b].

Fig. 3. The impact of willingness to pay on revenue.

In Fig. 3, we show the impact of users’ willingness to pay
on the revenue. The range of uk,i is adjusted, from the uniform
distribution U [0, 0.4] (low willingness to pay), to U [0.2, 0.6],
U [0.4, 0.8] and U [0.6, 1] (high willingess to pay). Our propsed
solution MAP + OPA (with β = 10) outperforms the
baselines, obtaining a near-optimal revenue. Our results show
that on average, having base station cooperation increases the
revenue by up to 53% percent. As seen in Fig. 3, when the
users have a higher willingness to pay, the revenue increases.
Notice that uniform pricing (p = 0.5) does not perform well,
when the users have low willingness to pay.

Fig. 4 illustrates the impact of revenue when the Demand
Supply

ratio is varied. Supply is fixed at 20 VMs, while demand is
increased, from D = 7 (low demand), to D = 21 (near equal

Fig. 4. The impact of the Demand/Supply ratio on revenue.

demand and supply) and high demand D = 38. Our solution
cMAP outperforms the baselines, especially when demand
increases, as the supply of VMs is shifted around the network
to meet demand more effectively, and an optimal auction is
used to extract the highest revenue possible. Our results show
that on average, having base station cooperation increases the
revenue by up to 57%. As seen in Fig. 4, as the Demand

Supply ratio
increases, revenue increases because more units of demand are
being met. Once the Demand

Supply ratio hits 1, revenue no longer
increases much due to the lack of global supply in the system.

VIII. CONCLUSIONS

In this paper, we have addressed the load-unbalanced prob-
lem in MEC systems, by jointly optimizing the VM placement
and pricing across base stations. Specifically, we have formu-
lated a revenue maximization problem from the network oper-
ator’s perspective, which was decomposed to a VM placement
master problem and a normalized pricing slave problem. The
objective function of the master problem is the optimal value
of the slave problem. Then, we solved the master problem
by designing a CTMC and solved the slave problem by
proposing auctions considering users’ truthful and untruthful
behaviors, respectively. By combining the algorithms proposed
for the master and slave problem, cMAP is implemented
for VM placement and pricing decision making across base
stations. Through theoretical analysis, we give the optimal
gap of cMAP, which is nested with OPA (auction mechanism
with users’ truthful behaviors) and PUFF (auction machanism
with users’ untruthful behaviors), respectively. Finally, we
demonstrated the convergence and efficiency of cMAP. For
future work we will analyse the impact of factors like having
a heterogeneous cost of VM migration between base stations.
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