® THE HONG KONG

uﬂj UNIVERSIT OF SCIENCE | LIBRARY
AND TECHNOLOGY

HKUST SPD - INSTITUTIONAL REPOSITORY

Title

Authors

Source

Version
DOI
Publisher

Copyright

Layer-aware Collaborative Microservice Deployment toward Maximal Edge
Throughput

Gu, Lin; Chen, Zirui; Xu, Honghao; Zeng, Deze; Li, Bo; Jin, Hai

Proceedings - IEEE INFOCOM, v. 2022-May, May 2022, article number 9796670, p.
71-79

Accepted Version
10.1109/INFOCOM48880.2022.9796670

IEEE

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must
be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works.

This versionis availableat HKUST SPD - Institutional Repository (https://repository.ust.hk/ir)

If it is the author's pre-published version, changes introduced as a result of publishing processes
such as copy-editing and formatting may not be reflected in this document. For a definitive version
of this work, please refer to the published version.

Layer-aware Collaborative Microservice
Deployment toward Maximal Edge Throughput

Lin Gu*, Zirui Chen*, Honghao Xu*, Deze ZengT, Bo Lif, Hai Jin*

*National Engineering Research Center for Big Data Technology and System,
Services Computing Technology and System Lab, Cluster and Grid Computing Lab,
School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, China
TSchool of Computer Science, China University of Geosciences, Wuhan, Hubei, China
iDepartment of Computer Science and Engineering, Hong Kong University of Science and Technology, Hong Kong

Abstract—Lightweight container-based microservice has been
widely advocated to promote the elasticity of edge cloud. The
inherent layered structure of containers offers a compelling way
to cope with the resource scarcity of edge servers through layer
sharing, which can significantly increase storage utilization and
improve the edge throughput. Recent studies show that it is
possible to share layers not only within the same server but
also between servers, which microservice deployment can take
full advantage of. In this paper, we investigate the problem of
how to collaboratively deploy microservices by incorporating
both intra-server and inter-server layer sharing to maximize
the edge throughput. We formulate this problem into an integer
linear programming form and prove it as NP-hard. We propose
a randomized rounding based heuristic algorithm, and conduct
formal analysis on the guaranteed approximation ratio. Through
extensive experiments, we verify the efficiency of our proposed
algorithm, and the results demonstrate that it can deploy 6Xx
and 12X more microservice instances and improve the edge
throughput by 27.74% and 38.46% in comparison with state-
of-the-art strategies.

I. INTRODUCTION

Edge cloud has emerged as a promising platform com-
plementary to cloud systems by provisioning computation
resources at the network edge. Owing to the advantage on end
user proximity, edge cloud is ideal for many delay-sensitive
applications such as self-driving, healthcare, augmented real-
ity, smart manufacturing and etc. Meanwhile, in comparison
with central cloud empowered by large datacenters, edge
cloud resources are relatively scarce. Therefore, how to mostly
effectively utilize the edge resources has become one of the
main research focuses recently. On the other hand, container-
based microservices have been advocated as an edge service
provision paradigm, thanks to its lightweight advantages,
which offer flexibility and elasticity over conventional virtual
machines (VMs) [1]-[3].

While containers are relatively lightweight, their footprints
are still far from being negligible. For instance, the size of
top 134 most downloaded images in Docker Hub varies from
109MB to 2045MB. This puts a heavy burden on the storage
and severely limits the service capacity of an edge server. At
the same time, it can also lead to massive image downloading
traffic and slow microservice startup [4]. A recent study [5]
shows that the average single microservice startup time over a

100Mbps network is as high as 20.7 seconds and 72.4% of the
startup time is spent on image downloading. To overcome this
problem, existing studies have tried to slim container image
size [6], enable partial image downloading [7], pre-import
required libraries [8] or redesign container images [9].

By closely examining the container architecture, it can be
observed that container images like Docker have an intrinsic
layered structure. Such a feature can be properly exploited
to reduce the image storage requirement, downloading traf-
fic, as well as microservice startup time without refactor-
ing container images. Container-based microservice packages
everything required in its container image and stores them
in multiple layers, including runtime tools, system tools and
system dependencies. Thus, deploying a microservice on a
server is essentially equivalent to load all the required layers
into the server [10]. Fortunately, it has been pointed out
that some common layers (especially those read-only layers)
can be shared between different microservices on the same
server (i.e., intra-server sharing) [11] or across different servers
via distributed file system (i.e., inter-server sharing) [12]. A
recent study [7] shows that 57 representative microservice
images have 19 common base layers. Taking microservices of
Cassandra, JAVA, Python and gcc as examples, their images
all require one non-latest Linux distribution layer of Debian.
By sharing the common layers, the storage requirement of
a microservice can be significantly reduced. This not only
reduces the image download traffic and the startup time, but
also potentially expands the service capacity of a resource-
constrained edge server.

In an edge-cloud system, given the resource scarcity of edge
servers, it is natural to consider layer sharing during micro-
service deployment. Existing studies [9], [13] have largely
treated containers as lightweight VMs. Gu et al. [11] recently
propose a layer sharing microservice deployment solution
to improve the edge throughput (defined as the number of
requests satisfied by an edge cloud). However, this study
only focuses on intra-server layer sharing. When inter-server
layer sharing is considered, a layer not stored locally can
be loaded from another server as long as the startup time
is acceptable [12]. This essentially expands the layer sharing
scope and inflates the resource utilization to achieve higher

o ny ny

v
o =
Q
g - ST ST 5% g 450MB g 1000MB g 750MB
5 @
e I e e 8 & ° 106Hz ° 0.1GHz) 2.5GHz
g CentOS CentOS CentOS g S
= (55MB) (55MB) (55MB) A
MySQL Ngnix Cassandra 7 requests 73 requests 23 requests
Free: Free:
Free: Free: Free: Free: Free: 39MB Free: Free: 39MB
341MB 557MB 427MB ' 341MB 557MB ! 8MB 557MB
{‘;} S5MB 55MB 55MB ; CP 55MB 55MB 55MB O 55MB 55MB
oc =6 Bor =1] oc =3 P =1 Boz =2 3 Por =1 Boz =2
8 .8 .8 @ B8 88 B —
no ny n, no ny lj n, ny n, tl n,
(o] o (o] (o} (o} o o o o
Bro =7 fio =73 fro = 73¢
S\ =73 H23 F e =TT Uza RS s H23

Case 1: 97RPS with non-sharing strategy [14] ‘

Case 2: 99RPS with intra-server
layer sharing strategy [11]

Case 3: 103RPS with both intra-server and
inter-server layer sharing strategy

Fig. 1. An example of three microservice deployment and layer storage strategies

edge throughput. So far there has been no systematic study
that quantitatively characterizes the throughput improvement,
and this work attempts to fill the gap.

It is worth noticing that by enabling inter-server layer
sharing, the microservice deployment and layer storage are no
longer tightly coupled as a required layer of a microservice can
be stored independently apart from the microservice. Conse-
quently, the microservice deployment inevitably becomes more
complicated in that edge servers can now collaborate with
each other to balance the storage and computation resource
usages, in order to handle more requests on edge cloud. This
work focuses on the layer-aware collaborative microservice
deployment with the objective of maximizing edge throughput,
which is proved to be NP-hard. To tackle the computation
complexity, a heuristic algorithm is proposed based on ran-
domized rounding. Our major contributions are summarized
below.

« To our best knowledge, this is the first work to consider
both intra-server and inter-server layer sharing and inves-
tigate the joint microservice deployment and layer storage
(JMDLS) problem. We formulate the JMDLS problem
toward maximal edge throughput into an integer linear
programming (ILP) formulation.

The JMDLS problem is proved to be NP-hard through re-
ducing from set-union knapsack problem. By incorporat-
ing the ILP formulation, we further design a randomized

rounding based algorithm with a guarantee approximation

. 2M
ratio of 1 — 5L

We conduct extensive trace driven experiments to analyze
the performance of our proposed algorithm by comparing
with state-of-the-art microservice deployment strategies.
The results show that our algorithm can increase the edge
throughput by 27.74% and 38.46% over LA-MPRS [11]
and JSPRR [14], respectively.

The remainder of this paper is organized as follows. Sec-

tion II presents the motivations and the JMDLS problem is
formulated in Section III. Then, we propose our randomized
rounding based algorithm and analysis in Section IV. The
trace driven performance evaluation results are reported in
Section V. Section VI discusses some related work. Finally,
Section VII concludes our work.

II. BACKGROUND AND MOTIVATION

Let us first consider an edge cloud as shown in Fig. 1,
where there are three edge servers and three microservices to
be deployed, i.e., MySQL, Nginx and Cassandra. According to
the Docker Hub library, the latest versions of MySQL, Nginx
and Cassandra are 443MB, 109MB and 323MB, respectively.
All three images contain two common base layers of 55MB as
CentOS, as shown in Fig. I. These three edge servers are with
available storage capacity of 450MB, 1000MB and 750MB,
and computation capacity of 10GHz (e.g., 2.0GHz X 5cores),
0.1GHz and 2.5GHz, respectively. Following a real trace
from IBM Docker Registry Trace Player, the request rates of
MySQL, Nginx and Cassandra are set as 7, 73 and 23 requests
per second (RPS), and computation resource requirements
are 0.1GHz, 0.1GHz and 0.1GHz, respectively. In this toy
example, we only concentrate on the storage and computation
resource constraints and let the communication capacity be
infinite. Let us check how to deploy the three microservices
to maximize the edge throughput.

In case 1, following the strategy in [14] that treats a
microservice image as a whole, deploying MySQL, Nginx
and Cassandra on servers no, n; and ng, respectively, will
achieve the highest edge throughput as 97. When intra-server
sharing aware strategy [11] is applied, as shown in case 2,
both MySQL and Cassandra can be deployed on server ns to
share the common base layers of Debian. The throughput is
increased to 99 thanks to the 2 more requests for MySQL
handled by mns. We further take inter-server sharing into
consideration, as shown in case 3. By such means, MySQL

could be deployed on all three servers ni, no and ns by layer
sharing to fully exploit the computation resources. In this case,
the edge throughput is further increased to 103.

It can be seen from case 3 that inter-server layer sharing
decouples microservice deployment and layer storage, and
enables server collaboration to balance their storage and com-
putation resource usage. This raises a new question on how
to make microservice deployment and layer storage decisions
to better utilize edge resources for maximal edge throughput.
Motivated by such issue, we investigate the JMDLS problem
toward edge throughput maximization and propose a random-
ized rounding based algorithm in this paper.

III. SYSTEM MODEL AND PROBLEM FORMULATION
A. System Model and Problem Statement

In this paper, we consider an edge cloud consisting of a
set N of resource capacitated servers. With respect to the
microservice provision process, we mainly concern on storage
capacity, computation capacity, uplink capacity and downlink
capacity, which are denoted as Q, Q¢, QU and QP Vn € N,
respectively. To enable inter-server layer sharing as proposed
in [12], we assume that distributed file system is implemented
and the data access rate between server n! and n is R,,+,,.

There is a set M = {1,2,---, M} of microservices to be
deployed. We assume that each microservice corresponds to
one container image. A container image is made up of several
layers, including common sharable layers and unique non-
sharable layers (usually the functionality codes and tools of
microservices). The layers of all the images are denoted as
set L. A layer [€ L is with size (i.e., storage requirement) s;.
We introduce ! to indicate whether the container image
of microservice m € M requires [€ L (Qﬁn = 1) or not
(0., = 0). Starting up a microservice m on a server n is
equivalent to loading all the required layers of m to server n.
To guarantee the QoS, we assume that microservice m must
be started up within time threshold D,,

Once a microservice is successfully started up, it can handle
the corresponding requests, which may first arrive at any
edge server due to geographic distribution of end users. Let
U be the set of users, and the request arrival rate of user
u for microservice m at server n is denoted as 7, .. The
requests of a user can be handled integrally on any server with
the intended microservice, provided that there are sufficient
resources. Different microservices have different computation
resource requirements. Let wS be the unit computation re-
source for handling a request of microservice m € M. A
request that cannot be handled locally has to be transferred
to another server with the intended microservice with transfer
overhead of w?,

Considering the resource capacity constraints of edge
servers, the requests that cannot be satisfied by edge cloud
have to resort to central cloud. Therefore, being aware of
layer sharing, we are particularly interested in how to jointly
make microservice deployment and layer storage decisions to
maximize the edge throughput, subject to the edge resource
capacity constraints.

B. Problem Formulation

Based on the above system model, we next provide a formal
description of the JMDLS problem.

1) Microservice Deployment and Request Distribution: A
microservice can be deployed on any server. We introduce
binary variables " to represent whether microservice m € M
is deployed on edge server n € N (a;' = 1) or not (o' = 0).
The requests of user u for microservice m arriving at server n’
may be handled by any server deployed with microservice m
and with enough computation resources. We introduce binary
variables 3,7 to denote whether the requests are distributed
to server n (3% = 1) or not (3,7, = 0). Obviously, a user’s
requests can only be distributed to an edge server with the
intended microservice. Therefore, we have

0<Bmt <ar, VYn,n e NymeMVueU. (1)

Due to resource capacity limitations, the requests that cannot
be handled by the edge cloud have to resort to the central
cloud. We assume that the central cloud has sufficient re-
sources to deploy all the microservices and handle any request.
Anyhow, all the requests must be completely handled to guar-
antee the QoS. By further introducing 5]}% to denote whether
the requests of user u for microservice m are dispatched from
server n’ to the central cloud or not, we have

Sopm+gre =1, YueUVmeMun' eN. (2
neN

The total computation resource requirement of all requests
distributed to server n cannot exceed its computation capacity
QC. Therefore, we have

D D D Bl

meMn’eN ueU

<Q% VneN. (3

Besides, the transfer of requests between servers is limited
by the uplink capacity Qg, of the sending server n’ and the
downlink capacity Q2 of the receiving server n. That is,

YD Y Blrwn SO, V' eN, (@)
meMneN/{n’} ueU
and

Z Z Zﬁnnnmwméﬂ’j VYneN. (5

meMn’eN/{n} uecU

Note that no transfer overhead will be incurred if a request
is handled locally. Therefore, we specially exclude the case
n =n' in (4) and (5).

2) Layer Storage and Sharing: By enabling inter-server
layer sharing, the layers of a microservice can be stored on
any server n and shared to other servers. We introduce binary
variables 7., to denote whether layer [€ L is stored on server
neN (’yfl = 1) or not (’yfl = 0). The layers that can be stored
on a server are limited by server storage capacity. Therefore,

we have
s < QS
/nsl —_ n?
leL

Vn € N. (©6)

If a required layer [is not stored locally, it needs to be
loaded from another server. Let binary variables Eiﬂn represent
whether a layer [is loaded from server nt to n (5%” =1)
or not (EnTn = 0). Specially, £/, = 1 indicates that layer [
is loaded from local server n. A layer [can be loaded from
server n' only if n' stores layer [, i.e.,

Vn,n' € N,l € L. 7

A microservice can be successfully deployed at an edge
server if and only if all required layers are completely loaded.
That is,

apdl, < > ey, YneNmeM,leL.
nteN

l
Entn S ’Ynm

®

It indicates that a microservice m cannot be provisioned on
server n if either of its required layer [is not stored in the edge
. —0; 1 I
cloud, i.e., ™ =0 1f dl e L,Qm =1 & ZnTe_N €nin = 0.
Note that there might coexist multiple replicas stored on

different servers for the same layer. A server should select at
most one server (including itself) to load a layer. Hence, we
have

> ey, <1, VneN/eL

ntfeN

(C))

To ensure the QoS, the total layer loading time for a
microservice must satisfy

I

leL nteN

m

l

qun, Vn e N,Yme M. (10)
RnTn

Obviously, the threshold D,,, restricts the layer sharing scope

and therefore a layer cannot be shared among arbitrary servers.

One may notice that (10) contains non-linear terms. Fortu-

nately, it can be equivalently transformed to linear form as

SN Om n*n < aMDp4(1—a)A,¥n € N,¥m € M,
lEL nteN
(11)

where A is an arbitrarily large number. The equivalence
between (10) and (11) can be easily verified by enumerating
all possible combinations of 5; i, and ag'. We omit here for
brevity.

3) JMDLS Problem Formulation: By summing up the
above, we can formulate our JMDLS problem, with the goal
of edge throughput maximization, into an ILP as

JMDLS:

DIDIDIDY

meMneNn’eN ueU
st.: (1) —(9),1).
C. Complexity Analysis

muu

In this section, we prove the NP-hardness of our
JMDLS through reducing from set-union knapsack prob-
lem (SKP) [15]. As a generalized 0-1 knapsack problem, SKP
consists of a set I of I elements with weight w; for ¢ € I, a set
J of J items where each consisting of a subset of elements,

Algorithm 1 Randomized Rounding based Algorithm

1: Solve the linear relaxation of JMDLS to obtain real
. ~ > ~1 ~
number solutions &, 5%, 7, and €,

2: repeat
3 for m € M and n € N do
4 Set o < 1 with probability &
5: end for
6: for [€ L and n € N do
7 Set 7, + 1 with probability 7/,
8 end for
o: for mc M, v c U and n,n’ € N do
10: if &' =1 then R
1 Set 73 « 1 with probability 2z
12: else
13: Set 7 0
14: end if
15: end for
16: forlc L and n,n' € N do
17: if 7', =1 then
=~
18: Set &, « 1 with probability 2=
19: else "
20: Set &, «+ 0
21: end if
22: end for
23: until (o], ;"g, 7n, mn) define a feasible solution.

24: Set ﬁm" < 1 to schedule remaining requests to the cloud.

ie., 7 C I, and a knapsack with capacity b. Note that only
an item is associated with a nonnegative profit v;,j € J. The
elements required by all items equals to the element set, i.e.,
U icyJ = L The goal of SKP is to find a subset of items
K C J with the maximum profit, subject to the knapsack
capacity constraint, i.e., ZiGUkeK L wi < b

In the JMDLS problem, we can view a layer [€ L as an
element with weight as its storage resource requirement s; and
a microservice m € M requiring a subset of layers as an item.
Let us consider a special case where all the servers are with
sufficient computation and communication resources. In this
case, one instance of each microservice is enough to handle
all requests and the profit of microservice m can be calculated
as vy, = ZneN)ueU Thm- Hence, the JIMDLS problem can
be solved by deploying a subset of microservices M* C M
into server knapsacks, aiming to achieve maximum throughput
> meem+ Um Without violating the knapsack capacity Q3.
This is a typical SKP, which has been proved as NP-hard [16].
Hence, the JMDLS problem, as a general case, is NP-hard.

IV. RANDOMIZED ROUNDING BASED ALGORITHM

A. Algorithm Design

To tackle the computation complexity, we incorporate the
JMDLS formulation and propose a randomized rounding (RR)
based solution to pursue sub-optimal solutions. The algorithm
is presented in Algorithm 1.

By relaxing the binary variables (i.e., o], ﬂmg,%, 51 tn)
to real ones in the range of [0,1] in line 1, the original
JMDLS formulation in ILP form is first relaxed into an LP that
can be solved in polynomial time. The real number solutions
(an ,Bn 1w AL, €.) obtained by solving the relaxed JMDLS
can be considered as the probability of making a decision.
Hence, the deployment and storage decisions, i.e., ;" and
AL, are set to 1 with probability @™ and 7!, in line 4 and
line 7, respectively. The user requests should be processed
locally with the highest priority. The remaining requests from
user v arriving at server n’ can be distributed to server n
deployed with m (ie., &) = 1). Note that only when a
microservice m is deployed on n, corresponding requests can
be processed Hence, if a)' = 1, we set % to 1 with

probability B",’n", as shown in line 11. Otherwise, En;fb i

set to 0 in 11ne 13. Similarly, the layer loading decisions of
éinm are made from line 16 to line 22. Note that due to the
relaxation, the randomized rounded solutions may violate the
resource capacity constraints. Hence, we check if any storage,
computation, or link capacity constraint is violated. If so,
we repeat the randomized rounding procedure from line 3
to line 22 until a feasible solution is found. Finally, all the
requests that cannot be processed on edge servers will be

distributed to the cloud.

B. Algorithm Analysis

Let Pr(-) represent the probability of an event. The proba-
bilities of the decision variables being set to 1 are Pra) =

1] = @7 and Pr[3}, = 1] = 7). Note that, 57" and &',
are dependent on ;' and 7", respectively. The value of 3%
can be 1 only when «;' = 1 and éinm can be 1 only when

v = 1. That is,

Pr(Bme = 1] = Pr[Bpe = 1a = 1]Pr(ar = 1]
gmu . (12)
= cnam — g
and
Pr[glnin = 1] = Pr[girﬂn = lﬁjiﬁ = 1]Pr[:\yifﬂ = 1]
_ glnTn/’%ll _ /\lnln. (13)
/nT

Based on the above probabilities, we provide theoretical
analysis on the solution quality of our RR algorithm.

Lemma 1. The RR algorithm guarantees all the resource
capacity constraints in expectation.

Proof. Let us first check the storage capacity constraint. The
expectation of total storage resource consumption on server n

can be calculated as
5= Z%Sz <3

EQ As) =Y Pr, =
leL

leL leL

(14)

where the second equation holds because Pr[y, = 1] = 7},
and the last inequality follows constraint (6) in the relaxed
JMDLS.

Similarly, we can get the expected computation, uplink,
downlink resource requirements and microservice startup la-

tency as

mEM n’'eN ueU

=2 D> > Prifuh = Ui

meMn’eN ueU

> > > B

meMn’eN ueU

By D > Bunrimen)

meMneN/{n’} ueU

=Y 3 N prpmE =10l

meMneN/{n’} ueU

Yoo D D Brriwn < Q,

meMneN/{n’} ueU

B, > D Brimen)

meMn’eN/{n} ucU

- S S -

meMn’eN/{n} uecU

> > 2B

meMn’eN/{n} uecU

15)

muu
nnn

C C
mSQna

(16)

u S
1]Tn’mwm

a7)

mu,u D
n'n nmwm<Q

and
mel

By Y Tl

leL nteN

I

leL nteN
ame l /‘l

Y Y EhAut g

leL nteN

nTn

= 1]Pr[& € i
Rnln

= 1]9l S

m

(18)

which follow constraints (3), (4), (5) and (10), respectively.
Thus we prove that Algorithm 1 guarantees all the resource
capacity constraints in expectation. O

Lemma 2. The RR algorithm guarantees that deployed mi-
croservices are stored intact on the edge with high probability.

Proof. The relationship between the probability of layer load-
ing and that of microservice deployment is > ien PriEt:, =
1= tenEyr, = amdl, = Prlan =1]0%,.

Both the first and the third equations hold, due to (13) and
Priai™ = 1] = &l respectively, and the second inequality
follows constraint (8). As such, we can see that the probability
of a microservice being deployed will not be larger than the
probability of its required layers being loaded. It implies that
any required layer of a microservice to be deployed can be
successfully loaded with high probability. As the layer loading
is constrained by the layer storage, the deployed microservices
are stored intact on the edge with high probability. O

Lemma 3. The RR algorithm guarantees that the layers
required by a server will not be loaded repeatedly with high
probability.

Proof. The sum of probability of loading layer [to server n
is Y ien PriEt:, =11 =3 ienEhi, < 1, where the last
inequality holds due to constraint (9). Hence, a layer will not
be loaded repeatedly with high probability. O

We can easily derive that the other constraints also always
hold. As 87" and £ . = are dependent on & and 7.,
respectively, the constraints (1) and (7) hold. Constraint (2)
always holds due to request distribution in line 24.

The above lemmas prove that the RR algorithm fits all the
constraints in expectation. Hence, the achievable performance
in terms of the edge throughput of our RR algorithm can be
analyzed as follows.

Theorem 1. The JMDLS problem can be solved by the RR

algorithm with an approximation ratio of 1 — %, where
OL is the optimal value of the relaxed JMDLS in LP form.

Proof. The RR algorithm returns the expectation of objective

value as
ZODDIDIDD

meMneNn’eN ueU

=333 N P =1,

meM neN n’eN ueU

D2 > D Bl

meM neN n’eN ueU

muu
n’'n nm

19)

Note that, each term Nm“r"

T, i (19) is an independent
random variable, and can be set to 0 or 1 by appropriate
normalization. Let OL represent the optimal value of relaxed
JMDLS and we can apply the Chernoff Bound theorem [17]

to prove that

ZLDIDIDIPI

meMneNn’eN ueU

(1—-0)0L)<e sor

muu
n’'n nm—

(20)
where 0 < & < 1. Let OP represent the optimal solution of
JMDLS problem. Obviously, OP < OL, based on which we
can further derive that

ZOIDIDIDD

meMneNn’eN ueU
<P S S S B, <1
meMneNn’eN ueU
52
< 6_70£.

muu
n'n nm—

— 5)OP]

—85)oL] Q1)

In order to make the upper bound of the probability as small
as possible, we take

1
2oc
< oA (22)
which implies that the upper bound quickly converges to 0 as
the number of microservices grows. Accordingly, 6 should be
2M

521\ 5F (23)

In practice, OL tends to be much bigger than M, and

— 2M
therefore 0 < & < 1 always holds when § = Br-

Consequently, the approximation ratio of the RR algorithm
is1— /24 O

With regard to the randomness of the RR algorithm, we
iteratively apply randomized rounding to find feasible solu-
tions. One may concern whether the loop can stop and how
many iterations are needed till termination. This is related to
the probability of resource capacity constraint violation. Let
us begin with the analysis on the storage capacity constraint.

Lemma 4. The RR algorithm ensures that the layers’ stor-
age footprint in either server n € N does not exceed
%(1‘ / ngx + 1)(4/ Sl + 2) times than its storage capacity
with hig h probablllty, where 57" represents the largest layer
size.

Proof. In the RR algorithm, we try to deploy as many mi-
croservices as possible in edge servers to improve the edge
throughput. The layers are greedily stored in the edge cloud,
expecting that E(3", . 74s1) = Q5. Each term 7.s; is an
independent variable that can be set to value 0 or 1 by
appropriately normalizing. Therefore, also by applying the
Chernoff Bound theorem, we can prove that

Pr{Y Fhs > (1+0)05] < e o,
leL

(24)

where o > 0. Similarly, to make the upper bound small enough
and follow the fact that the microservices are stored in layers,
we take

s 1
o~ Tt < —e (25)
S
where s]"** = max{s;,Vl € L} represents the largest

layer size. Now, s makes the upper bound close to 0.

Accordingly, o should satisfy

S;naw + \/(S;naz)2
205

FSsp0s

o> (26)

In practice, €25 should be much larger than 57*%%. Without loss
of generality, we set

mam_|_3 / mazQS

27
205 @7
The threshold of storage capacity then can be derived as
1 S;na:v maw
1+ =50/ g + 1 QS +2). (28)

That is, the storage consumption of server n does not exceed

%(\/i% + 1)(i;n% + 2) times than its storage capacity
with high probability. O

Lemma 5. By the RR algorithm, the computation resource

consumption on a server will not exceed %(

pmaz

Cmin

pma:r
(/&
probablllly, where p represents the maximum computation
resource requirement of one user request and C,;,, represents

+2) times than its computation capacity with high

max

the minimum resource consumption of one server in the
relaxed JMDLS solution.

Proof. Similar to the proof of Lemma 4, Ilet
E(ZmEM Zn’EN ZuEU Bﬁzrrz’mwg) = C. ThI'Ollgh
the Chernoff Bound theorem, we have
02
PriY " > Brur,wn > (1+0)C) <e #5C,
meMn’eN ueU
(29)

Note that the expectation of computation resource consump-
tion may not be exactly equal to its capacity. According

to (15), we have C' = ZmeM Zn reN ZueU mupu O

TLTLTLTTL m —

QC Let C),n, be the minimum resource consumption of one
server in the relaxed JMDLS solution. Obviously, C,,;, < C,
based on which we can derive that

Pr| Z ZZ grert, O > (14 0)Qf)

n'nTn'm%Ym
meMn’eN ueU

SLVIDIDY

meMn’eN ueU

2 2
< 6_2’17”0 < 6_2‘17607’”'",

Brirt, wC > (1+0)C] (30)

nn - n'm-—Tm

Let p"%* = max{r%,wS,¥n € N,¥Ym € M,Vu € U} be
the maximum computatlon resource requirement of one user

Cmin S pmam and the value of (14 o)
Similarly, we can prove the violation of the uphnk capacity,

downlink capacity and microservice startup latency constraints
as follows.

request. We set e~ e

1
can be presented as 3 (

Lemma 6. With the RR algorithm, the request traffic sent from
gZ‘f“” + 1)(+ 2) times
of its uplink capacity with higi;n};robability, where T =
max{r?, w2 Vn € N,¥Ym € M,Vu € U} represents the
maximum request transferring traffic and BY . represents the

minimum uplink traffic in the relaxed JMDLS solution.

bmaz

a server will not exceed %(

Lemma 7. With the RR algorithm, the request traffic received
by a server will not exceed l(\/bmz + 1)(\/bmw +2) times
of its downlink capacity with high probability, where B,

represents the minimum downlink traffic in the relaxed JMDLS
solution.

Lemma 8. With the RR algorithm, the startup time of
a microservice m € WM on any server will not exceed

L/ 1+ 1) (/Lo 4 2) times than its threshold D,,

D;rlnn szn
with high probability, where d™** represents the maximum
layer loading time and D]*" is the minimum microservice
startup time in the relaxed JMDLS solution.

In practice, RR can satisfy all resource constraints with
extremely high probability, and usually only few iterations
are needed in the execution of Algorithm 1. Taking storage
resource as an example, with available storage capacity of
10TB (2 = 1e7) and the largest layer size as 200MB

(s7"** = 200), the storage consumption of the server will not

likely to exceed its storage capacity, i.e., 3(1/222+1)(1/ 322 +
2) ~ 1.02.

V. PERFORMANCE EVALUATION
A. In Small-scale Cases

To evaluate the optimality of our randomized rounding
based algorithm, we first compare the RR algorithm (JMDLS-
RR) to the optimal solution (JMDLS-O) in small scale such
that the optimal solution via solving JMDLS in ILP form
can be obtained as a baseline. Both intra-server layer-aware
algorithm LA-MPRS [11] and JSPRR [14] are also imple-
mented as competitors. In this case, we consider 4 distributed
edge servers. In default, the available storage capacity, com-
putation capacity, uplink capacity and downlink capacity are
randomly set in the ranges of 109 ~ 384MB, 0.8 ~ 1.2GHz,
80 ~ 120Mbps and 320 ~ 480Mbps, respectively. 10 different
microservices are selected from Docker Hub with the size
of 67 ~ T40MB. The microservice request arriving rates
are set in the range of 1 ~ 132RPS following a real world
data set from IBM Docker Registry Trace Player. We vary
the capacity of one resource in each experiment group to
assess the performance of these algorithms and the influence
of the resource capacity to the edge throughput. The results
are reported in Fig. 2.

We first check how the storage capacity affects the achiev-
able edge throughput by increasing it from 100MB to 300MB,
as shown in Fig. 2(a). As expected, higher storage capacity
implies more microservices on the edge and hence higher
throughput. JMDLS-RR always performs close to JMDLS-O
and outperforms both LA-MPRS and JSPRR, thanks to the
exploration of both intra-server and inter-server layer sharing.
Especially, the gap between JMDLS-RR and JMDLS-O is
nearly zero when the storage capacity is small, i.e., 100MB to
160MB. This is because there is no much optimization space
when the storage resource is too small, and the throughput of
either algorithm is low. While, when the capacity increases
from 260MB to 300MB, the throughputs of JMDLS-RR and
JMDLS-O both converge because the computation and link
capacity constraints become dominant in this case.

Then, Fig. 2(b) shows the edge throughput when the average
computation capacity increases from 100MHz to 1000MHz.
Without doubt that more requests can be handled at the
edge with higher computation capacity under the same micro-
service deployment. This explains why the edge throughput
by any algorithm almost linearly increases with the com-
putation capacity. While, compared to JMDLS-O and LA-
MPRS, JMDLS-RR and JSPRR are not that stable. This can be
attributed to their basic algorithm, i.e., randomized rounding,
which randomly rounds the real solutions to binary ones.
Nonetheless, the sub-optimality of JMDLS-RR, as well as its
advantage over LA-MPRS and JSPRR, can still always be
observed.

Next, we present the throughput under different link ca-
pacities. Since the downlink capacity is usually relatively

1600;
—e— JMDLS-0

JMDLS-RR
—¥— LA-MPRS|11]
—m— JSPRR|14]

—e— IMDLS-0
JVIDLS-RR
1400 20000 LA-MPRS|11]

—=— JSPRRI14|

—e— JMDLS-0
JVMDLS-RR

—¥— LA-MPRS[11]

—s— JSPRRI14]

Throughput

12 -
H 00 21500
= =
%ﬁl(ml] %ﬁ
Z 800 E
= =

600: 5001

400 _________,,._._._./.—.

00 135 150 175 200 235 250 275 300 200 00

Storage capacity (MB)

(a) Storage capacity

Computation capacity (MHz)

(b) Computation capacity

600 800 1000 50 100 150 200

0 250 300
Uplink bandwidth (Mbps)

(c) Uplink capacity

Fig. 2. Impact of (a) storage capacity, (b) computation capacity and (c) uplink capacity on throughput in small-scale cases

IMDLS-RR
v LAMPRS[I1]
—=— ISPRR(14]

Number of Microservices
Throughput

£ ¢ ¢

Throu;
.
R

IMDLS-RR 12000
v LAMPRSII]
—=— ISPRR(14] 10000

8000;

6000

Throughput

40004

IVDLS-RR
—v— LA-MPRSLI]
s JSPRR(14]

2000

02 210 20 20-100 100-200 200~1000 1000+ 500 600 900

10- 700 0
Number of Requests Storage capacity (MB)

(a) Request distribution (b) Storage capacity

2000 4000 6000 8000 10000 500 1000 1500 2000 2500 3000
‘Computation capacity (MHz) Uplink bandwidth (Mbps)

(c) Computation capacity (d) Uplink capacity

Fig. 3. Impact of (b) storage capacity, (c) computation capacity and (d) uplink capacity with IBM Docker Registry Trace #1

180001

Number of Microservices
Throughput

5 E 3

g ¢

00-1000 1000+ 500 600

O T L TToa]
Number of Requests

700 800
Storage capacity (MB)

(a) Request distribution (b) Storage capacity

IMDLS-RR
—v— LA-MPRS|I]
—— ISPRR14]
900

0000

IMDLS-RR
v LAMPRS|T]
—— USPRRI14]

15000

10000

Throughput

IVDLS-RR

]

o ISPRRIM

500 1000 1500 2000 2500 3000
Uplink bandwidth (Mbps)

2000 4000 6000 8000 10000
‘Computation capacity (MHz)

(c) Computation capacity (d) Uplink capacity

Fig. 4. Impact of (b) storage capacity, (c) computation capacity and (d) uplink capacity with IBM Docker Registry Trace #2

larger, we take the uplink capacity as representative and vary
it from 30Mbps to 300Mbps. The results are reported in
Fig. 2(c). Besides the sub-optimality, we notice that the edge
throughput of either JMDLS-O or JMDLS-RR is not affected
too much by the uplink capacity but it grows along with
the uplink capacity in the case of LA-MPRS or JSPRR. By
carefully analyzing the results, we notice that most requests
are handled locally in the cases of JMDLS-O and JMDLS-RR.
With the help of inter-server layer sharing, the microservices’
footprint is significantly reduced. Hence, many microservices
can be successfully deployed and corresponding user requests
can be handled locally as long as the computation resource
is sufficient. Under such circumstance, enlarging the uplink
capacity does not take much benefit to edge throughput. While,
in LA-MPRS or JSPRR, due to comparatively larger storage
requirement, less microservice instances can be deployed.
Hence the requests that can not be handled locally have to
be transferred to another server with enough computation
resources, otherwise to the central cloud. Consequently, their
performance is highly affected by the uplink capacity as higher
uplink capacity implies that more locally unsatisfied requests
can be transferred to other edge servers toward higher edge
throughput.

B. In Large-scale Cases

Then, to evaluate the performance of our proposed RR
algorithm in more practical scenarios in larger scale, we
consider an edge cloud consisting of 14 distributed edge
servers with storage capacity, computation capacity, uplink
capacity, downlink capacity and data access rate in the range
of 109 ~ 1045MB, 8 ~ 12GHz, 320 ~ 2400Mbps,
1280 ~ 1920Mbps and 100 ~ 400Mbps, respectively. 80
microservices from Docker Hub are considered. The number
of layers of each microservice is in the range of 6 ~ 13
and the image size is in the range of 109 ~ 2045MB, with
computation resource requirement ranging in 1 ~ 5MHz. In
this case, it is computationally prohibited to obtain the optimal
solution anymore, and hence we only evaluate JMDLS-RR,
LA-MPRS and JSPRR. Different microservice request traces
from IBM Docker Registry Trace Player with rates varying
from 1 ~ 1721RPS are incorporated. The results of two traces
under different storage, computation and uplink capacities are
reported in Fig. 3 and Fig. 4, respectively. Fig. 3(a) and
Fig. 4(a) first present the traces’ request distribution. Taking
Trace #2 as an example, most microservices (22 of them) are
with request rates in the range of [20, 100]RPS and only a few
(6 microservices) have rates more than 1000RPS.

First of all, we can see a similar trend from Fig. 3 and

TABLE I
A COMPARISON OF THREE METRICS ON LAYER AWARE AND UNAWARE STRATEGIES

Traces Storage No. of Microservice Instances Average No. of Layer Replicas Throughput Improvement Ratio
JMDLS | LA-MPRS | JSPRR | JMDLS | LA-MPRS | JSPRR | JMDLS vs LA-MPRS | JMDLS vs JSPRR

500MB 51 8 4 2.32 2.59 2.30 40.31% 33.29%

600MB 55 12 3 2.48 2.86 2.83 35.10% 38.27%

IBM Trace #1 700MB 61 11 5 2.31 2.83 2.47 23.57% 16.58%
800MB 79 24 6 2.30 3.27 2.67 16.79% 32.43%

900MB 89 21 11 2.56 3.38 3.39 31.74% 37.75%

500MB 83 14 6 2.37 3.19 2.50 28.79% 43.95%

600MB 137 13 9 2.28 3.00 2.74 35.75% 40.51%

IBM Trace # 2 || 700MB 140 12 9 2.67 3.04 291 24.61% 46.73%
800MB 137 14 11 2.47 3.09 2.79 20.09% 49.35%

900MB 178 13 12 2.20 3.19 2.45 20.68% 45.77%

Fig. 4 as in small cases. It can be also observed that JMDLS-
RR always achieves higher throughput than LA-MPRS and
JSPRR, in any request pattern, for the same reason as just ex-
plained. One may notice that LA-MPRS is better than JMDLS-
RR when the average computation capacity is 1000MHz (in
Fig. 4(c)). This is because JMDLS-RR is based on randomized
rounding, which may generate unsatisfactory decisions occa-
sionally, especially when the resource capacity is relatively
small. While, in practice, a typical 16-core edge server should
have computation capacity higher than 32.00GHz. Such case
rarely happens. In most cases, we can observe that JMDLS-RR
always achieves the best performance.

To get an insight on the performance advantage of JIMDLS-
RR, we further report the average performance improvement
of JMDLS-RR (written as JMDLS in the table) over LA-
MPRS and JSPRR for the two traces under different storage
capacities in Table I. It can be seen from the last column
that JMDLS-RR always significantly outperforms LA-MPRS
and JSPRR. As we have known, it is because, with inter-layer
sharing, less layers need to be stored and more microservice
instances can be deployed at the edge. One interesting finding
observed from Table I is that the average number of common
layer replicas by LA-MPRS sometimes surpasses JSPRR. By
analyzing the deployment solutions, we find that LA-MPRS
enables intra-server layer sharing and can save more space
for small size microservice images. For example, for Trace #2
with 600MB storage, the smallest microservice m is deployed
on servers Sa, Ss, Sy and sg to fully explore their storage
and computation resources toward throughput maximization.
Without inter-server layer sharing, this common layer has to
be stored 4 times. Hence, the average number of layers stored
in LA-MPRS is higher than JSPRR occasionally.

In summary, our JMDLS-RR can deploy 6x and 12x
more microservice instances than LA-MPRS and JSPRR,
respectively, subject to the resource capacity constraints, hence
producing 27.74% and 38.46% throughput improvement over
LA-MPRS and JSPRR, respectively.

VI. RELATED WORK

Container-based microservice provision has emerged as a
compelling solution to provide fast, flexible and scalable
services [18]. Microservice deployment therefore has been
widely investigated toward different optimization goals [19],

[20]. To support the growing user demands, some studies try
to maximize the throughput [21]. For example, Samanta et
al. [22] study the microservice deployment problem in mobile
edge cloud and design a microservice prioritization algorithm.
Poularakis et al. [14] investigate the joint optimization of
service deployment and request routing problem at the edge
and also propose a randomized rounding based algorithm
JSPRR to maximize edge throughput. To improve the user
experience, the service latency should be considered [23]-[25].
Guo et al. [26] propose a microservice scheduling strategy
based on particle swarm algorithm with the consideration
of service neighborhood division to provide faster service
response. Yu et al. [27] focus on the interdependency to
minimize inter-microservice traffic as well as the service
latency. Cost minimization is also another widely concerned
objective [28]-[30]. Wang et al. [31] propose a reinforcement
learning based algorithm to minimize service migration cost.
Wang et al. [32] design a latency-aware task scheduling,
container deployment and resource auto-scaling algorithm to
minimize the service cost.

By literature survey, most existing microservice deployment
related studies usually treat a microservice as a whole [33]-
[35], and the layered structure of microservice images is rarely
considered. Some recent studies point out that the service
performance can be significantly improved by taking advan-
tage of the layered structure. For example, Nathan et al. [36]
design layer-level image registries to speedup microservice
startup and Gu et al. [11] highlight intra-server layer sharing to
improve the edge throughput. Zheng et al. [12] also show that
image layer can be shared between microservices deployed on
different servers, i.e., inter-server layer sharing. This provides
us an opportunity to share common layers across nearby
servers, further lowering the image downloading overhead and
storage footprint. However, how to exploit such opportunity
has not been discussed yet and our work is the first to
investigate this issue.

VII. CONCLUSION

In this paper, we consider the collaborative layer-aware
microservice deployment and layer storage problem with the
objective of maximizing edge throughput. By leveraging both
intra-server and inter-server layer sharing, we jointly balance
storage and computation resource usages in order to maximize

the service capacity of edge cloud. We formulate the problem
into an ILP form and prove it as NP-hard by reducing from set-
union knapsack problem. We propose a randomized rounding
based heuristic algorithm with guaranteed approximation ratio.
The efficiency of our proposed algorithm is verified through
extensive experiments and the results demonstrate that it can
deploy 6x and 12X more microservice instances and increase
the edge throughput by 27.74% and 38.46%, over state-of-the-
art strategies LA-MPRS [11] and JSPRR [14], respectively.

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

REFERENCES

H. Kang, M. Le, and S. Tao, “Container and microservice driven design
for cloud infrastructure devops,” in Proceedings of IEEE International
Conference on Cloud Engineering (IC2E), 2016, pp. 202-211.

F. Ramalho and A. Neto, “Virtualization at the network edge: A perfor-
mance comparison,” in Proceedings of IEEE International Symposium
on A World of Wireless, Mobile and Multimedia Networks (WoWMoM),
2016, pp. 1-6.

W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated
performance comparison of virtual machines and linux containers,” in
Proceedings of International Symposium on Performance Analysis of
Systems and Software (ISPASS), 2015, pp. 171-172.

I. E. Akkus, R. Chen, I. Rimac, M. Stein, K. Satzke, A. Beck, P. Aditya,
and V. Hilt, “Sand: Towards high-performance serverless computing,” in
Proceedings of Usenix Annual Technical Conference (ATC), 2018, pp.
923-935.

L. Gu, Q. Tang, S. Wu, H. Jin, Y. Zhang, G. Shi, T. Lin, and J. Rao,
“N-docker: A nvm-hdd hybrid docker storage framework to improve
docker performance,” in Proceedings of IFIP International Conference
on Network and Parallel Computing, 2019, pp. 182-194.

J. Thalheim, P. Bhatotia, P. Fonseca, and B. Kasikci, “Cntr: Lightweight
OS containers,” in Proceedings of USENIX Annual Technical Conference
(ATC), 2018, pp. 199-212.

T. Harter, B. Salmon, R. Liu, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “Slacker: Fast distribution with lazy docker containers,” in
Proceedings of USENIX Conference on File and Storage Technologies
(FAST), 2016, pp. 181-195.

E. Oakes, L. Yang, D. Zhou, K. Houck, T. Harter, A. Arpaci-
Dusseau, and R. Arpaci-Dusseau, “SOCK: Rapid task provisioning with
serverless-optimized containers,” in Proceedings of USENIX Annual
Technical Conference (ATC), Jul. 2018, pp. 57-70.

Y. Li, B. An, J. Ma, and D. Cao, “Comparison between chunk-based
and layer-based container image storage approaches: an empirical study,”
in Proceedings of IEEE International Conference on Service-Oriented
System Engineering (SOSE), 2019, pp. 197-202.

L. Du, T. Wo, R. Yang, and C. Hu, “Cider: A rapid docker container
deployment system through sharing network storage,” in Proceedings of
IEEE International Conference on High Performance Computing and
Communications (HPCC), 2017, pp. 332-339.

L. Gu, D. Zeng, J. Hu, B. Li, and H. Jin, “Layer aware microservice
placement and request scheduling at the edge,” in Proceedings of IEEE
International Conference on Computer Communications (INFOCOM),
2021, online.

C. Zheng, L. Rupprecht, V. Tarasov, D. Thain, M. Mohamed, D. Sk-
ourtis, A. S. Warke, and D. Hildebrand, “Wharf: Sharing docker images
in a distributed file system,” in Proceedings of the ACM Symposium on
Cloud Computing, 2018, pp. 174-185.

A. Samanta, L. Jiao, M. Mhlhuser, and L. Wang, “Incentivizing mi-
croservices for online resource sharing in edge clouds,” in Proceedings
of IEEE International Conference on Distributed Computing Systems
(ICDCS), 2019, pp. 420-430.

K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, and L. Tassiulas,
“Joint service placement and request routing in multi-cell mobile edge
computing networks,” in Proceedings of IEEE International Conference
on Computer Communications (INFOCOM), 2019, pp. 10-18.

G. Olivier, N. David, and Y. Gang, “Note: On the set-union knapsack
problem,” Naval Research Logistics (NRL), pp. 833-842, 1994.

A. David and Nehme-Haily, The set-union knapsack problem. ProQuest
Dissertations Publishing, 1995.

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

(31]

[34]

[35]

M. Mitzenmacher and E. Upfal, Probability and Computing: Random-
ized Algorithms and Probabilistic Analysis. ~ Cambridge University
Press, 2005.

A. Celesti, L. Carnevale, A. Galletta, M. Fazio, and M. Villari, “A
watchdog service making container-based micro-services reliable in iot
clouds,” in Proceedings of IEEE International Conference on Future
Internet of Things and Cloud (FiCloud), 2017, pp. 372-378.

M. Karimzadeh-Farshbafan, V. Shah-Mansouri, and D. Niyato, “A
dynamic reliability-aware service placement for network function virtu-
alization,” IEEE Journal on Selected Areas in Communications, vol. 38,
no. 2, pp. 318-333, 2020.

B. Dab, I. Fajjari, M. Rohon, C. Auboin, and A. Diquélou, “An
efficient traffic steering for cloud-native service function chaining,”
in Proceedings of Conference on Innovation in Clouds, Internet and
Networks and Workshops (ICIN), 2020, pp. 71-78.

H. M. Fard, R. Prodan, and F. Wolf, “Dynamic multi-objective schedul-
ing of microservices in the cloud,” in Proceedings of IEEE/ACM
International Conference on Utility and Cloud Computing (UCC), 2020,
pp. 386-393.

A. Samanta and J. Tang, “Dyme: Dynamic microservice scheduling in
edge computing enabled iot,” IEEE Internet of Things Journal, vol. 7,
no. 7, pp. 6164-6174, 2020.

S. Pallewatta, V. Kostakos, and R. Buyya, “Microservices-based iot ap-
plication placement within heterogeneous and resource constrained fog
computing environments,” in Proceedings of IEEE/ACM International
Conference on Utility and Cloud Computing, 2019, pp. 71-81.

Y. Niu, F. Liu, and Z. Li, “Load balancing across microservices,” in
Proceedings of IEEE International Conference on Computer Communi-
cations (INFOCOM), 2018, pp. 198-206.

Y. Wang, C. Zhao, S. Yang, X. Ren, L. Wang, P. Zhao, and X. Yang,
“Mpcsm: Microservice placement for edge-cloud collaborative smart
manufacturing,” IEEE Transactions on Industrial Informatics, vol. 17,
no. 9, pp. 5898-5908, 2020.

Y. Guo and W. Yao, “A container scheduling strategy based on neigh-
borhood division in micro service,” in Proceedings of NOMS IEEE/IFIP
Network Operations and Management Symposium, 2018, pp. 1-6.

R. Yu, V. T. Kilari, G. Xue, and D. Yang, “Load balancing for
interdependent iot microservices,” in Proceedings of IEEE International
Conference on Computer Communications (INFOCOM), 2019, pp. 298—
306.

X. Wan, X. Guan, T. Wang, G. Bai, and B.-Y. Choi, “Application
deployment using microservice and docker containers: Framework and
optimization,” Journal of Network and Computer Applications, vol. 119,
pp. 97-109, 2018.

T. Zheng, X. Zheng, Y. Zhang, Y. Deng, E. Dong, R. Zhang, and
X. Liu, “Smartvm: a sla-aware microservice deployment framework,”
World Wide Web, vol. 22, no. 1, pp. 275-293, 2019.

J. Martin-Pérez, F. Malandrino, C.-F. Chiasserini, and C. J. Bernardos,
“Okpi: All-kpi network slicing through efficient resource allocation,” in
Proceedings of IEEE International Conference on Computer Communi-
cations (INFOCOM), 2020, pp. 804-813.

S. Wang, Y. Guo, N. Zhang, P. Yang, A. Zhou, and X. S. Shen,
“Delay-aware microservice coordination in mobile edge computing:
A reinforcement learning approach,” IEEE Transactions on Mobile
Computing, vol. 20, no. 3, pp. 939-951, 2021.

S. Wang, Z. Ding, and C. Jiang, “Elastic scheduling for microservice
applications in clouds,” IEEE Transactions on Parallel and Distributed
Systems, vol. 32, no. 1, pp. 98-115, 2021.

Z. Wen, T. Lin, R. Yang, S. Ji, R. Ranjan, A. Romanovsky, C. Lin, and
J. Xu, “Ga-par: Dependable microservice orchestration framework for
geo-distributed clouds,” IEEE Transactions on Parallel and Distributed
Systems, vol. 31, no. 1, pp. 129-143, 2019.

J. Darrous, T. Lambert, and S. Ibrahim, “On the importance of container
image placement for service provisioning in the edge,” in Proceedings
of International Conference on Computer Communication and Networks
(ICCCN), 2019, pp. 1-9.

X. Hou, C. Li, J. Liu, L. Zhang, S. Ren, J. Leng, Q. Chen, and M. Guo,
“Alphar: Learning-powered resource management for irregular, dynamic
microservice graph,” in Proceedings of IEEE International Parallel and
Distributed Processing Symposium (IPDPS), 2021, pp. 797-806.

S. Nathan, R. Ghosh, T. Mukherjee, and K. Narayanan, “CoMICon:
A co-operative management system for docker container images,” in
Proceedings of International Conference on Cloud Engineering (IC2E),
2017, pp. 116-126.

