
A Sum-of-Ratios Multi-Dimensional-Knapsack
Decomposition for DNN Resource Scheduling

Menglu Yu1 Chuan Wu2 Bo Ji3 Jia Liu4
1Department of Computer Science, Iowa State University

2Department of Computer Science, The University of Hong Kong
3Department of Computer Science, Virginia Tech

4Department of Electrical and Computer Engineering, The Ohio State University

Abstract—In recent years, to sustain the resource-intensive
computational needs for training deep neural networks (DNNs),
it is widely accepted that exploiting the parallelism in large-scale
computing clusters is critical for the efficient deployments of DNN
training jobs. However, existing resource schedulers for tradi-
tional computing clusters are not well suited for DNN training,
which results in unsatisfactory job completion time performance.
The limitations of these resource scheduling schemes motivate us
to propose a new computing cluster resource scheduling frame-
work that is able to leverage the special layered structure of DNN
jobs and significantly improve their job completion times. Our
contributions in this paper are three-fold: i) We develop a new re-
source scheduling analytical model by considering DNN’s layered
structure, which enables us to analytically formulate the resource
scheduling optimization problem for DNN training in computing
clusters; ii) Based on the proposed performance analytical model,
we then develop an efficient resource scheduling algorithm based
on the widely adopted parameter-server architecture using a
sum-of-ratios multi-dimensional-knapsack decomposition (SMD)
method to offer strong performance guarantee; iii) We conduct
extensive numerical experiments to demonstrate the effectiveness
of the proposed schedule algorithm and its superior performance
over the state of the art.

I. INTRODUCTION

In recent years, deep-learning-based applications are quickly
finding their ways into our everyday life, including healthcare,
automobile, retail, smart homes, just to name a few. However,
these applications also generate and inject a large volume
of resource-intensive computing jobs for training deep neural
networks (DNNs), which are used in various systems for
computer vision, natural language processing, online recom-
mendation, etc. In order to sustain such a rapidly growing need
for DNN training in recent years, it is widely accepted that a
viable solution is to exploit the vast parallelism in distributed
computing architectures to schedule deep learning jobs. To
date, however, most traditional resource scheduling schemes
for computing clusters are not designed for DNN training (e.g.,
Google’s Borg System [1] employs static resource allocation
specified by the users upon job submissions). Also, most
of the recently proposed scheduling schemes designed for
DNN jobs (e.g., Gandiva [2] and Tiresias [3]) are heuristic

This work has been supported in part by NSF grants CAREER CNS-
1943226, CCF-1758736, ONR grant N00014-17-1-2417, a Google Faculty
Research Award, NSF CNS-1651947, and Hong Kong RGC grants HKU
17204619, 17208920.

approaches, which provide no performance guarantee. In light
of the increasing importance of DNN-based applications, there
is a pressing need for developing provably efficient resource
schedulers tailored for DNN training in computing clusters.

However, developing such resource scheduling algorithms
for DNN training clusters is highly non-trivial. In a computing
cluster, DNN training jobs are submitted over time with
various competing resource requirements (numbers of CPUs
and GPUs, size of memory, etc.), and the training process
is both resource-intensive and time-consuming. For example,
researchers showed that it could take 115 minutes to train
a model with ResNet50 dataset [4] on a DGX-1 machine
with 8 V100 GPUs [5], and even 3–5 days to train the
DeepSpeech2 model [6] on the LibriSpeech dataset [7] using
16 GPUs [6]. Also, to date, there is a lack of a tractable
and accurate analytical model that takes different mechanisms
of communication-computation overlapping into consideration
based on the layered structure of DNN.1 Furthermore, sim-
ilar to the design of most scheduling algorithms for large-
scale distributed computing clusters, the computing resource
limitation for DNN computing jobs naturally leads to integer
bin-packing-like constraints in the scheduling problem, which
makes the problem NP-Hard. Also, the objective function of
the DNN resource scheduling problem has a sum-of-ratios
structure due to the computational speed characterization in
DNN training. As a result, the scheduling problem is non-
convex even with continuous relaxation, which introduces yet
another layer of difficulty to the already-challenging problem.

In this paper, we overcome the above challenges and de-
velop a suite of scheduling algorithmic techniques for efficient
DNN training in computing clusters Our main results and
technical contributions are summarized as follows:
• We develop a new performance analysis framework for
scheduling DNN training jobs. Specifically, we first propose
a unified analytical model to characterize the DNN training,
which captures a variety of ways to overlap communication
and computation by exploiting the layered structure of
DNNs.We then formulate the job admission and resource

1To speed up the training process, the idea of exploiting the special layered
structure of DNNs to overlap communication and computation has been
explored recently in [8]–[10], which showed that the training throughput of
the MXNet framework could be improved by 25%–70%.

ar
X

iv
:2

10
5.

13
85

5v
1

 [
cs

.D
C

]
 2

8
M

ay
 2

02
1

scheduling problem for DNN training by associating the
above unified analytical model with both synchronous and
asynchronous stochastic gradient descent (SGD) algorithms.
Each job is associated with a utility function, which is
non-increasing with respect to its job completion time. The
objective of the analytical model is to maximize the overall
utility (i.e., minimize the overall training completion time).
• Based on the above analytical framework, we formulate

the resource scheduling problem as a mixed-integer non-
linear programming problem (MINLP), and prove its NP-
hardness. To overcome this fundamental hardness, we pro-
pose a divide-and-conquer approach called SMD (sum-of-
ratio multi-dimensional-knapsack decomposition). Specifi-
cally, based on a keen observation of the physical reality
of resource requests in most distributed cloud computing
systems in practice (e.g., Amazon’s EC2), we show that our
resource scheduling problem has a decomposition structure.
Under this decomposition, the inner subproblem is a mixed-
integer sum-of-ratios problem with packing constraints.
Thanks to the lower dimensionality of the inner subprob-
lem, we are able to develop an efficient ε-approximation
algorithm based on grid-searching coupled with randomized
rounding for solving this subproblem.
• Upon solving the inner subproblem, we show that the outer

subproblem reduces to a multi-dimensional knapsack prob-
lem (MKP), which also admits an efficient ε-approximation
algorithm. By combining both steps, we establish the overall
approximation ratio of the proposed SMD approach. To
verify the efficacy of our proposed algorithm, we conduct
numerical experiments based on Google cluster traces [11].
Our results show that the proposed SMD approach sig-
nificantly outperforms the equal server-worker allocation
scheme (widely used in practice) and a state-of-the-art
approach called Optimus [12].
The remainder of this paper is organized as follows. In

Section II, we review the literature to put our work in a
comparative perspective. In Section III, we introduce the
system model and problem formulation. Section IV presents
our algorithms and their performance analysis. Section V
shows numerical results, and Section VI concludes this paper.

II. RELATED WORK

Due to the rise of machine learning (ML) applications
and their high computational workload, optimizing resource
scheduling to facilitate distributed ML frameworks have at-
tracted a great amount of interest in recent years (see,
e.g., [13]–[16] and the references therein). DNN training jobs
have unique characteristics (e.g., iterativeness and layered
structure), which could be leveraged to overlap computation
and communication time between iterations to reduce the
training time. However, these existing works were designed for
resource allocation to support general ML jobs in computing
clusters, which may not be tailored for DNN training jobs. As a
result, when being applied in DNN training, their performance
is suboptimal in general since they do not leverage the
aforementioned characteristics of DNN training.

To date, research on computing cluster scheduling optimiza-
tion tailored for DNN training remains relatively new with lim-
ited results. Most of the early attempts in this area (e.g., [17]
and references therein) only considered static allocation of
workers and parameter servers (PS). To our knowledge, Yan
et al. [18] was the first to investigate the performance of dis-
tributed ML frameworks, and developed a DNN performance
model at a layer-level granularity (e.g., the model considers
the computation time of each operator on a specific CPU
and the NN structures). Subsequently, Gandiva [2] exploited
intra-job predictability to time-slice GPUs efficiently across
multiple jobs to better-fit GPUs. Tiresias [3] aimed to reduce
the job completion times when the jobs’ execution times are
unpredictable due to non-smooth loss curves during a trial-
and-error exploration. The most recent work [19] focused on
making machine learning workloads complete in a finish-time
fair manner. However, these schedulers are based on heuristic
approaches. Also, the training completion time of a job is
significantly affected by resource allocation. Studies in [20]
showed that increasing resources did not contribute to a linear
increase of the training speed and could even slow down
the training process. Since static numbers of workers and
PSs specified by users are suboptimal in general, researchers
have also started to consider dynamic scheduling algorithms to
determine optimal numbers of workers and PSs to optimize the
training speed. To our knowledge, the first dynamic scheduling
algorithm with performance guarantee was reported by Bao et
al. [21], where they designed an online scheduling algorithm
for deep learning jobs. However, their studies relied on strong
assumptions and simplified modeling of deep learning jobs.

The most related work to ours is Optimus [20], where Peng
et al. developed a heuristic resource allocation algorithm for
the distributed deep learning jobs. Our work differs from [20]
in the following key aspects: 1) In [20], the authors built the
performance model without taking the DNN layered structure
into consideration. As will be shown later, this yields subopti-
mal scheduling decisions in general. By contrast, we develop
an analytical model that considers the layered characteristics
of DNN training, which captures communication-computation
overlapping in state-of-the-art DNN training systems [9]; and
2) Optimus proposed a dynamic resource scheduler, which is
only a heuristic with no performance guarantee based on their
online-fitted resource-performance models. In comparison, we
propose a resource scheduler that leverages an analytical
model to offer strong performance guarantees.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first present our general problem for-
mulation for DNN training in distributed computing clusters
in Section III-A. We then specialize the problem formulation
under both synchronous and asynchronous SGD with the basic
sequential training model [22] in Section III-B. Lastly, in
Section III-C, we further generalize and refine our analytical
model to include two more advanced DNN training models.

......

...... PSM

Gradients Parameters

Parameter Server Worker

Database for Training Dataset

W1 W2 WN

PS1

Fig. 1: PS-based architecture.

Input Output

Forward propagation

Backward propagation

Fig. 2: DNN training.

A. General Problem Formulation

In this paper, we focus on data parallelism in data centers
with the PS architecture [23], [24]2. As shown in Fig. 1, in
each iteration, each worker fetches a mini-batch of samples
from its local dataset and computes a stochastic gradient. Upon
finishing computation, each worker sends the gradient to the
PSs to update the model parameters following an optimization
algorithm, e.g., the stochastic gradient descent (SGD) method.
The workers then will pull the updated parameters from the
PSs, fetch the next mini-batch of samples and proceed to the
next iteration. This process repeats until some convergence
criterion of the optimization algorithm is met.

The gradient computation at each worker is based on the
specific DNN as illustrated in Fig. 2. In each iteration, one
mini-batch of samples is used by a worker to compute the
loss from the initial layer to the last layer, which is referred to
as forward propagation (FP). After FP, a stochastic gradient
of the DNN model parameters will be computed in the reverse
order of layers in a backward propagation (BP) fashion. The
computed gradients are used for updates at the PSs.

We consider the setting where DNN training jobs are
submitted by users to the computing cluster to be processed pe-
riodically. These submitted jobs are trained using workers and
PSs implemented via virtual machines or containers, which
share resources in the underlying servers. Upon submission,
the user will specify the resource needed for the job, based on
which our algorithm will determine the numbers of workers
and PSs if the job is admitted in the current scheduling interval.
The jobs that are submitted during the scheduling interval are
called active jobs. We assume that the scheduling interval is
sufficiently large (e.g., hours) such that all the scheduled active
jobs can be completed within a scheduling interval.

We use E[i] to denote the total number of iterations to train
for job i, which is specified by the user.3 We use f(p[i], w[i])
to denote the current training speed of job i (i.e., the number of
iterations completed per unit time), which is a function of the
number of PSs (p[i]) and the number of workers (w[i]). Then,
the completion time of job i can be estimated as E[i]

f(p[i],w[i]) .
Let I denote the set of active jobs submitted in the scheduling
interval with |I| = I , and R denote the set of computing
resources (e.g., CPU, GPU and memory). Let Or[i] and Gr[i]
be the amount of type-r resources demanded by a worker and

2Due to the homogeneous processing speed in data centers, we assume that
the straggling issue is minor in this paper.

3In practice, to prevent spending excessively long time waiting for the
training process of a DNN job to converge, a maximum number of training
iterations is usually set by the user.

a PS for job i, respectively. Let vr[i] be the resource limit
specified by the user for job i, i.e., the maximum amount of
resource r the user may need. Let Cr denote the capacity
of type-r resource in the computing cluster. Due to resource
limits in the cluster, the system may not be able to process all
jobs in I in the current scheduling interval. Thus, we use a
binary variable xi to indicate whether job i is admitted in this
interval (xi = 1) or not (xi = 0). Let µi(·) ≥ 0 be the utility
function associated with job i, which is non-increasing with
respect to the completion time E[i]

f(p[i],w[i]) . In this paper, our
goal is to optimize the admission decision x , {xi, i ∈ I}
and resource allocation decisions p , {p[i], i ∈ I} and w ,
{w[i], i ∈ I} to maximize the overall utility for the submitted
jobs in each scheduling interval. This optimization problem
can be formulated as:

Maximize
w,p,x

∑
i∈I

µi

(
E[i]

f(p[i], w[i])

)
xi (1)

subject to
∑
i∈I

vr[i]xi ≤ Cr, ∀r ∈ R, (2)

(Or[i]w[i]+Gr[i]p[i])xi≤vr[i],∀i∈I, r∈R, (3)

p[i] ∈ Z++, w[i] ∈ Z++, xi ∈ {0, 1}, ∀i ∈ I.

Constraint (2) ensures that the sum of maximum resource
demands from admitted active jobs does not exceed the clus-
ter’s resource capacity. Constraint (3) ensures that the allocated
resources to run workers and PSs in each job i do not exceed
the resource limits specified by the job owner.

B. Training Speed Modeling

In the general problem formulation above, the training speed
function f(p[i], w[i]) remains to be defined. Next, we will first
derive the training speed f(p[i], w[i]) per iteration per worker
based on the basic sequential computation-communication
model [22], which will serve as a baseline for two more
advanced computation-communication models in Sec. III-C.

Notation: We let N [i] denote the number of layers in the
DNN model of job i. We use rj [i] to denote the time spent for
sending gradients to or receiving parameters from the PSs for
layer j of job i (assuming equal time for pushing gradients
and pulling updated parameters). Let bj [i] and fj [i] be the BP
and FP computation times for layer j of job i, respectively.
We use κj [i] to denote the start time of sending gradients for
layer j of job i, and we let sj [i] be the start time of receiving
parameters for layer j of job i. Let τj [i] be the start time of
FP for layer j of job i. For lighter notation, we will omit the
job index “[i]” in the subsequent training speed modeling if
there is only one training job involved in the context (e.g.,
rj := rj [i]. We will revive “[i]” if confusion may arise). Key
notation is summarized in Table I for ease of reference.

The sequential model [22] is illustrated in Fig. 3, where
push/pull of gradients/parameters start after BP of all layers
are done, the push/pull of layers are done sequentially from
the highest layer to the first layer, and FP of the next iteration
starts after all push/pull are done. For an N -layer DNN model,
it is easy to see that the per-sample training time t can be

TABLE I: Notation.

I The set of active jobs in the scheduling interval
P[i]/R The set of PSs of job i / The set of resource types
t[i] Time of training one sample on a worker of job i
tm[i] Time of one training step on a worker of job i

rj [i]
of unit time for sending/receiving gradients
to and parameters from the PSs at layer j of job i

qij # of unit time for parameter update at layer j of job i
bj [i] # of unit time for BP at layer j of job i
fj [i] # of unit time for FP at layer j of job j
κj [i] Start time of sending gradients of job i at layer j

ej [i]
End time of communication of job i at layer j in the
priority based model

sj [i] Start time of receiving parameters of job i at layer j
τj [i] Start time of FP of job i at layer j
N [i] # of layers in DNN model of job i

E[i]/g[i] # of training iterations for job i / Model size of job i
K[i]/m[i] Global batch size of job i / One mini-batch size of job i
Cr Capacity of type-r resource in the DL cluster
Or[i] Type-r resource required by a worker in job i
Gr[i] Type-r resource required by a PS in job i
vr[i] The resource limit specified by the user for job i

w[i]/p[i] # of workers of job i / # of PSs of job i
B[i] Bandwidth capacity of each PS of job i
tf [i] Average time of processing a sample in the FP of job i
tb[i] Average time of processing a sample in the BP of job i

tr[i]
Average time of processing a sample in the
communication time of job i

receive parameters

Time

BP FPsend gradients

L4

L4

L3

L2

L3 L2 L1

r4 r4

r3 r3

r2 r2

r1 r1

f1 f2 f3 f4

κ4 s4

κ3 s3

κ2 s2

s1κ1

τ1 τ2 τ3 τ4

L1 b4 b3 b2 b1

L1 L2 L3 L4

Fig. 3: Sequential-based model.

computed as
∑N
j=1 bj + 2

∑N
j=1 rj +

∑N
j=1 fj . We let tb ,∑N

j=1 bj , tr , 2
∑N
j=1 rj , and tf ,

∑N
j=1 fj denote the BP

time, the communication time, and the FP time for processing
a sample of job i, respectively. Note that the key feature of
the sequential model is that computation phases (i.e., BP and
FP) and communication phases are conducted in a sequential
fashion, which underutilizes the channel.

Consider a job with p PSs and w workers. We use B to
denote the bandwidth between each pair of PS and worker.
Let g be the model size (i.e., the number of elements in its
gradient vector). Let m be the mini-batch size. Then the FP
time for processing a mini-batch can be calculated as m · tf .
The BP time for processing a mini-batch does not depend
on m and can be computed as tb. We use w′ρ to denote the
average number of workers that send the computed gradients
simultaneously to a PS ρ ∈ P , where P denotes the set of
PSs. Then, the bandwidth occupied by each worker is B

w′ρ
.4

We use gj to denote the gradient size of layer j and let

4In order to guarantee data transfer performance of each instance, it
is common to reserve bandwidth for a VM/container for the accelerated
computing in the cluster. For example, the reserved bandwidth of Amazon
EC2 GPU instance P2 on AWS is 10Gbps or 25Gbps [25]. Thus we can
safely assume that the workers have the same bandwidth.

pj be the corresponding number of PSs that layer j will
send its gradients to and receive its parameters from. For
DNN models in practice, the number of neurons of a layer
is usually much larger than the number of PSs, so it holds
that gj � pj . We also assume that gj is evenly divided into
all PSs (implying pj = p).5 Then, the time for sending gra-
dients/receiving parameters under the symmetric assumption
(equal communication speed for uplink and downlink) for
each layer j can be computed as: gj/pj

B/w′ρ
=

gj/p
B/w′ρ

. It then
follows that the data communication time can be computed as
2
∑N
j=1

gj/p
B/w′ρ

= 2
∑N
j=1 gj/p

B/w′ρ
= 2 g/p

B/w′ρ
.

In addition to the communication and computation time,
there exists extra communication overhead (e.g., establishing
TCP connections) that increases linearly with the number of
workers and PSs, which can be computed as β1w + β2p,
where β1 and β2 are constants that depend on the underlying
system [20]. Thus, the per-iteration-per-mini-batch training
time can be computed as tm = maxρ∈P

[
mtf + tb+2 g/p

B/w′ρ
+

β1w+β2p
]
. Next, we derive the training speed function (i.e.,

how many iterations can be completed per unit time). We
consider both synchronous and asynchronous trainings.

1) Synchronous Training: In synchronous training, PSs
perform an update only after receiving gradients from all
workers in each iteration. We let K denote the global batch
size, which is fixed throughout all iterations in synchronous
training. Keeping a fixed global batch size is conformal to the
standard SGD implementation, which is important for ensuring
the same model result in the training process [27], [28]. We
assume that K is equally divided among all workers, which
implies that the local batch size is m = K

w′ρ
= K

w . As a result,
the training speed is equal to 1

tm
and can be modeled as [20]:

f(p, w) =

(
K

w
tf + tb + 2

g/p

B/w
+ β1w + β2p

)−1

.

2) Asynchronous Training: In asynchronous training, once
the PSs receive gradients from a worker, they immediately
update their parameters. The expected number of steps com-
pleted by each worker in one time unit is 1

tm
. Thus, we can

estimate the total number of steps performed by all workers in
one time unit as w

tm
. Since w′ρ is proportional to the number

of workers w (i.e., the number of concurrent workers that send
gradients to the same PS also increases as w increases), we
have w′ρ = αw for some α ∈ (0, 1). Hence, the training speed
function can be modeled as [20]:

f(p, w) = w

(
mtf + tb + 2α

g/p

B/w
+ β1w + β2p

)−1

.

C. Generalization to Advanced Training Models

In this subsection, we introduce two more advanced train-
ing models, namely, i) the wait-free model [22] and ii) the
priority-based model [9], which overlap communication and

5For lower implementation complexity and managed overhead, most dis-
tributed ML frameworks (e.g., Tensorflow [26]) adopt roughly equal parameter
allocation by default.

Time

receive parameters
FPBP

send gradients

s1

L4

L3

L2

L4 L3 L1 L1 L3 L4L2 L2

r4 r4

κ4 s4

κ3
r3

L1 b4 b3 b2 b1 f1 f2 f3 f4

τ1 τ2 τ3 τ4

κ1

κ2
r1

r2

r3

r2

r1

s3

s2

Fig. 4: Wait-free based model.

FP
send grad. recv. para.overlapping slices

Time

BP

L4

L3

L2

L3 L1 L2 L3 L4

e4

e3
e2

e1

L4 L2 L1

L1 b4 b3 b2 b1 f1 f2 f3 f4

τ1 τ2 τ3 τ4

Fig. 5: Priority based model.

recv. para.send grad. overlapping slices

L4

r4 r4

Fig. 6: Zoom-in view of slicing.

computation to further reduce per-iteration delay. We remark
that, although both models were not proposed by us, we are the
first to quantitatively characterize the training speed for both
models. Interestingly, it turns out that our training speed mod-
eling for the sequential model can be generalized to these two
more advanced communication-computation models (proofs of
Lemmas 1 and 2 are omitted due to space limitation).6

1) Wait-free model [22]: As shown in Fig. 4, starting from
the final layer, each layer takes turn to send gradients to the
PSs immediately after finishing its own BP and the completion
of gradient pushing of its subsequent layer. Compared to the
sequential model, a key feature in this model is that part of
the communication and computation can be conducted simul-
taneously. We derive per-sample training time t as follows:

Lemma 1 (Wait-free model). For the wait-free model, the start
time of gradient-sending κj = max{

∑N
k=j bk, κj+1 + rj+1},

for j = 1, . . . , N −1; otherwise it is bN . The start time of
parameter-receiving sj = max{κj + rj , sj+1 + rj+1}, for
j = 1, . . . , N−1; otherwise it is bN + rN . The FP start time
τj = τj−1 +fj−1, for j = 2, . . . , N ; otherwise it is s1 +r1. It
thus follows that the per-sample training time is t=τN+fN .

Some important remarks for Lemma 1 are in order: 1) If
the parameter size is skewed in the wait-free model, layers
of larger sizes can introduce larger delay to layers of smaller
sizes due to non-preemption. 2) In the wait-free model, only
after receiving the updated parameters for the first layer, the
FP of the next iteration can get started (see τ1 in Fig. 4); thus
the gradient sending of the subsequent layers causes delays to
the gradient sending of the initial layer, which in turn induces
delay for the next iteration. Also, since the BP progresses in
the reverse order of layers (i.e., from the last (output) layer
to the first (input) layer), the gradients are also generated and
sent in that order. As a result, no overlap between computation
and communication is possible during FP (see Fig. 4).

2) Priority-based model [9]: An insight from the discus-
sions above is that the closer a layer is to the input layer, the
higher priority its gradient/parameter communication should
have. The reason is that once the transmission of this layer
is completed, the corresponding FP of this layer can start
without waiting for all communications to be finished, thus
significantly reducing delay. As shown in Fig. 5, the layer with
a smaller index (i.e., closer to the input layer) always has a

6All missing proofs can be found in our Tech Report [29].

higher priority and its communication can preempt that of lay-
ers with larger indices. This induces further communication-
computation overlapping and helps the next iteration get
started as soon as possible.

Also, to better align communication and computation, the
idea of “parameter slicing” can be used to mitigate the impact
of skewed layer sizes. As shown in Fig. 6, we split each layer
into smaller slices of size ϕ, whose communications can be
further overlapped. Slices of the same layer have the same
priority and the communication order of each slice within the
same layer could be arbitrary.

We let ej [i] be the end time of communication for layer j
of job i. We derive the per-sample training time t as follows:

Lemma 2 (Priority-based model). For the priority-based
model, the communication end time ej =

∑j
k=2 rk −∑j−1

k=1 bk + max
1≤k≤j−1

ek, if
∑j
k=2 rk >

∑j−1
k=1 bk; otherwise

ej = 0 for j = 2, . . . , N and e1 =
∑N
k=1 bk + r1 + ϕ. The

FP start time τj = max{τj−1 + fj−1, ej} for j = 2, . . . , N
and τ1 = e1. It thus follows that the per-sample training time
is t = τN + fN .

Note that t has a recursive property. Depending on whether
the system is computation or communication dominant in each
layer, Lemma 2 could lead to different expressions.

3) Unified expression for per-iteration training time: Note
that, in both wait-free and priority-based model, the per-sample
training time t is DNN-dependent and determined by each
layer’s size. Nonetheless, as long as the DNN of a training job
is given, we can compute t by using Lemmas 1 and 2. Also, we
note that the communication-computation overlapping in wait-
free and priority-based models effectively reduces the BP time,
communication time, and FP time to certain fractions of those
in the sequential model. Thus, the per-iteration training time of
both models can be expressed as tm = maxρ

[
η1mtf +η2tb+

2η3
g/p
B/w′ρ

+ β1w + β2p
]
, where the coefficients η1, η2, η3 ∈

(0, 1] are DNN-model-dependent.
We let Hf , Hb and Hr be the FP time, BP time and com-

munication time for processing a sample, respectively. Then
these coefficients are defined as η1 , Hf∑N

k=1 fk
, η2 , Hb∑N

k=1 bk
,

and η3 , Hr
2
∑N
k=1 rk

. For instance, for the wait-free instance in

Fig. 4, we can compute the coefficients as η1 =
∑4
k=1 fk∑4
k=1 fk

= 1,

η2 = b4∑4
k=1 bk

, and η3 = 2r4+r3+r2+r1
2
∑4
k=1 rk

. With this approach,

the training speed function of a job under both synchronous
training and asynchronous trainings can be generalized as:

f(p, w)=1/(η1
K

w
tf+η2tb+2η3

g/p

B/w
+β1w+β2p), (4)

f(p, w)=w/(η1mtf+η2tb+2η3α
g/p

B/w
+β1w+β2p). (5)

Note that the sequential model is a special case with η1 = 1,
η2 = 1 and η3 = 1. In the next section, we will see that these
unified expressions in (4) and (5) enable us to design a suite
of approximation algorithms to solve Problem (1).

IV. SOLUTION APPROACH

Due to the fundamental hardness of Problem (1) (to be
shown soon), in this section, we will propose an approx-
imation algorithmic approach, which we term sum-of-ratio
multi-dimensional-knapsack decomposition (SMD), to solve
this problem. In what follows, we will organize and present
our approximation algorithmic approach in three main steps:

Step 1) Sum-of-Ratios Multi-Dimensional-Knapsack De-
composition (SMD): First, we note that in Problem (1), the
resource scheduling decision variables (w[i], p[i]) are inde-
pendent across jobs due to the fact that each summand in (1)
only depends on each job i. Therefore, we can decompose the
problem into an inner subproblem and an outer subproblem
as follows. First, by setting xi = 1,∀i, the inner resource
allocation sub-problem for job i can be written as:

Maximize
w,p

µ
(E

f(p, w)

)
(6)

subject to (Orw +Grp) ≤ vr, ∀r ∈ R, (7)

p ∈ Z++, w ∈ Z++. (8)

Recall that the training speed function f(p, w) has different
forms for synchronous and asynchronous trainings. Hence,
Problem (6) can be further specialized as follows:

a) Synchronous training: In this case, we have:

Maximize
w,p

µ

(
θ1w + θ2p+ θ3 +

θ4w

p
+
θ5

w

)
(9)

subject to Constraints (7)− (8),

where θ1 = Eβ1, θ2 = Eβ2, θ3 = Eη2tb, θ4 = 2Eη3g/B,
and θ5 = η1EKtf .

b) Asynchronous training: In this case, we have:

Maximize
w,p

µ

(
θ′1 +

θ′2p

w
+
θ′3

w
+
θ′4

p

)
(10)

subject to Constraints (7)− (8),

where θ′1 = Eβ1, θ′2 = Eβ2, θ′3 = E(η1mtf + η2tb), and
θ′4 = 2Eαη3g/B.

It is clear that Problem (6) is a mixed-integer nonlinear
programming (MINLP) problem, which is NP-Hard in gen-
eral [30]. In addition, even with continuous relaxation, it
remains in the class of sum-of-ratios optimization problems,
which is well-known to be NP-complete [31]. But thanks to

the low dimensionality of the inner subproblem (a consequence
of SMD), we will propose an ε-approximation algorithm for
solving the inner subproblem. Upon solving (6), the outer
subproblem reduces to selecting active jobs to be run in the
current scheduling interval:

Maximize
x

∑
i∈I

µi

(
E[i]

f(p[i], w[i])

)
xi (11)

subject to Constraint (2), xi ∈ {0, 1},∀i ∈ I.

Since µi(
E[i]

f(p[i],w[i])) is known after solving the inner sub-
problem, it is clear that the outer subproblem is a multi-
dimensional knapsack problem (MKP) in essence. Therefore,
in what follows, we will consider solving the inner sum-of-
ratios subproblem and the outer MKP problem separately.

Step 2) Solving the inner sum-of-ratios subproblem: We first
consider the inner subproblems (9) and (10) after relaxing the
integrality constraint (8). Recall that the utility function µi(·)
is non-increasing. Thus, both problems can be equivalently re-
formulated as a sum-of-ratios problem with affine constraints,
which can be written in the following general form:

Minimize
x

ζ(x) =
∑
j∈J

a>j x + qj

c>j x + dj
=
∑
j∈J

ζj(x) (12)

subject to Ax ≤ C,x ≥ 0,

where aj , cj ∈ Rn, qj , dj ∈ R, ∀j ∈ J , and A ∈ Rm×n, C ∈
Rm. We also note that in both problems a>j x+qj > 0, c>j x+
dj > 0,∀j ∈ J ,∀x ∈ Ω, where Ω = {x ∈ Rn|Ax ≤
C,x ≥ 0} denote the feasible domain of the problem. The
sum-of-ratios problem with affine constraints is known to be
NP-complete [31] but ε-approximation approach [32] exists.

Unlike the problem in [32] with covering constraints (may
lead to unbounded search space), we exploit the special
packing-like constraint structure in (7) to first obtain a tight
upper bound for each ratio term to significantly reduce the
search space. Specifically, we let ζj(x) ,

a>j x+qj

c>j x+dj
, which is

a linear fractional programming with non-empty and bounded
feasible region Ω. We choose the lower and upper bounds as
lj = minx∈Ω ζj(x) and φj = maxx∈Ω ζj(x). Then transform
the problem into a linear program using the Charnes-Cooper
transformation [33], which then can be solved efficiently.
Without loss of generality, we assume that the last summand
J has the largest ratio between the upper and lower bounds,
i.e., J = arg maxj∈J

{
φj
lj

}
. Then, the feasible domain for

the J − 1 summands is a polytope characterized as H =
[l1, φ1] × [l2, φ2] × . . . × [lJ−1, φJ−1]. We let χ ∈ RJ−1

and z ∈ R. Then, Problem (12) can be transformed into the
following equivalent formulation:

Minimize
x∈Ω,z

J−1∑
j=1

χj + z (13)

subject to ζj(x) ≤ χj , j = 1, .., J − 1,

ζJ(x) = z,

χ = (χ1, .., χJ−1) ∈ H.

We can see from the reformulated Problem (13) that, if a point
χ ∈ H is given, there is only one variable z associated with
the summand ζJ(x) to be solved. Thus, the complexity of the
problem is reduced significantly.

Step 2.1): Determining the Set of Grid Points: After finding
the range for each summand in the objective function, we
divide the polytope H into smaller polytopes to perform a
grid search, where the granularity is controlled by a precision
parameter ε. We first find the largest integer number that
does not exceed the upper bound φj of each summand when
searching from the lower bound lj , i.e., λj = arg max{n ∈
N|lj(1 + ε)n ≤ φj}, j = 1, ..., J − 1. Then, we have the
grid points set for each summand as Qεj = {lj , lj(1 +
ε), . . . , lj(1 + ε)λj}, j = 1, ..., J − 1. Next, by searching all
the J − 1 summands, we can obtain the search grid set as
T ε = {(ν1, ν2, . . . , νJ−1)|νj ∈ Qεj , j = 1, ..., J−1}. It is clear
that for any (χ1, χ2, . . . , χJ−1) ∈ H, we can always find a
point (ν1, ν2, .., νJ−1) ∈ T ε, such that χj ∈ [νj , (1+ε)νj], j =
1, ..., J − 1, thus H can be approximated by the set T ε.

Hence, Problem (13) can be solved by iterating over ν ∈ T ε.
For a given ν, the subproblem needs to be solved is as follows:

Minimize
x∈Ω,z

Ψ(ν) =

J−1∑
j=1

νj + z (14)

subject to ζj(x) ≤ νj , j = 1, ..., J − 1,

ζJ(x) = z.

Notice that for a given ν ∈ T ε, the term
∑J−1
j=1 νj becomes

a constant, then the equivalent formulation to Problem (14) is:

Minimize
x∈Ω

ζJ(x) =
a>J x + qj
c>J x + dJ

(15)

subject to ζj(x) ≤ νj , j = 1, .., J − 1,

which again can be transformed into a linear program using
the Charnes-Cooper transformation [33] and solved efficiently.

The basic idea of the algorithm is first to perform the
dimensionality reduction to reduce J summands to J−1 terms,
and then divide the feasible domain into smaller nonuniform
grids. The feasible polytope domain obtained by finding the
lower and upper bound of each summand is used to confine the
space of grid points. Then, the original sum-of-ratios problem
can be transformed and decomposed into a set of linear
programming (LP) subproblems, each of which is associated
with a grid point. As a result, the computational cost boils
down to solving LP subproblems related to points in T ε.

Note, however, that the total number of grid points still
increases exponentially as the number of summands in (12)
increases, which is intractable as the problem size gets large.
Fortunately, we note that both inner problems (9) and (10) have
just a few summands (four and three, respectively) thanks to
SMD. Thus, it remains affordable to adopt a grid-search-based
approach. By leveraging the special feature of cloud systems
that each job has its reserved resources, we can reduce the
high dimensionality of the problem and decompose it as in
Problem (6). Thus, the problem is reduced to solving I times

Algorithm 1: ε-Approximation for the Continuous
Relaxation of the Inner Subproblems (9) and (10).

1 Initialization: Set L̃ = +∞. Let ε ∈ (0, 1), x̃ = ∅;
2 Obtain the set T ε as described in Step 2.1);
3 for ν ∈ T ε do
4 Solve Problem (14) to obtain the solution xν with

the objective value Ψ(ν) =
∑J−1
j=1 νj + ζJ(xν);

5 if Ψ(ν) < L̃ then
6 L̃ = Ψ(ν), x̃ = xν ;
7 return x̃;

Algorithm 2: Randomized Rounding Scheme.

1 Pick some δ ∈ (0, 1]. Pick some integer F ≥ 1. Let
cnt← 0. Let x′ = Mδx̄ for some 0 < Mδ ≤ 1 (Mδ

signifies its dependence on δ and is to be specified);
2 Randomly round x′ to x̂ ∈ Zn+ as: x̂j = dx′je w.p.

x′j − bx′jc and x̂j = bx′jc w.p. dx̄je − x̄j , otherwise;
3 If x̂ is infeasible or cnt<F , then cnt←cnt+1, go to 2.

of sum-of-linear-ratios with a small number of terms, which
can be solved efficiently (Algorithm 1).

In Algorithm 1, we first obtain the grid points over the
feasible domain in Line 2. We then iterate each point and
update the objective L̃ and the fractional solution x̃ in Line 6
if the current objective value is smaller. Finally, we return the
solution with the smallest objective value. Following similar
analysis as in [32] (hence omitted for brevity), we can show
that Algorithm 1 is an ε-approximation.

Upon solving the continuous relaxation of inner sum-of-
ratios subproblems (9) and (10), it remains to obtain an integer
solution to calculate the utility. This is still an NP-Hard
integer programming problem with generalized packing-type
constraints in (7). We propose the following solution approach:
First, we solve the continuous relaxation of min

{∑L
l=1

a>l x

d>l x
+

c>x : Bx ≤ b,x ∈ Zn+
}

, where B ∈ Rr×n+ , b ∈ Rr+, and
al,dl, c ∈ Rn+,∀l. Let x̄ be the obtained fractional optimal
solution. Then, we propose a randomized rounding scheme as
shown in Alg. 2 to round x̄ and arrive at an integer solution.

Step 3) Solving the outer MKP subproblem: The general
formulation of the outer MKP subproblem can be written as:

Maximize
x

∑
i∈I

uixi (16)

subject to Constraints (2), xi ∈ {0, 1},∀i ∈ I,

where ui , µi(
E[i]

f(p[i],w[i])) is the utility value of each job i.
Our goal is to select jobs that maximize the total utility among
all the submitted jobs I. The MKP problem is still a well-
known NP-Hard problem [34] but admits an ε-approximation
solution7 that runs in polynomial time if ε and I are fixed.
Here, we adopt the ε-approximation scheme [35] to our

7This ε-value is different and should not be confused with the ε in Step 2.

problem setting. We let T (S) = {t ∈ I\S : ut > min(ui : i ∈
S)}, for S ⊂ I. Let LP (S) be the linear program obtained
from Problem (16) by setting xi=1, if i ∈ S; and set it to 0,
if i∈T (S). Let xB(S) be an optimal basic feasible solution to
LP (S). The main idea of this approach is to solve LP (S) for
all S⊂I. Then, we round down the solution xB(S). Finally,
we return the best solution with the largest objective value.
The difference between xB(S) and bxB(S)c is small since R
is a fixed small number in our case.

A. Performance Analysis

We now examine the overall approximation ratio of our
proposed algorithms. Note that the key component in our
algorithm is the proposed randomized rounding scheme in
Algorithm 2 for Problem (6). Thus, we first prove the fol-
lowing result for the randomized rounding algorithm (proofs
are omitted due to space limitation).

Lemma 3 (Rounding). Let Wb , min{bi/[B]ij : [B]ij > 0}.
Let L be the number of sum-of-ratios terms. Pick some constant
δ ∈ (0, 1], and define Mδ as:

Mδ , 1 +
3 ln(2r/δ)

2Wb
−

√(
3 ln(2r/δ)

2Wb

)2

+
3 ln(2r/δ)

Wb
.

With probability greater than 1−δ, x̂ achieves a cost at most
8L/Mδ+4

δ times the cost of x̄, and Pr{(Bx̂)i>bi,∃i}≤ δ
2r .

Note that δ is used for characterizing the randomized round-
ing algorithm’s performance. Lemma 3 indicates that with
probability 1−δ, one achieves an approximation ratio at most
8L/Mδ+4

δ with the stated probabilistic feasibility guarantee.
From the statement, we can see that the approximation ratio is
ultimately determined by δ, since Mδ increases as δ increases.
Thus, if one desires a better approximation ratio, then a larger
δ should be picked. That is, there exists a trade-off between
the approximation ratio value and its achieving probability,
both of which are quantified by δ.

The approximation ratio of our algorithm is the worst-case
upper bound of the ratio between the overall utility of admitted
jobs obtained by the optimal solution of Problem (1) and
the total utility achieved by Algorithm SMD in the overall
time horizon. By specializing Lemma 3 with parameters in
Problem (6), we have the following result for Algorithm 2:

Theorem 4 (Approximation Ratio of Rounding in Alg. 2).
Let δ be selected as in Lemma 3, and let Mδ be defined as
in Lemma 3. With probability greater than 1− δ, Algorithm 2
obtains a schedule {w[i], p[i],∀i} that has an approximation
ratio at most 24/Mδ+4

δ with Pr{LHS(7) > vr[i]} ≤ δ
8 .

Let ε1 and ε2 be the performance ratios of solving the sum-
of-ratios problem and MKP, respectively, where ε1, ε2 ∈ (0, 1).
Let δ and Mδ be defined as in Lemma 3. Let τi be the comple-
tion time of job i and τ∗i be the optimal completion time of job
i. Let F be chosen as in Alg. 2. We let µ∗ , maxi{µi(τ∗i)},
and let µ′ , mini{µi

(
τ∗i (1 + ε1)(24/Mδ + 4)/δ

)
}. Following

Theorem 4, we can establish the overall approximation ratio
and running time complexity of the SMD approach as follows:

Theorem 5 (Overall Approximation Ratio of SMD). With
probability greater than (1 − (δ/8)F)I , the proposed SMD-
based method returns a feasible solution with µ′(1−ε2)

µ∗ -
approximation performance guarantee.

Theorem 6 (Polynomial Running Time). We let T si and T ai
be the time complexity for solving the sum-of-ratios problem
under synchronous and asynchronous training of job i, re-
spectively, which can be solved in polynomial time [32]. Let
Ti = max{T si , T ai }. Let T2 be the time complexity for MKP
problem, which is polynomial [35]. Then, the overall time
complexity of Algorithm SMD is O(

∑
i∈I(Ti + F) + T2).

V. NUMERICAL EVALUATION

We conduct simulation studies to evaluate the efficacy of our
proposed algorithms. In our simulation, the computing cluster
follows the real-world system in [36] with job parameters
generated uniformly at random from the following intervals:
E[i] ∈ [50, 200], g[i] ∈ [30, 575] MB, m[i] ∈ [10, 100],
K[i] ∈ [1, 100] · m[i], N [i] ∈ [10, 100]. We consider four
types of resources: GPU, CPU, memory and storage. For fair
comparisons, we use similar settings as in [24] [17] [16]
and set resource demands of each worker as: 0–4 GPUs, 1–
10 vCPUs, 2–32 GB memory, and 5–10GB storage. We set
resource configuration of each PS as: 1–10 vCPUs, 2–32GB
memory and 5-10GB storage. We set bandwidth capacity of
each PS to B[i] ∈ [5, 20] Gbps. Capacities of virtual instances
to run workers/PSs are set according to resource configuration
of Amazon EC2 C4 instances. We set the resource limit of
each job to ϑ times of the resource limit of each instance with
ϑ ∈ [1, 20] (according to the reality that each user is limited to
a maximum of 20 instances per region in Amazon EC2). We
set bj [i] ∈ [1, 300] ms, fj [i] ∈ [1, 500] ms and rj [i] ∈ [80, 500]
ms following the traces collected from the experiments in
Optimus [20] based on Google cluster trace [11], which
include jobs’ training losses, training speeds with various
resource configuration, each server’s resource capacities, job
configuration such as requirements of workers/PSs, as well
as DL model specifications like parameter size. Then, we
set tb[i] =

∑N [i]
j=1 bj [i] and tf [i] =

∑N [i]
j=1 fj [i]. We set

β1[i] ∈ [3, 4], β2[i] ∈ [0, 0.01] and α[i] ∈ [0, 1] following
the tested values from Optimus [20]. We use a Sigmoid utility
function [20], [37], µi(πi) = γ1

1+eγ2 (πi−γ3) with γ1 ∈ [1, 100],
γ2 ∈ [4, 6] and γ3 ∈ [1, 15]. Note that this range of γ2

corresponds to time-critical jobs [21].
We first compare our SMD algorithm with two baseline

resource allocation policies: (1) ESW (setting the ratio of
number of workers to number of PSs to 1:1 [38] for each
job); and (2) Optimus [20] (compare the utility gain by adding
one more worker and one more PS and choose the one with
larger utility gain). Since Optimus estimates the training speed
function based on an online learning approach by monitoring
the convergence rate, we use our own speed function to
estimate the utility for each job. We set ε1 = ε2 = 0.01,
Mδ = 1, and I = 50. To study how the total utility
changes as the computing cluster resource capacity increases,

Fig. 7: Total utility vs. cluster
resources (Async-SGD).

Fig. 8: Total utility vs. cluster
resources (Sync-SGD).

Fig. 9: Total utility vs. number
of jobs (Async-SGD).

Fig. 10: Total utility vs. num-
ber of jobs (Sync-SGD).

10 20 30 40 50

The number of jobs

0.75

0.8

0.85

0.9

0.95

1

A
p

p
ro

x
im

a
ti
o

n
 r

a
ti
o

Async-SGD

Sync-SGD

Fig. 11: The comparison of
approximation ratios.

50 100 150 200

The number of jobs

0

0.2

0.4

0.6

0.8

1

A
c
tu

a
l
u

s
e

d
 r

e
s
o

u
rc

e
 r

a
ti
o

Async-SGD

Sync-SGD

Fig. 12: The actual used re-
sources ratios.

we set one unit of resources as follows: (vCPU = 3400,
GPU = 600, Memory = 1400 GB, Storage = 1200 GB),
and vary the resource capacity using 1-5 times of the unit
resource. The comparison results under both Sync-SGD and
Async-SGD are shown in Figs. 7–10. We can see that SMD
significantly outperforms other policies and the gains in total
utility becomes more pronounced as the number of jobs and
resources in the computing cluster increases.

Next, we examine the approximation ratio of SMD. We
evaluate the performance in terms of the ratio between the
total utility obtained by our algorithm and the optimal total
utility. The optimal utility is computed by enumerating all
the possible combinations of numbers of workers and PSs for
each job, and the combination with the largest utility will be
returned. We vary the number of jobs per scheduling interval
from 10 to 50. We also set the cluster resource capacity as
1000 times of that of a virtual instance. The results are shown
in Fig. 11. We can see that the ratio is much better than
the theoretical bound and becomes larger as the number of
jobs increases, which implies that our algorithm is scalable.
Further, Sync-SGD has a worse approximation ratio since it
is more sensitive to the changes of numbers of workers and
PSs based on Eqn. (9) due to the linear term θ1w + θ2p.
In other words, the error introduced from the ”grid search”
and randomized rounding when solving the inner sum-of-
ratios-subproblem could lead to more utility loss compared to
asynchronous training. Recall that the randomized rounding
scheme is the key of our proposed Algorithm SMD. The
packing constraints (7) are easier to satisfy with a smaller
Mδ . Theorem 4 suggests that there is a trade-off: if we
set Mδ to be close to one to pursue a better total utility
result, the rounding time could be large to obtain a feasible

solution. As Mδ becomes larger, the probability of violating
the packing constraints increases, meaning that we need to
have more rounding attempts to obtain an integer feasible
solution. However, according to our numerical experiences, if
the machine’s resource capacity is relatively large compared
to the jobs’ resource demands per worker/PS, the number of
rounding attempts is small and not sensitive to Mδ .

Lastly, we examine the actual used resources in our al-
gorithm. A key feature of sum-of-ratios problems is that
optimality is not necessarily obtained when the resource
capacity constraints are binding. In other words, compared
to the number of workers and parameter servers, the ratio
between the number of workers and parameter servers plays
a more critical role to minimize the training completion time.
If such a better ratio can be found, it is possible that the
system can save resources while having the same or even better
performance in terms of the average training completion time.
Hence, compared to other resource allocation policies that
use as much resources specified by the user as possible, our
SMD method may use much less resources while achieving
the optimal performance. We let ε = 0.01 and vary the number
of jobs per scheduling interval from 40 to 200. We can see
from Fig. 12 that the actual resources used is 30%-50% of
that specified by the users. From the system’s perspective, the
unused resources can be released and allocated to other jobs.

VI. CONCLUSIONS

In this paper, we studied resource scheduling for DNN jobs
in computing clusters. We demonstrated that the problem can
be formulated as a non-convex integer non-linear program
with bin-packing constraints, which is NP-Hard. We proposed
an approximation scheduling algorithm based on a sum-of-
ratios multi-dimensional knapsack (SMD) approach. Specifi-
cally, we developed a performance model that considers the
special layered structure of DNN under different parameter
synchronization mechanisms. Through careful investigation of
the structure of the non-convex problem, we decomposed the
problem based on SMD and proposed a suite of approximation
techniques to solve the packing-type integer program with
performance guarantees. Evaluation under realistic settings
confirmed superior performances of SMD over existing works.
DNN resource scheduling remains an under-explored area.
Future extensions of this work may include, e.g., datacenter
topology and communication contention among jobs.

REFERENCES

[1] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and
J. Wilkes, “Large-scale cluster management at google with borg,” in
Proc. of the 10th ACM European Conference on Computer Systems
(Eurosys), 2015.

[2] W. Xiao, R. Bhardwaj, R. Ramjee, M. Sivathanu et al., “Gandiva:
Introspective cluster scheduling for deep learning,” in Proc. of USENIX
OSDI, 2018.

[3] J. Gu, K. G. Chowdhury, M. abd Shin, Y. Zhu, M. Jeon, J. Qian,
H. Liu, and C. Guo, “Tiresias: A gpu cluster manager for distributed
deep learning,” in NSDI, 2019.

[4] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016.

[5] “Mlperf training results.” [Online]. Available: https://mlperf.org/
training-results-0-6/

[6] E. B. Dario Amodei, Rishita Anubhai, C. Case, J. Casper, B. Catanzaro,
J. Chen et al., “Deep speech 2: End-to-end speech recognition in english
and mandarin,” in Proc. of the 33th International Conference on Machine
Learning (ICML), 2016.

[7] “Librispeech asr corpus.” [Online]. Available: http://www.openslr.org/12
[8] S. H. Hashemi, S. A. Jyothi, and R. H. Campbell, “Tictac: Accelerating

distributed deep learning with communication scheduling,” in Proceed-
ings of Systems and Machine Learning (SysML), 2019.

[9] J. W. Anand Jayarajan, G. Gibson, A. Fedorova, and G. Pekhimenko,
“Priority-based parameter propagation for distributed dnn training,” in
Proceedings of Systems and Machine Learning (SysML), 2019.

[10] Y. Peng, Y. Zhu, Y. Chen, Y. Bao, B. Yi, C. Lan, C. Wu, and
C. Guo, “A generic communication scheduler for distributed dnn training
acceleration,” in Proceedings of the 27th ACM Symposium on Operating
Systems Principles, 2019.

[11] “Google cluster workload traces,” 2015. [Online]. Available: https:
//github.com/google/cluster-data

[12] Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo, “Optimus: An efficient
dynamic resource scheduler for deep learning clusters,” in Proc. of ACM
EuroSys, 2018.

[13] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, ,
and I. Stoica, “Dominant resource fairness: Fair allocation of multiple
resource types,” in Proc. of the 8th USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2011.

[14] S. A. Jyothi, C. Curino, I. Menache, S. M. Narayanamurthy et al.,
“Morpheus: Towards automated slos for enterprise clusters,” in Proc.
of the 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2016.

[15] A. Tumanov, T. Zhu, J. W. Park, M. A. Kozuch, M. HarcholBalter, and
G. R. Ganger, “Tetrisched: Global rescheduling with adaptive plan-ahead
in dynamic heterogeneous clusters,” in Proc. of the 11th ACM European
Conference on Computer Systems (Eurosys), 2016.

[16] P. Sun, Y. Wen, N. B. D. Ta, and S. Yan, “Towards distributed machine
learning in shared clusters: A dynamically-partitioned approach,” in
Proc. of IEEE Smart Computing, 2017.

[17] T. M. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman, “Project
adam: Building an efficient and scalable deep learning training system,”
in Proc. of USENIX OSDI, 2014.

[18] F. Yan, O. Ruwase, Y. He, and T. Chilimbi, “Performance modeling and
scalability optimization of distributed deep learning systems,” in Proc.
of the 21th ACM International Conference on Knowledge Discovery and
Data Mining (KDD), 2015.

[19] K. Mahajan, A. Balasubramanian, A. Singhvi, S. Venkataraman, and
A. Akella, “Themis: Fair and efficient gpu cluster scheduling,” in NSDI,
2020.

[20] Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo, “Optimus: An efficient
dynamic resource scheduler for deep learning clusters,” in Proc. of the
13th ACM European Conference on Computer Systems (Eurosys), 2018.

[21] Y. Bao, Y. Peng, C. Wu, and Z. Li, “Online job scheduling in distributed
machine learning clusters,” in Proc. of IEEE INFOCOM, 2018.

[22] H. Zhang, Z. Zheng, S. Xu, W. Dai, Q. Ho, X. Liang, Z. Hu, J. Wei,
P. Xie, and E. P. Xing2, “Poseidon: An efficient communication architec-
ture for distributed deep learning on gpu clusters,” in In 2017 USENIX
Annual Technical Conference (USENIX ATC 17), 2017, pp. 181–193.

[23] J. Dean, G. S. Corrado, R. Monga, K. Chen, and others., “Large scale
distributed deep networks,” in Proceedings of the 25th International

Conference on Neural Information Processing Systems - Volume 1, ser.
NIPS’12. USA: Curran Associates Inc., 2012, pp. 1223–1231.

[24] M. Li, D. G. Andersen et al., “Scaling distributed machine learning with
the parameter server,” in Proc. of USENIX OSDI, 2014.

[25] “Amazon ec2 instances,” https://aws.amazon.com/ec2/instance-types/.
[26] M. Abadi, P. Barham et al., “TensorFlow: A system for large-scale

machine learning,” in Proc. of USENIX OSDI, 2016.
[27] P. Goyal, P. Dolla, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola,

A. Tulloch, Y. Jia, and K. He, “Accurate, large minibatch SGD: Training
imagenet in 1 hour,” arXiv preprint arXiv:1706.02677, 2017.

[28] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Programming:
Theory and Algorithms, 3rd ed. New York, NY: John Wiley & Sons
Inc., 2006.

[29] M. Yu, C. Wu, B. Ji, and J. Liu, “A sum-of-ratios multi-dimensional-
knapsack decomposition for dnn resource scheduling,” Ohio State Uni-
versity, Tech. Rep., 2021. [Online]. Available: https://kevinliu-osu-ece.
github.io/publications/ML Networking SMD PERP’20.pdf

[30] R. W. Freund and F. Jarre, “Solving the sum-of-ratios problem by an
interior-point method,” in Journal of Global Optimization, 2001.

[31] S. Schaible, “A note on the sum of a linear and linear-fractional
function,” in Naval Research Logistics Quarterly, 1977.

[32] P. Shen, B. Huang, and L. Wang, “Range division and linearization
algorithm for a class of linear ratios optimization problems,” in J.
Comput. Appl. Math, vol. 350, 2019, pp. 324–342.

[33] A. Chames and W. Cooper, “Programming with linear fractional func-
tionals,,” in Naval Research Logistics Quarterly, 1962.

[34] P. Chu and J. Beasley, “A genetic algorithm for the multidimensional
knapsack problem,” in Journal of Heuristics, vol. 4, 1998, pp. 63–86.

[35] A. FRIEZE and M. CLARKE, “Approximation algorithms for the m-
dimensional 0-1 knapsack problem: Worst-case and probabilistic analy-
sis,” in European Journal of Operational Research, vol. 15, 1984, pp.
100–109.

[36] F. N. Iandola, M. W. Moskewicz, K. Ashraf, and K. Keutzer, “Firecaffe:
Near-linear acceleration of deep neural network training on compute
clusters,” in Proc. of IEEE CVPR, 2016.

[37] Z. Huang, B. Balasubramanian, M. Wang, T. Lan, M. Chiang, and D. H.
Tsang, “Need for speed: Cora scheduler for optimizing completiontimes
in the cloud,” in Proc. of IEEE INFOCOM, 2015.

[38] “Run deep learning with paddlepaddle on kubernetes,”
2017. [Online]. Available: https://kubernetes.io/blog/2017/02/
run-deep-learning-with-paddlepaddle-on-kubernetes/

