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Abstract—Bulk synchronous parallel (BSP) is the de-facto
paradigm for distributed DNN training in today’s production
clusters. However, due to the global synchronization nature, its
performance can be significantly influenced by network bottle-
necks caused by either static topology heterogeneity or dynamic
bandwidth contentions. Existing solutions, either system-level
optimizations strengthening BSP (e.g., Ring or Hierarchical All-
reduce) or algorithmic optimizations replacing BSP (e.g., ASP or
SSP, which relax the global barriers), do not completely solve the
problem, as they may still suffer from communication inefficiency
or risk convergence inaccuracy.

In this paper, we present a novel divide-and-shuffle synchro-
nization (DS-Sync) to realize communication efficiency without
sacrificing convergence accuracy for distributed DNN training.
At its heart, by taking into account the network bottlenecks, DS-
Sync improves communication efficiency by dividing workers into
non-overlap groups to synchronize independently in a bottleneck-
free manner. Meanwhile, it maintains convergence accuracy by
iteratively shuffling workers among different groups to ensure a
global consensus. We theoretically prove that DS-Sync converges
properly in non-convex and smooth conditions like DNN. We
further implement DS-Sync and integrate it with PyTorch, and
our testbed experiments show that DS-Sync can achieve up to
94% improvements on the end-to-end training time with existing
solutions while maintaining the same accuracy.

Index Terms—distributed DNN training, synchronization, com-
munication efficiency, convergence accuracy

I. INTRODUCTION

In today’s production training clusters, BSP is the de-facto
paradigm to train DNN models with large datasets across

different workers [1]–[4]. In every iteration, BSP enforces a

global synchronization to aggregate gradients from all workers

and then distribute them back to each worker so that it updates

model parameters as exactly the same way of training on the

single machine [5]. However, there are network bottlenecks

caused by either physical network oversubscription or dynamic

bandwidth contentions in real-world environments. The syn-

chronization process for some workers may be significantly

affected (as shown in Fig. 1 (a)), incurring considerable idle

waiting as a result of the global barrier.

Thus, in the production network environment, taking BSP

as the benchmark, an ideal synchronization scheme for dis-

tributed DNN training should achieve the following goals:

• Communication efficiency: it should be topology-aware

and fully utilize network bandwidth while avoiding bot-

tlenecks to reduce idle waiting of BSP in each iteration.

• Convergence accuracy: it should maintain the same

convergence accuracy as BSP in similar iterations, which

is widely considered as the best in this aspect [6]–[9].

Existing solutions, no matter whether system-level optimiza-

tions strengthening BSP (e.g., Ring [10] or Hierarchical Allre-

duce [11]) or algorithmic optimizations replacing BSP (e.g.,

asynchronous parallelism (ASP) [12] or stale synchronous

parallelism (SSP) [13]), do not achieve the above two goals

simultaneously (details in §II-B). For the former one, while

solutions like Ring [10], Tree [14], or Hierarchical Allre-

duces [11] explore decentralized collective methods to improve

bandwidth utilization, they still have a long dependency chain

that may block downstream communications if network bottle-

necks exist. Furthermore, due to their global synchronization

nature, these solutions can hardly avoid idle waiting. For the

latter one, by relaxing the global synchronization barrier with

ASP [12] or SSP [13], they avoid or defer idle waiting of BSP

in each iteration. However, these methods often incur a slower

convergence speed, i.e., requiring a larger number of training

iterations. Particularly, as network bottlenecks accumulate the

staleness (iteration gap between the fastest and the slowest

worker) on the same worker, it can bring in outdated and noisy

gradients, leading to convergence inaccuracy.

To this end, we propose DS-Sync, a new divide-and-shuffle

synchronization to achieve both communication efficiency and

convergence accuracy simultaneously (§III). The key idea of

DS-sync is to divide workers into non-overlap groups of differ-

ent sizes to synchronize independently and periodically shuffle

workers among groups to reach global consensuses. According

to the network topology and situations, DS-Sync generates a

periodical pattern to divide and shuffle all workers. In every

iteration, any worker optimizes its model with local gradients

and then synchronizes and averages the model parameters with

workers in the same group. In the next iteration, workers are

shuffled among groups in the generated pattern so that any

worker synchronizes parameters with some unseen workers

from different groups in the previous iteration. Fig. 1 compares

our DS-Sync with PS (widely used in BSP, ASP, and SSP)

and the topology-aware Hierarchical Allreduce to illustrate the

advantages of DS-Sync.

DS-Sync improves communication efficiency with dividing
and ensures convergence accuracy with shuffling. By taking

network bottlenecks into account, it divides workers into

different groups to minimize the maximum communication

cost of all groups to reduce idle waiting. The insight is that

the more workers to synchronize, the more communication

traffic and the more latency (§II-B1). DS-Sync always keeps

bottlenecked workers or links in the smaller group to speed up,

while other regular ones form larger groups. Therefore, bottle-

necked workers can catch up with others to reduce idle waiting
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Fig. 1: Comparison in the setting of two racks with upper-level links indicated by red dashed lines. (a) In PS(widely used in

BSP, ASP, and SSP), some workers are in different racks from the PS in worker 4, thus suffering from inter-rack bottlenecks

when pushing to or pulling from the PS. (b) Topology-aware Hierarchical Allreduce decomposes the global communication

into three serial steps, including intra-rack reduce, inter-rack allreduce, and intra-rack broadcast. While it mitigates traffic over

the inter-rack bottleneck, it is still a global synchronization process of three serial communication steps. (c) DS-Sync divides

workers into different sized groups to synchronize independently and shuffles group members every iteration. It fully utilizes

intra-rack bandwidth while reducing the traffic and communication latency over the bottleneck. More importantly, all the groups

synchronize in parallel as opposed to sequentially as the Hierarchical Allreduce.

and improve communication efficiency. DS-Sync maintains

convergence via iterative shuffling, which is formally proven

in §IV-B. DS-Sync carefully designs the shuffling pattern to

ensure that any worker can directly or indirectly exchange

information with all the groups during the shuffling period.

Intuitively, local updates of all groups in any iteration are

iteratively merged in the upcoming iterations. As a result,

all workers can reach global consensus iteratively instead of

global synchronization in every iteration. Furthermore, DS-

Sync extends the stochastic weight average (SWA) to ensemble

the diverse local models for better generalization performance.

We have implemented DS-Sync in the PyTorch framework

and conducted comprehensive testbed experiments (§V). Our

results show that DS-Sync can improve communication ef-

ficiency without any loss in convergence speed or accuracy.

For example, compared to the Allreduce BSP, DS-Sync can

achieve up to 94% improvement in terms of end-to-end

training time to reach the target accuracy. In the scenario

of bandwidth contention, DS-Sync improves communication

efficiency by up to 2X while maintaining the same accuracy

as BSP with a similar number of iterations.

Overall, this paper makes three key contributions:

1) We propose DS-Sync, a new divide-and-shuffle syn-

chronization scheme, to achieve both communication

efficiency and convergence accuracy simultaneously.

2) We prove that DS-Sync converges to the same accuracy

of BSP with a similar number of iterations under the

nonconvex and smooth conditions of DNN.

3) We implement DS-Sync in PyTorch and validate its

effectiveness through extensive testbed experiments.

II. BACKGROUNDS AND MOTIVATIONS

In this section, we first overview the network bottlenecks in

production clusters and then discuss the drawbacks of existing

solutions in handling them.

A. Network Bottlenecks in Training Cluster

Fig. 2 illustrates a typical architecture of a training cluster

shared by different tasks, including computation nodes, storage

nodes, and the network. The computation nodes have acceler-

ators like GPUs or TPUs but with limited storage as the local

cache. The storage nodes with RAID work as the elastic and

fast Network File System (NFS). The network usually adopts

hierarchical physical topology like spine-leaf, which is scaled

up easily by adding switches in each layer [15]. All nodes are

grouped into racks, each connected by a leaf switch. All leaf

switches are connected to upper-level spine switches. In this

setting, network bottlenecks may arise due to:

1) Static topology heterogeneity: Intra-rack communi-

cation is non-blocking, but inter-rack communication

depends on the inter-rack link load and oversubscription

ratio [2]. If a task has multiple inter-rack connections,

it can suffer from the oversubscription problem.

2) Dynamic inter-rack bandwidth contention: In pro-

duction clusters, there are often background flows from

other training tasks that compete for the inter-rack band-

width [1]–[3] (e.g. the leaf 1 in Fig. 2). Regular pairs

of workers can deliver over 2x the throughput of those

delayed by the inter-rack bandwidth contention [3].

3) Dynamic end-host bandwidth contention: Different

distributed training tasks can co-locate in the same

physical node to occupy different GPUs or TPUs but

share the same NIC [1], [2] (e.g. the 3rd node of leaf

1 in Fig. 2). This causes end-host bandwidth contention

that potentially slows down the communication of cor-

responding workers.

B. Existing Solutions and Their Drawbacks

BSP can be significantly influenced by the above network

bottlenecks. In general, there are two categories of existing

works to improve it. One is the system-level optimizations



Fig. 2: An example of GPU cluster shared by tasks A and B.

strengthening BSP [3], [5]–[11], [14], [16]–[18], the other is

algorithmic optimizations replacing BSP [12], [13], [19]–[21].

However, neither of them can achieve the aforementioned two

goals simultaneously in production clusters.

1) System-level Optimization: Due to its global synchro-

nization nature, BSP can hardly eliminate the idle waiting of

regular workers and links. Some system-level works employ

various topologies like PS [5], [16], Ring [10], and double

tree [14] to fully use network bandwidth. Some others explore

different underlying network optimizations, including over-

lapping communication and computation [6]–[9], [17], [18],

RDMA [22], [23], in-network aggregation [24]–[26], conges-

tion control [27], [28], flow scheduling [29]–[31], and coflow

scheduling [32]–[34]. However, all these system-level works

are either topology-agnostic and/or contention-vulnerable.

Both heterogeneous topologies and dynamic contentions

lead to network bottlenecks. Unaware of the network topol-

ogy1, these works cannot be guaranteed to align the logical

topology with the physical one. Multiple connections may

cross and compete for the inter-rack links, resulting in the

network bottleneck of oversubscription. Additionally, Ring

Allreduce and Tree Allreduce introduce long dependency in

the logical topology and pipelines. They are vulnerable to

bandwidth contentions on inter-rack links or end-host NIC

since they can easily block downstream communications.

Hence, the network bottleneck brings in significantly idle

waiting time for BSP.

Topology-aware Hierarchical Allreduces are still sub-

optimal since the network bottleneck essentially stalls regular

workers and links. Hierarchical Allredcue [3], [11], [35]

decomposes the global synchronization into sequential com-

munications to localize the network bottleneck. Specifically,

Blueconnect [11] makes three serial communications steps,

including intra-rack reduce, inter-rack allreduce, and intra-

rack broadcast. The serial communications make all workers

related with intra-rack communication wait for the inter-rack

communication and vice versa. Plink [3] takes a further step

to slice data into chunks and uses a pipeline to overlap

inter-rack and intra-rack communications. However, some

workers simultaneously participate in inter-rack and intra-

1Current Allreduce implementations like NCCL and MPI are unaware of
physical network topology. NCCL only detects different physical link types
within the node such as NVlink, PCI-E, and network.

TABLE I: Communication cost comparison

Latency Transfer Delay
PS 2(N − 1)Lα 2(N − 1)Sβ/P

Ring AR 2(N − 1)Lα 2(N − 1)Sβ/N
Double Tree AR 2(logN + k)Lα 2(logN + k)Sβ/k
P stands for the PS number, and k is the data chunk number.

rack communications, which is the bottleneck slowing down

communications in other pipeline stages.

Even in an ideal and uniform network, the BSP commu-

nication time increases with the total number of workers.

Specifically, the communication cost of point-to-point trans-

ferring a model of S bytes can be modeled as Lα+ Sβ [36],

where α denotes the latency, β is the transfer delay for

one byte, and L is the number of times to invoke model

synchronization layer by layer [6]–[9] to overlap computation

and communication. The more workers N to synchronize, the

more point-to-point communications and total communication

traffic, as summarized in Tab. I for popular BSP methods.

We also conduct experiments to verify it in different worker

numbers and different models, and Fig. 3 shows the trend that

communication time increases with worker numbers, which

motivates us to divide all workers and put the bottleneck in

the small enough one to speed up.

2) Algorithmic Optimization: Previous algorithmic works

only focus on occasional stragglers due to stochastic events

like system interruption. This approach offers more flexibility

by relaxing the synchronization conditions, expecting the

straggler to happen on another worker later. However, workers

delayed by the network bottleneck accumulate the staleness to

a high level, which is beyond their expectations and results in

convergence and throughput problems.

ASP [12] does not have the guarantee to converge at all.

It directly gets rid of all synchronizations and hopes that

all workers have similar paces. However, the accumulated

high-level staleness due to network bottlenecks is against it.

Although ASP has no waiting time, the consistent outdated

gradients due to network bottlenecks on the same worker

usually result in lower convergence accuracy.

Due to accumulated staleness, SSP [13], [19] suffers from

convergence inaccuracy and communication inefficiency. It

defers global synchronization until exceeding staleness bound.

If the bound is high, the consistent staleness leads to a slower

Fig. 3: Normalized communication time vs. worker number

(normalized by the maximum time value)



Pseudo Code 1: The workflow of DS-Sync

1 import DS_Sync
2 def train(dataloader, i=rank):
3 #detect the physical topology and initialize the

group list for DS-Sync accordingly
4 topology = DS_Sync.topologyDetect()
5 groupList = DS_Sync.initGroups(topology)
6 #initialize all wokrers’ models in the same way
7 model, lossCriteron, optimizer, SWA_model =

DS_Sync.model_generator()
8 for t in range(Total_iteration):
9 #adjust the grouping according to dynamic

bandwidth variations in every 100 iterations
10 if t%period==0 And bandwidth changes:
11 groupList = DS_Sync.adjustGroups(groupList)
12 #FP and BP computation on the sampled data batch
13 x, y = DataLoader()
14 pred = model(x)
15 loss = LossCriteron(pred, y)
16 gradient = loss.backward()
17 #locally update model parameters
18 optimizer.step()
19 optimizer.zero_grad()
20 #pick the proper group to synchronize for worker

i in the iteration t
21 group = groupList[t%len(groupList)][i]
22 #synchronize and average the parameters within

the same group and record bandwidth
23 model = DS_Sync.Average(model, group)
24 #track and record communication cost for the

group adjustment
25 DS-Sync.commRecord()
26 #local stochastic weight average ensemble
27 SWA_model = factor*SWA_model+ (1-factor)*model
28 #weight average all local SWA_models to ensemble

all trajectories as the final model to test
29 Final_model = AverageAllreduce(model, world)

convergence rate and even failures sometimes [37]. Otherwise,

the staleness also frequently invokes global synchronization

with low bound, resulting in idle waiting, just like BSP.

Originated from IoT network, Gossip [20], [21], [38] suffers

from inefficient point-to-point communications and unaware-

ness of network bottlenecks. It breaks the global barrier into

chained local barriers. Every worker only sends and receives

messages to the neighbors in the sparsely connected graph

to relay information iteratively. Gossip has the congestion

problem in the end host if there are over two peers in a

worker’s neighborhood [38]. The connected graph of Gossip

can be time-variant, such as the dynamic exponential graph

[21] and random matching [38]. Hence, there can be many

connections to worsen the inter-rack contention in some iter-

ations. Furthermore, the longer chain of gossip propagation,

the slower it is to reach consensus [21].

III. DESIGN

This section presents the detailed design of DS-Sync. First,

we introduce the overall workflow of DS-Sync. Then, we dis-

cuss how workers are divided and shuffled to handle different

network bottlenecks.

A. Overall Workflow

At its heart, by taking network bottlenecks into account,

DS-Sync periodically divides and shuffles workers to form

multiple non-overlapping groups of different sizes to synchro-

nize independently. DS-Sync first senses the physical network

topology and bandwidth contentions, and then it generates

the periodical divide-and-shuffle pattern accordingly (details in

§III-B). DS-Sync synchronizes and averages workers’ model

parameters in the same group in every iteration according to

the divide-and-shuffle pattern. DS-Sync also extends SWA to

ensemble diverse trajectories of different workers. DS-Sync

can be easily integrated with the DL framework like PyTorch

as stated in Pseudo Code 1. Specifically, DS-Sync has the

following key steps:

1) Topology Detection topologyDetect(): While the

network topology can be known to the operators, it is

often unknown to the general users. Fortunately, network

profiling such as DPDK and iPerf can be employed to

measure the round-trip latency and bandwidth between

worker pairs. The topology information can thus be

derived from the measurements [3].

2) DS-Sync Group Initialization initGroups(): Ac-

cording to the static topology heterogeneity, DS-Sync

initializes the periodical divide-and-shuffle pattern that

divides workers into the inter-rack group and intra-rack

groups as described in §III-B1. In this way, DS-Sync can

minimize its own connections and communication traffic

crossing the inter-rack links to avoid oversubscriptions.

3) DS-Sync Group Adjustment adjustGroups():

Once sensing bandwidth contention due to background

flow changes in a period, DS-Sync further adjust the

periodical divide-and-shuffle pattern. Since the bottle-

necked group is caused by bandwidth contention on

either inter-rack link or end-host NIC, the related inter-

rack or intra-rack group can be further divided into

smaller ones. Therefore, DS-Sync decreases the max

group communication cost and keeps all groups in

similar paces to proceed.(details in §III-B2 III-B3 ).

4) Parameter Synchronization code line 12-24:

DS-Sync synchronizes all groups in parallel. Within the

group, it uses Allreduce to average the parameters of

workers in the group after they locally optimize their

model parameters. The model parameter contains all

information about the past parameter updating steps.

In the next iteration, DS-Sync shuffles workers among

groups so that different groups can exchange the past

updating information with each other. Specifically, the

model parameter of worker i in iteration T is w
(i)
T =

w0 +
∑T

t=0

∏T
k=t Wkei�t, where �t is local update

vector of all workers in the iteration t, Wk is the group

average in the iteration K, ei is a unit vector that only the

i-th element is 1, and
∏T

k=t Wkei�t is the approximated

distributed average. DS-Sync also tracks every workers’

communication cost to adjust group patterns later.

5) Extended SWA Ensemble code line 25-28: DS-

Sync can further exploit the diverse parameter trajec-

tories of different workers to improve test accuracy by



Fig. 4: Group initialization divides all workers into inter-

rack and intra-rack groups and shuffles workers to be the

representative in the inter-rack group by turns.

ensembling. Every worker applies exponential moving

average on local parameters in every iteration to get

a local SWA model [39]. At the end of the training,

all workers average their SWA models to ensemble all

trajectories to reach a more flatten optimal solution. The

flatten optimal solution is more robust to small data

perturbation than a sharp one, which generalizes better

on unseen test data [40].

DS-Sync improves communication efficiency by dividing

workers into groups of different sizes and guarantees con-

vergence with shuffling workers among groups to reach con-

sensus iteratively. According to the network situation, DS-

Sync always keeps bottlenecked workers or links in smaller

groups, while other regular ones form larger groups. Then

delayed workers or links have less latency and communication

traffic than others. In this way, bottlenecked workers in small

groups can catch up and reduce the idle waiting of others.

Additionally, DS-Sync shuffles workers among groups in every

iteration. It follows the periodical divide-and-shuffle pattern

guaranteeing that the past local updates of different workers

can be merged by iterative propagation. Therefore, any worker

can directly or indirectly get the past global updating infor-

mation iteratively instead of immediately like BSP. Finally, all

workers can reach global consensus iteratively and maintain

the convergence on training data (formal proof in § IV-B). DS-

Sync also extends SWA to ensemble all diverse local models

for better generalization on test data.

B. Handling Different Network Bottlenecks

Now, we introduce how DS-Sync periodically divides and

shuffle workers into groups according to different network

bottlenecks. To achieve both goals, there are two principles

for generating the divide-and-shuffle group pattern:

• It should decouple network bottlenecks from others and

keep them in a smaller group to alleviate bottlenecks.

• It should guarantee that all workers can directly or

indirectly exchanges information by shuffling.

DS-Sync generates divide-and-shuffle group patterns in the

group initialization and adjustment. In the initialization, DS-

Sync forms inter-rack and intra-rack groups according to the

static network topology. Then during the training, it reacts

to the dynamic bandwidth contention by further dividing the

bottlenecked group into multiple smaller groups. Specifically,

DS-Sync handles three kinds of network bottleneck as follows:

1) Static Topology Heterogeneity: After detecting the phys-

ical network topology in topologyDetect(), DS-Sync

initializes the group pattern in initGroups() by dividing

workers into the inter-rack groups and intra-rack groups.

Firstly, all workers in the same rack form intra-rack groups.

DS-Sync further separates one worker from each intra-rack

group to be the representative forming an inter-rack group.

In the shuffling, all workers in the same rack take turns to be

the representative. Since Allreduce is used for synchronization

within any group, DS-Sync can guarantee itself has only one

connection crossing one inter-rack link. Therefore, it is free

of the oversubscription problem caused by itself. Every intra-

rack group exchanges members with the inter-rack group to

reach the global consensuses iteratively. Fig. 4 illustrates an

example of four racks how workers are divided and shuffled

in inter-rack and intra-rack groups.

2) Inter-rack Link Bandwidth Contention: If any rack is

sensed to have slow inter-rack communication due to back-

ground flows from other tasks in the same rack, DS-Sync

adjusts the inter-rack group in adjustGroups(). It further

divides the inter-rack group and keeps the influenced repre-

sentative in the smallest groups. Specifically, DS-Sync put

each delayed representative with another regular representative

to form an inter-rack group of two workers, while other

regular representatives form a large inter-rack group. In every

iteration, the regular representative in the small inter-rack

group is exchanged with another representative in the large

inter-rack group. Workers in the same rack also take turns to

be the representative to get global information exposed. Fig. 5

shows an example that the inter-rack group is further divided

into two inter-rack groups.

3) End-host NIC Bandwidth Contention: If DS-Sync finds

a worker has smaller bandwidth due to sharing the end-host

NIC with another task in the same node, adjustGroups()
also adjust the group pattern accordingly. DS-Sync always

keeps the delayed worker in the intra-rack group. If there

are enough workers in the rack hosting the delayed worker,

DS-Sync further divides the intra-rack group into sub ones.

Similar to §III-B2, DS-Sync pair the delayed worker with

another regular worker to form a small intra-rack group, and

the rest workers form a large intra-rack group. The large intra-

rack group exchanges workers with the small group as well as

the inter-rack group. Therefore, the large group works as an

Fig. 5: Rack A (in the bold and red rectangles) has some back-

ground flows from other tasks to share inter-rack bandwidth.

DS-Sync further divides inter-rack groups to reduce the group

size in group adjustment during training.



Fig. 6: In rack A, worker A5 (in the bold and red characters)

has another task sharing the end-host NIC. The upper-level

link of rack A also has smaller bandwidth due to background

flows. Besides the inter-rack group, DS-Sync further divides

the intra-rack group to alleviate the bottleneck on worker A5.

information hub of the rack so that all subgroups can exchange

information.

IV. ANALYSIS

In this section, we start with the quantitative communication

analysis on DS-Sync and other methods in the scenario of the

inter-rack bottleneck. Then, we mathematically prove that DS-

Sync has the same convergence accuracy and rate as BSP in

the nonconvex and smooth conditions of DNN.

A. Communication Time Analysis

For simplicity, we analyze the communication time in a

simplified and flattened hierarchical network. A total number

of N workers are evenly allocated into C racks, and each rack

has G nodes. We assume that the same background flows of

other tasks interfere with the available inter-rack bandwidth.

α is the latency for one hop, β1 denotes intra-rack transfer

delay for one byte, and β2 strands for inter-rack transfer delay

for one byte. We also assume that all methods perfectly align

their logical topologies with the physical network topology

to minimize their inter-rack connections and communication

traffic. The DNN model is synchronized for L times to overlap

communication and computation.

Tab II summarizes the communication cost consisting of

latency and transfer delay for various previous methods and

our DS-Sync. PS is widely used in BSP, ASP, and SSP, but

it suffers from congestion on the inter-rack link because of

high crossing rack traffic. Due to the long dependency in

logical topologies and pipelines, Ring Allreduce and Tree

Allreduce are vulnerable to the contention of background

flows. If an inter-rack link is bottlenecked, it slows down

communication in the other stages. Hierarchical Allreduce has

multiple serial communication steps so that the communication

TABLE II: Communication Cost Summary

Methods Latency Transfer Delay

PS 2(N − 1)Lα
2[(C−1)GSβ2+(G−1)Sβ1]

P
Ring 2(N − 1)Lα 2(N − 1)Sβ2/N

Double Tree 2(logN + k)Lα 2(LogN + k)Sβ2/k

Hierarchical 2(G+ C − 2)Lα
2(G−1)Sβ1

G
+

2(C−1)Sβ2
C

Gossip 2Lα ≥ 4Sβ2

DS-Sync 2Lα or 2L(G− 1)α 2Sβ2 or
2(G−2)Sβ1

G−1
DS-Sync keeps the bottlenecked links and related workers in the smallest

group of two workers, and G− 1 is the size of the intra-rack group.

cost is the sum of all steps. If it further slices data into

chunks to transfer in the pipeline, the workers in both inter-

rack and intra-rack levels slow down the whole pipeline due

to simultaneously sending and receiving messages in different

stages. In Gossip algorithms, each rack has two or even more

inter-rack connections in some iterations for the time-varied

graph. Any worker also suffers from the in-cast problem if

it has multiple neighbors. Due to the dependency of chained

local barriers, bottlenecked workers finally stall others.

In contrast, our DS-Sync divides all workers into multiple

non-overlap groups to synchronize in parallel. According to

the network topology and situations, DS-Sync always assigns

bottlenecked workers and links in smaller groups to catch up.

The total communication time of DS-Sync is determined by

the max one of all inter-rack and intra-rack groups.

B. Convergence Analysis

We mathematically prove that DS-Sync converges properly

in nonconvex and smooth conditions of DNN. Firstly, we state

some common assumptions of nonconvex and smooth DNN.

Then we prove how DS-Sync can achieve global consensuses

on model parameters iteratively. Finally, we show that DS-

Sync can converge properly in nonconvex and smooth condi-

tions.

1) Assumptions: Following the previous convergence the-

ory for SGD in nonconvex and smooth conditions [41], we

make some common assumptions in the optimization commu-

nity for DNN as follows:

Assumption IV.1. Lipschitzian smooth: Any local function

of worker i Fi(·) is with L-Lipschitzian gradients.

‖�Fi(x; ξ)−�Fi(y; ξ)‖ ≤ L ‖x− y‖
Assumption IV.2. Bounded variance: Assume the variance

of stochastic gradient Ei∼U([n])Eξ∼Di
‖�Fi(x; ξ)−�f(x)‖2

is bounded for any parameters x with worker i uniformly sam-

pled from {1, · · · , n} and data batch ξ from the distribution

Di. This implies there exist constants σ such that

Ei∼U([n])Eξ∼Di
‖�Fi(x; ξ)−�f(x)‖2 ≤ σ2

2) Consensus Proof: Before formally analyzing the con-

vergence, we first prove that DS-Sync can reach the global

consensus for the distributed average problem iteratively. In

distributed average problem, each node i starts with a number

x
(i)
0 , and Xk stands for the vector [x

(0)
k , x

(1)
k , ..., x

(N)
k ]T in

the iteration k, and the Wk is a N-by-N transition matrix

in Xk+1 = WkXk, which indicates how workers exchange

parameters in the iteration k. The goal of distributed average

is to approximate the average x̄ = 1
N

∑
i x

(i)
0 in every worker

by K iterations as XK = WK−1WK−2 · · ·W0X0.

In DS-Sync, any Wk represents how workers are divided

into multiple non-overlap groups to be synchronized and

averaged in the iteration k. The entry wi,j is either 1/group

size or 0, which means worker i and j are in the same group

or not. The Wk is the symmetric doubly stochastic matrix, in

which every entry is not negative, and the sum of any row



or column is one. Unlike the transition matrix of the Gossip

representing a sparsely connected graph, the Wk of DS-Sync

stands for multiple fully connected sub-graphs covering all

nodes without overlapping nodes and edges, which decouples

network bottlenecks from others. Furthermore, Wk follows the

periodical divide-and-shuffle pattern such that Wk = Wk+B

and
∏B

i=0 Wi indicates a connected graph of all nodes. It

can be easily calculated that the second largest eigenvalue

ρ := λ2(
∏(l+1)B−1

k=lB Wk) < 1. According to previous works

in distributed average [42], the worst-case rate of convergence

can be related to the second-largest as stated in Lemma IV.1.

Lemma IV.1. We can bound the average error in worker i for

DS-Sync as

∥∥∥∥∥
1N

N
X0 −

kB∏

k=0

WkeiX0

∥∥∥∥∥

2

≤ ρk ‖X0‖2 ∀i and k ≥ B

3) Convergence Proof: The formal proof of DS-Sync con-

vergence is based on the iteratively reached consensus on

historical updates and the similarity of recent updates from

smooth assumptions of DNN. The model parameter of the

worker can be rewritten as w
(i)
T = w0+

∑T
t=0

∏T
k=t Wkei�t,

in which �t is local update vector of all workers in

the iteration t and
∏T

k=t Wkei�t is its approximated aver-

age. According to Lemma IV.1, the approximated average

in worker i for the historical update �̄t is bounded as∥∥∥�̄t −
∏T

k=t Wkei�t

∥∥∥
2

≤ ρ(T−t)/B ‖�t‖2. DS-Sync can

achieve better global consensus on earlier updates during the

training. Although the recent update information may not

be approximated very well, the smooth conditions of DNN

bound the variances of gradients from different workers. Intu-

itively, different workers have slight differences in their local

model parameters since most early past updating information

has been averaged properly. According to the assumption

of Lipschitzian smooth and bounded variance, the similar

model parameters of different workers should have similar

expectations of stochastic gradients on randomly sampled data

batches. Therefore, we can formally prove the convergence of

DS-Sync in the following theorems.

Theorem IV.2. (Convergence of DS-Sync). Based on As-
sumption IV.1 and IV.2 and Lemma IV.1, we show that the
gradients of all workers converge to be 0 with the same rate
O(1/

√
K) as BSP [41]. In other words, DS-Sync can reach

a minimal point in the nonconvex and smooth case like BSP.
Specifically, if the total number of iterate K is sufficiently
large, then it is bounded as follows:

∑K−1
k=0 E

∥
∥
∥�f(Xk1N

N
)
∥
∥
∥
2

K
≤ 8(f(0)− f∗)L

K
+
(8f(0)− 8f∗ + 4L)σ√

Kn

V. EVALUATION

In this section, we first introduce how DS-Sync and base-

lines are implemented as well as the experiment settings. Then,

we discuss the experimental results of DS-Sync in various

scenarios with network bottlenecks to seek answers to the

following questions:

1) Can DS-Sync achieve end-to-end performance advan-
tages in various scenarios? Our extensive evaluation

verifies that DS-Sync has up to 94% improvements over

the baselines in terms of the end-to-end training time in

different network bottleneck scenarios.

2) Can DS-Sync alleviate different network bottle-
necks to improve communication efficiency? In the

three network bottleneck scenarios, DS-Sync consis-

tently achieves minimal communication time, which

improves the efficiency by up to 2x over BSP baselines.

3) Can DS-Sync maintain a similar convergence rate
and accuracy as BSP? Different from ASP or SSP,

DS-Sync can achieve the same accuracy as BSP with a

similar number of iterations in the experiments. Espe-

cially for the smaller dataset, DS-Sync can have slightly

higher accuracy due to the SWA ensemble.

A. Implementation and Experiment Settings

1) Implementation: We implement DS-Sync and integrate

it (as well as BSP baselines, including Allreduce BSP, Hierar-

chical Allreduce BSP, ASP (can only use PS [5]), and Gossip

(dynamic exponential graph)) with PyTorch. We choose the

NCCL library as the communication backend for all methods

and leave itself to determine the proper Allreduce topologies

(Tree by default) for BSP baselines and group synchronization

of DS-Sync. Since ASP cannot use collective operators, we

implement it with send and receive primitives. We register

the backward hook and pre-forward hook for every layer to

overlap communication and computation. In the backward

hook, we conduct a local optimizer update and invoke the

non-block synchronization layer by layer. In the pre-forward

hook of the corresponding layer, we set the barrier waiting for

the synchronization event to make sure updating is completed

before forwarding computation.
2) Evaluation Metrics: We evaluate the following metrics

to verify that DS-Sync can simultaneously achieve the two

goals mentioned earlier:

• Time-to-Accuracy (TTA): We use it to measure end-to-

end training time. The target accuracy is set to the lowest

one of BSP in five times running. We omit ASP results

due to its failure to reach the target accuracy.

• Communication Time: We measure the communication

efficiency as the time from invoking the first non-block

communication to all communications completed (For

ASP, we only report the fastest worker).

• Iteration Number: We use the iteration number of

reaching the target accuracy to measure the convergence

rate. We omit it for ASP again for the same reason.

• Best Accuracy: We record the best accuracy or F1 during

the training to measure the convergence accuracy. Except

for ImageNet, we run all experiments five times to get

the mean and standard variation of best accuracy.

3) Models and Training Settings: We evaluate WideResnet-
28-10 [43] on CIFAR10/100 [44], WideResnet-50-2 [43] on

ImageNet [45], and BERT [46] on SQuADv1.1 [47] in the

fields of Computer Vision and Natural Language Processing.



In principle, we follow the common practices [43], [46] in the

machine learning (ML) community to split data, pre-process

data, and set hyper-parameters. For DS-sync and all baselines,

all hyper-parameters are the same as the original ML model

papers except that we use the warm-up learning rate schedule

for the large overall batch size. Due to the limited space, we

do not list the detailed hyper-parameters here.

4) Testbed: We use a private cluster of 10 GPU nodes as

the experiment environment. Each physical node has NVIDIA

V100 GPUs, Intel Xeon Silver 4114 CPU, 191 GB memory,

and a NIC. All nodes are divided into two racks and connected

in the spine-leaf network. The network has 20Gb Ethernet per

link, and its oversubscription rate is 1.

5) Network Bottleneck Settings: We manually align logical

topologies of all baselines with the physical one in the best

way to minimize inter-rack connections. We can run another

background task training the BERT model distributedly on

two workers of 2 racks to create background flows sharing

the inter-rack link and end-host NIC. Specifically, we conduct

experiments with the following different network bottlenecks:

• Inter-rack and end-host bandwidth contentions: The

background task has one worker in the same node but

not the same GPU with our target task, which shares both

the inter-rack and end-host bandwidth. Our task has eight

workers in different nodes of two racks, including worker

0-4 in rack 0 and worker 5-7 in rack 1. One worker of

the background task co-locates in the same physical node

with worker 4, while the other worker is in rack 1.

• Inter-rack bandwidth contentions: The background

task has workers in the same rack but not the same

node with our target task, which only shares the inter-

rack bandwidth. Our task divides workers evenly into two

racks: worker 0-3 in rack 0 and worker 4-7 in rack 1. The

background task has two workers in the rest nodes of the

two racks.

• Static topology heterogeneity: There is no other back-

ground task causing bandwidth contention but only static

topology heterogeneity. Our task still divides workers

evenly into two racks, including worker 0-3 in rack 0

and worker 4-7 in rack 1.

B. Experiment Results

The experiment results verify that DS-Sync has the best

communication efficiency without any loss in convergence

rate and accuracy in various scenarios of different network

bottlenecks.

1) Inter-rack and End-host Bandwidth Contention: In this

scenario, DS-Sync first divides workers into inter-rack and

intra-rack groups in the initialization. During the training, it

further divides the intra-rack group in rack 1 into two smaller

ones. DS-Sync keeps the influenced worker 4 in the group of

2 workers. By measuring the TTA, DS-Sync achieves the best

end-to-end performance, as shown in Fig. 7.

Furthermore, we summarize all detailed metrics on com-

munication efficiency and convergence for all methods in

Fig. 7: Speed up on TTA in inter-rack and end-host bandwidth

contention

TABLE III: Summary on communication efficiency and con-

vergence in inter-rack and end-host bandwidth contention

Dataset Methods Comm. Time(ms) Iter. # Best Acc.

Cifar10

AR 540.1 6560 92.51±0.92%
Hier. AR 790.2 6560 92.51±0.92%
ASP(PS) >567.3 - 87.46±1.31%
Gossip 772.8 6360 92.47±1.17%

DS-Sync 338.1 5640 92.62±0.56%

Cifar100

AR 545.6 12740 76.79±0.28%
Hier. AR 801.5 12740 76.79±0.28%
ASP(PS) >573.8 - 66.23±2.03%
Gossip 778.3 12130 76.66±0.32%

DS-Sync 341.8 11460 76.76±0.35%

ImageNet

AR 825.7 341,664 76.27%
Hier. AR 1078.2 341,664 76.31%
ASP(PS) >690.2 - 72.72%
Gossip 834.5 341,664 76.10%

DS-Sync 412.5 341,664 76.32%

SQuAD

Methods Comm. Cost(ms) Iter. # Best F1
AR 3260.7 7,400 92.66±0.08%

Hier. AR 4213.2 7,400 92.66±0.08%
ASP(PS) >2741.7 - 89.85±1.21%
Gossip 2805.5 7,400 92.61±0.1%

DS-Sync 1636.6 7,400 92.64±0.05%

Tab. III. Results show that DS-Sync gets the best communica-

tion efficiency by keeping inter-rack and end-host bottlenecks

in the smallest independent groups. Meanwhile, it does not

sacrifice the convergence rate and accuracy compared with

BSP methods in all datasets.

However, other baselines suffer from communication inef-

ficiency or convergence inaccuracy. The smaller one of inter-

rack and end-host bandwidth is the bottleneck for the whole

Allreduce pipeline. Since Hierarchical Allreduce does not

handle the contention in end-host NIC, its serial communi-

cations are even slower than Allreduce. The PS architecture

of ASP and the dynamic exponential graph of Gossip can

have multiple inter-rack connections, which worsens the inter-

rack network bottlenecks. Furthermore, ASP fails to reach the

target accuracy because accumulated high staleness brings in

consistent outdated gradients harmful to the convergence.

2) Inter-Rack Bandwidth Contention: DS-Sync keeps the

bottlenecked inter-rack link in the group of 2 workers to

alleviate the inter-rack network bottleneck. Fig. 8 illustrates

that DS-Sync also achieves the best end-to-end performance

to reach the target accuracy in the scenario of inter-rack

bandwidth contention.

We evaluate all metrics on communication efficiency and

convergence for all methods in this scenario, as shown in

Tab. IV. The results verify that DS-Sync has the best commu-



Fig. 8: Speed up on TTA in inter-rack bandwidth contention

TABLE IV: Summary on communication efficiency and con-

vergence with inter-rack bandwidth contention

Dataset Methods Comm. Time(ms) Iter. # Best Acc.

Cifar10

AR 525.1 6560 92.51±0.92%
Hier. AR 515.3 6560 92.51±0.92%
ASP(PS) >561.2 - 88.17±1.58%
Gossip 764.1 6360 92.47±1.17%

DS-Sync 331.7 5640 92.79±0.56%

Cifar100

AR 531.6 12740 76.79±0.28%
Hier. AR 523.5 12740 76.79±0.28%
ASP(PS) >581.5 - 68.19±2.51%
Gossip 768.3 12130 76.66±0.32%

DS-Sync 336.1 11460 76.86±0.31%

ImageNet

AR 823.1 341,664 76.27%
Hier. AR 685.2 341,664 76.31%
ASP(PS) >701.9 - 73.50%
Gossip 812.9 341,664 76.10%

DS-Sync 407.4 341,664 76.38%

SQuAD

Methods Comm. Time(ms) Iter. # Best F1
AR 3129.3 7,400 92.66±0.08%

Hier. AR 2801.5 7,400 92.66±0.08%
ASP(PS) >2783.1 - 90.27%±0.51%
Gossip 2913.1 7,400 92.61±0.1%

DS-Sync 1633.4 7,400 92.68±0.05%

nication efficiency by reducing inter-rack communication traf-

fic and simultaneously synchronizing all inter-rack and intra-

rack groups. Meanwhile, it also reaches the same accuracy as

BSP methods within a similar iteration number.

In contrast, other baselines do not handle the bottleneck

so well. The inter-rack bandwidth contention slows down the

whole Allreduce pipeline. Although Hierarchical Allreduce

has better communication efficiency by isolating the inter-rack

bottleneck, it cannot simultaneously conduct inter-rack and

intra-rack communication like our DS-Sync. ASP and Gossip

can still worsen the inter-rack bottleneck. Once again, ASP

fails to converge properly due to the high staleness.

3) Static Topology Heterogeneity: In the group initializa-

tion, DS-Sync divides workers into one inter-rack group and

two intra-rack groups to synchronize in parallel and avoid

the oversubscription problem. Fig. 9 shows that DS-Sync still

reaches the target accuracy in the minimum time in the static

hierarchical topology without any contention.

Tab. V summarizes all metrics on communication efficiency

and convergence for all methods for the static hierarchical

topology. It shows that DS-Sync has advantages in communi-

cation efficiency since it synchronizes multiple smaller groups

in parallel instead of the global one. DS-Sync also maintains

the same convergence accuracy and rate as BSP methods.

The baselines cannot simultaneously realize both afore-

mentioned goals as DS-Sync does. Allreduce takes a longer

Fig. 9: Speed up on TTA in static topology heterogeneity

TABLE V: Summary on communication efficiency and con-

vergence in static topology heterogeneity

Dataset Methods Comm. Time(ms) Iter. # Best Acc.

Cifar10

AR 266.1 6560 92.51±0.92%
Hier. AR 390.8 6560 92.51±0.92%
ASP(PS) >637.3 - 88.85±1.45%
Gossip 376.9 6360 92.47±1.17%

DS-Sync 200.1 5640 92.79±0.56%

Cifar100

AR 271.3 12740 76.79±0.28%
Hier. AR 395.1 12740 76.79±0.28%
ASP(PS) >641.2 - 69.41±1.81%
Gossip 374.8 12130 76.66±0.32%

DS-Sync 198.1 11460 76.86±0.31%

ImageNet

AR 441 341,664 76.27%
Hier. AR 506.6 341,664 76.31%
ASP(PS) >785.5 - 73.70%
Gossip 405.3 341,664 76.10%

DS-Sync 249.2 341,664 76.38%

SQuAD

Methods Comm. Time(ms) Iter. # Best F1
AR 1631.8 7,400 92.66±0.08%

Hier. AR 2233.4 7,400 92.66±0.08%
ASP(PS) >3146.9 - 90.30%±0.47%
Gossip 1502.6 7,400 92.61±0.1%

DS-Sync 1060.2 7,400 92.68±0.05%

time for global synchronization. Since Allreduce is free of

oversubscriptions, Hierarchical Allreduce pays a higher com-

munication cost than Allredcue for serial communications.

ASP in PS architecture and Gossip in dynamic exponential

graphs suffer from the oversubscription problem due to their

multiple inter-rack connections. Additionally, the convergence

of ASP is still affected by the oversubscription.

VI. CONCLUSIONS

We proposed the new DS-Sync to address network bottle-

necks in the production cluster. DS-Sync divides and shuffles

workers to form groups of different sizes. The groups are

non-overlapping and synchronized in parallel. In theory, we

quantitatively analyze its communication cost and mathe-

matically prove its convergence. Furthermore, we conduct

extensive testbed experiments to validate that DS-Sync can

achieve communication efficiency and convergence accuracy

simultaneously.
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