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Abstract—We formulate computation offloading as a decentral-
ized decision-making problem with autonomous agents. We design
an interaction mechanism that incentivizes agents to align private
and system goals by balancing between competition and cooper-
ation. The mechanism provably has Nash equilibria with optimal
resource allocation in the static case. For a dynamic environ-
ment, we propose a novel multi-agent online learning algorithm
that learns with partial, delayed and noisy state information,
and a reward signal that reduces information need to a great
extent. Empirical results confirm that through learning, agents
significantly improve both system and individual performance,
e.g., 40% offloading failure rate reduction, 32% communication
overhead reduction, up to 38% computation resource savings
in low contention, 18% utilization increase with reduced load
variation in high contention, and improvement in fairness. Results
also confirm the algorithm’s good convergence and generalization
property in significantly different environments.

Index Terms—Offloading, Distributed Systems, Reinforcement
Learning, Decentralized Decision-Making

I. INTRODUCTION

Vehicular network (V2X) applications are characterized by
huge number of users, dynamic nature, and diverse Quality of
Service (QoS) requirements [1]. They are also computation-
intensive, e.g., inferring from large neural networks [2] or
solving non-convex optimization problems [3] [4]. These ap-
plications currently reside in the vehicle’s onboard units (OBU)
for short latency and low communication overhead. Even
with companies such as NVidia developing OBUs with high
computation power [5], post-production OBU upgrades are
typically not commercially viable; and irrespective of local
OBU power, the ability to offload tasks to edge/cloud via multi-
access edge computing (MEC) devices increases flexbility,
protecting vehicles against IT obsolescence. Hence, offloading
is a key technique for future V2X scenarios [6]–[9].

Currently, computation offloading decisions are strictly sep-
arated between the user and the operating side [10]. Users
decide what to offload to optimize an individual goal, e.g.,
latency [11] or energy efficiency [12]. Apart from expressing
their preference through a pre-defined, static and universal
QoS matrix [13], users cannot influence how their tasks are
prioritized. The operating side centrally prioritizes tasks and
decides resource allocation to optimize a system goal that is
based on the QoS matrix, but not always the same as the users’
goals, e.g., task maximization [14] or load-balancing [15].

This separation poses problems for both user and operating
sides, especially in the V2X context. V2X users have private
goals [16], are highly autonomous [17], reluctant to share infor-
mation or cooperate, and disobedient to a central planner [18].
They want flexible task prioritization and influence on resource
allocation without sharing private information [19]. On the
operating side, edge cloud computing architecture introduces
signalling overhead and information delay in updating site uti-
lization [10]; coupled with growing user autonomy and service
customization, traditional centralized optimization methods for
resource allocation become challenging due to unavailability of
real-time information and computational intractability.

Nonetheless, efforts are made on the operating side to apply
centralized methods under such conditions, e.g., using heuris-
tics at run-time [20] or decoupling into smaller problems [21],
but these solutions still assume complete information. Other
efforts are made to jointly optimize private and system goals
through game theoretic approaches—although they naturally
deal with decentralized incentives, they often require complete
information of the game to centrally execute the desired
outcome. E.g., both [22] and [23] model network resource
allocation problems of autonomous users as a game, but [22]
assumes users share decision information, and [23] assumes
all user and node profiles are known a priori. None of these
assumptions are plausible in practice.

We, hence, need an interaction mechanism between user
and operating sides based on incentives, not rules, and an
algorithm that makes decentralized decisions with partial and
delayed information in a dynamic environment. There are
several challenges with such a mechanism. Users may game
the system, resulting in potentially worse overall and individual
outcomes [24]—the first challenge C1 is how to incentivize
user behavior such that users willingly align their private
goals to the system goal while preserving their autonomy. The
second challenge C2 is finding an algorithm that efficiently
learns from partial information with just enough feedback
signals, keeping information-sharing at a minimum.

Among learning algorithms for decentralized decision-
making, no-regret algorithms apply to a wide range of prob-
lems and converge fast; however, they require the knowledge
of best strategies that are typically assumed to be static [25].
Best-response algorithms search for best responses to other
users’ strategies, not for a equilibrium—they are therefore
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Figure 1: System model
adaptive to a dynamic environment, but they may not converge
at all [26]. To improve the convergence property of best-
response algorithms, [27] introduces an algorithm with varying
learning rate depending on the reward; [26] extends the work to
non-stationary environments. However, both these algorithms
provably converge only with restricted classes of games. The
challenge C3 still exists to trade off between optimality and
convergence, while keeping computation and communication
complexity tractable [18].

We propose a decentralized decision-making mechanism
based on second-price sealed-bid auctions that successfully
addresses these challenges, using the V2X context as an
example. Our method is not restricted to V2X applications—it
can be applied to other applications facing similar challenges.

Second-price auctions are commonly used to distribute pub-
lic goods, due to its welfare-maximization property. Typically,
in a second-price sealed-bid auction, a bidder has no knowl-
edge of other bidders’ bidding prices and it only receives the
bidding outcome as feedback signal. Additionally, it receives
the final price if it wins the bid—this befits our requirement
to limit information-sharing. Our mechanism also utilizes the
feedback signal to incentivize cooperative behavior and speed
up learning. We prove that in the static case, the outcome of
this mechanism is a Nash equilibrium (NE) and a maximization
of social welfare; under specific conditions (Sec.III-C), it is
also a Pareto-optimal allocation of resources (C1).

For the dynamic case, we choose to use a multi-agent
reinforcement learning (MARL) algorithm, for its ability to
learn with partial, noisy and delayed information, and a single
reward signal (C2). Specifically, our core RL algorithm learns
the best-response strategy updated in a fictitious self play
(FSP) method. FSP addresses strategic users’ adaptiveness
in a dynamic environment by evaluating state information
incrementally, and by keeping a weighted historical record
[28]; it is easier to implement than the method proposed in
[27], especially with a large state and action space (C3). Our
empirical results show that over time, the best-response strate-
gies stabilize and lead to significantly improved individual
and overall outcomes. We compare active (learning-capable)
and passive (learning-incapable) agents in both synthetic and
realistic V2X setups. Our algorithm demonstrates capability to
generalize to very different, unseen environments.

To summarize, our main contributions are:

• We formulate computation offloading as a decision-

making problem with decentralized incentive and execu-
tion. The strategic players are incentivized to align private
and system goals by balancing between competition and
cooperation.

• We introduce DRACO, a distributed algorithm that learns
based on delayed and noisy environment information
and a single reward signal. Our solution reduces the
requirement for information-sharing to a great extent.

• We evaluate DRACO in a synthetic setup with randomized
parameters, as well as in a realistic setup based on specific
mobility model and self-driving applications. Our results
show that it significantly increases resource utilization,
reduces offloading failure rate, load variation and commu-
nication overhead, even in a dynamic environment where
information-sharing is limited. The models are easily
generalized in different environments.

• The authors have provided public access to their code or
data at [29].

Sec.II describes system model and problem formulation,
Sec.III proposes our solution, Sec.IV presents empirical results,
Sec.V summarizes related work, Sec.VI concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System model

Our system adopts the classic edge cloud computing ar-
chitecture: user-side vehicles request services; operating-side
admission control and assignment (ACA) units (e.g., road side
units or base station) control admission of service requests and
assign them to different computing sites, which own resources
and execute services [30] (Fig.1a). We propose changes only
to: 1) the algorithm deciding admission and assignments,
2) the interaction mechanism. In addition, most signalling
needs in our proposed approach are covered by the ISO 20078
standard on extended vehicle web services [31]; additional
fields required to pass bidding information are straightforward
to implement. Channel security is not the focus of this study.

We first define service request in our study; then we explain
in detail the user side and the operating side.

1) Service request as bid: The cloud-native paradigm de-
composes services into tasks that can be sequentially de-
ployed [32]. A service request comprises 1) a task chain,
with varying number, type, order and resource needs of tasks,
and 2) a deadline. We consider a system with custom-tailored
services placed at different computing sites in the network;
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the properties of these services are initially unknown to the
computing sites. This enables us to extend use cases into new
areas, e.g., self-driving [8] [9]. We consider independent ser-
vices, e.g., in self-driving, segmentation and motion planning
services can be requested independently.

Classic decentralized decision-making mechanisms include
dynamic pricing, negotiations, and auctions. Among these
mechanisms, auction is most suitable in a dynamic and compet-
itive environment, where the number of bidders and their pref-
erences vary over time and distribution of private valuations is
dispersed [33] [34]. Among various forms of auction, second-
price seald-bid auction maximizes welfare rather than revenue
and has limited information-sharing, hence befitting the re-
quirements in our study. Specifically, our approach is based on
Vickrey-Clarke-Groves (VCG) for second-price combinatorial
auction [35]. In our case, we use simultaneous combinatorial
auction as a simplified version of VCG—each bidder bids for
all commodities separately and simultaneously, without having
to specify its preference for any bundle [36]. Since it assumes
no correlation between commodities, the simplification befits
our study of independent service requests.

We conceive of a vehicle’s service request as a bid in an
auction. Besides the service details, a bid includes the bidding
price and the vehicle’s estimated resource needs.

2) User side: We focus on the behavior of vehicles, con-
ceived of as agents. A vehicle acts autonomously and privately:
it shares no information with other vehicles and only very
limited information with the ACA (Sec.III-A and III-D). Its
decision objective is to maximize average utility from joining
the auction. If it bids a low price and loses, it suffers costs
including transmission delay and communication overhead for
bidding and rebidding; if it bids a high price and wins, it has
reduced payoff. For lower cost or better payoff, it can decide
to join the auction at a later time (i.e. backoff [37]). But if
backoff is too long, it has pressure to pay more to prioritize
its request. Therefore, it balances between two options: i) back
off and try later or ii) submit the bid immediately to ACA. In
our approach, 1) vehicles are incentivized to balance between
backoff and bidding through a cost factor; 2) backoff time is
learned from state information, not randomly chosen.

We study the learning algorithm in each vehicle. We use
passive, non-learning vehicles as benchmark, to quantify the
effect of learning on performance. Learning essentially sets the
priority of a service request, this priority is used by the ACA
to order requests; it is simply constant for non-learning agents,
resulting in first-in, first-out processing order.

3) Operating side: The ACA unit and computing sites are
the operating side (Fig.1b). The ACA unit decides to admit
or reject ordered service requests. Upon admission, it assigns
the request to a computing site according to a load-balancing
policy. Due to information delay, execution uncertainty, system
noise, etc., the resource utilization information at different
sites is not immediately available to the ACA unit. If all
computing sites are overloaded, service requests are rejected,
and vehicles can rebid for a maximum number of times. If the
request is admitted but cannot be executed before deadline,

Table I: Symbol definition

Sym. Description Sym. Description

𝑘 ∈ 𝐾 service type/commodity 𝑛𝑘 𝑘’s availability
𝑖 ∈ 𝐼 service request/bid 𝑣 bid value
𝑚 ∈ 𝑀 vehicle/bidder 𝑝 payment
𝑥 bidding outcome 𝑢 utility
𝛼 backoff decision 𝑏 bidding price
𝑐 lost bid penalty 𝑞 backoff cost
𝛽 utilization 𝐵 budget

ℎ ∈ 𝐻 resource types 𝜔𝑖,ℎ 𝑖’s requirement of ℎ
𝑄 service deadline 𝜌 service request details
e𝑚 𝑚’s env. variables rl𝑡𝑚 𝑚’s present state for RL
sl𝑡𝑚 𝑚’s present state for SL 𝑃𝑡

−𝑚 other bidders’ state at 𝑡
a action, a = (𝛼, 𝑏) 𝑆𝑡𝑚 complete state for RL
\ actor parameters w critic parameters

the computing site drops the service and informs ACA unit.
Vehicles receive feedback on bidding and execution outcome,
payment, and resource utilization (Sec.III-A).

The operating side does not have a priori knowledge of the
type, priority, or resource requirement of service requests. For
example, if at run-time, a site receives a previously unknown
service, it uses an estimate of resource needs provided by
the vehicle. Over time, a site updates this estimate from
repeated executions of the same service. Extension to a more
sophisticated form of learning is left to future work.

The total service time of a request is the sum of processing,
queueing, and transmission time. Each computing site may of-
fer all services but with different resource profiles (i.e., amount
and duration needed), depending on the site’s configuration.
Site capacity is specified in abstract time-resource units: one
such unit corresponds to the volume of a request served in one
time unit at a server, when given one resource unit.

B. Problem formulation

Table I summarizes the notation. Let 𝑀 be the set of
vehicles (bidders) and 𝐾 the set of commodities (service types),
each type with total of 𝑛𝑡

𝑘
available service slots at time 𝑡

in computing sites. Bidder 𝑚 ∈ 𝑀 has at most 1 demand
for each service type 𝑘 ∈ 𝐾 at 𝑡, denoted by 𝑚𝑡

𝑘
∈ {0, 1}.

It draws its actions for each service type—whether to back
off 𝛼𝑡𝑚 = {𝛼𝑡

𝑚,1, · · · , 𝛼
𝑡
𝑚, |𝐾 |} ∈ {0, 1}

|𝐾 | , and which price

to bid b𝑡𝑚 = {𝑏𝑡
𝑚,1, · · · , 𝑏

𝑡
𝑚, |𝐾 |} ∈ R

|𝐾 |
+ —from a strategy.

𝑚’s utility is denoted by 𝑢𝑚 (b𝑡𝑚). The bidding price 𝑏𝑡
𝑚,𝑘

is
some unknown function of 𝑚’s private valuation 𝑣𝑚,𝑘 ∈ R+ of
the service type, 𝑏𝑡

𝑚,𝑘
= 𝑓𝑚 (𝑣𝑚,𝑘 ). The competing bidders

draw their actions from a joint distribution 𝜋𝑡−𝑚 based on
(p1, · · · , p𝑡−1), where p𝑡 ∈ R |𝐾 |+ is the payment vector received
at the end of time 𝑡, its element 𝑝𝑡

𝑘
is the (𝑛𝑡

𝑘
+1)th highest bid

for 𝑘 . Bidder 𝑚 observes the new p𝑡 as feedback. The auction
repeats for 𝑇 periods. The goal is to maximize the long-term

utility: U = 1
𝑇

𝑇∑
𝑡=1

∑
𝑚∈𝑀

𝑢𝑚 (b𝑡𝑚), 𝑇 →∞.

For any 𝑘 , when availability 𝑛𝑡
𝑘
<

∑
𝑚∈𝑀

𝑚𝑡
𝑘
, there is more

demand than available service slots and we call it “high
contention”. When 𝑛𝑡

𝑘
≥ ∑
𝑚∈𝑀

𝑚𝑡
𝑘
, we call it “low contention”.

In a dynamic environment, 𝑛𝑡
𝑘

depends on utilization at 𝑡 − 1
and existing demand at 𝑡. Due to noise and transmission
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delay in a realistic environment, this information is inaccurate
and outdated when it becomes available to the ACA unit for
admission control (Fig.1b).

Ideally, an auction is incentive-compatible. Unfortunately,
with budget constraint and costs, the second-price auction con-
sidered here is no longer incentive-compatible. But we still use
this type of auction as we can show (in Sec.III-B and III-C) that
it maximizes social welfare and optimally allocates resources.
We also use the payment signal as additional feedback to aid
the bidders’ learning process (Sec.III-E).

III. PROPOSED SOLUTION

To solve the problem described in Sec.II-B, we propose
DRACO, a Distributed Reinforcement-learning algorithm with
Auction mechanism for Computation Offloading. In Sec.III-A
we define bidder’s utility function; in III-B and III-C, we
prove the existence of NE, maximization of welfare and Pareto
optimality in the static case, under both low and high con-
tentions. We introduce our algorithm for dynamic environment
in Sec.III-D and III-E. Notations are in Table I. For readability,
we drop notation for time 𝑡 in the static case.

A. Utility function

In this section, we first build up the utility function based on
the payoff of classic second-price auction. Then we add costs
for backoff and losing the bid, incentivizing tradeoff between
higher chance of success and lower communication overhead.
Finally, we add the system resource utilization goal to the
individual utility.

In each auction round, if a bid 𝑖 for service type 𝑘 is
admitted, its economic gain is (𝑣𝑖,𝑘 − 𝑝𝑖,𝑘 ). Each bidder
has a given 𝑣𝑖,𝑘 that is 1) linear to the bidder’s estimated
resource needs for 𝑘 and 2) within the budget. The first
condition guarantees Pareto optimality (Corollary III.2.1); the
second avoids overbidding under rationality (Theorem III.2).
Our study does not consider irrational or malicious agents,
e.g., whose goal is to reduce social welfare even if individual
outcome may be hurt. ACA records 𝑏 𝑗 ,𝑘 of the highest losing
bid 𝑗 for each 𝑘 , which is also the (𝑛𝑘 + 1)th highest bidding
price. For 𝑛𝑘 = 1 this would be the second highest price, hence
the name “second-price auction”. If 𝑖 is admitted, the payment
𝑝𝑖,𝑘 = 𝑏 𝑗 ,𝑘 is signaled back to the bidder. If 𝑖 is rejected, it
has a constant cost of 𝑐𝑖,𝑘 . The bidder’s utility so far:

u𝑖,𝑘 = 𝑥𝑖,𝑘 · (𝑣𝑖,𝑘 − 𝑝𝑖,𝑘 ) − (1 − 𝑥𝑖,𝑘 ) · 𝑐𝑖,𝑘 (1)
𝑥𝑖,𝑘 = 1 means bidder wins bid 𝑖 for a service slot of service
type 𝑘 , which implies 𝑏𝑖,𝑘 is among the highest 𝑛𝑘 bids for 𝑘 .
Ties are broken randomly.

We add 𝛼𝑖,𝑘 ∈ {0, 1} for backoff decision: bidder submits
the bid if 𝛼𝑖,𝑘 = 1, otherwise, it backs off with a cost 𝑞𝑖,𝑘 :

𝑢𝑖,𝑘 = 𝛼𝑖,𝑘 · (u𝑖,𝑘 − 1𝑝𝑖,𝑘=0 · 𝑣𝑖,𝑘 ) + (1 − 𝛼𝑖,𝑘 ) · 𝑞𝑖,𝑘 (2)
Especially in high contention, more rebidding causes com-

munication overhead, but less rebidding reduces the chance
of success. With 𝑐𝑖,𝑘 , the utility incentivizes less rebidding to
reduce system-wide communication overhead (C1). Together
with 𝑞𝑖,𝑘 , the bidder is incentivized to trade off between

long backoff time and risky bidding. In our implementation
(Sec.IV), 𝛼 is continuous between 0 and 1 that also indicates
the length of backoff time.

To further align the bidder’s objective with system overall
objective (C1), we include system resource utilization 𝛽 in the
utility. This incentivizes bidders to minimize system utilization.
Hence, the complete utility definition is:

𝑢𝑖 =
∑︁
𝑘∈𝐾

𝑢𝑖,𝑘 +𝑊 · (1 − 𝛽) (3)

𝑊 is a constant that weighs the utilization objective. In
low contention, there is adequate resource to accept all bids,
bidding price is less relevant, and backoff decision becomes
more important.

To calculate Eq.3, the bidder needs only these feedback
signals: bidding outcome 𝑥𝑖,𝑘 , final price 𝑝𝑖,𝑘 and system
utilization 𝛽, addressing C2.

B. Low contention

Low contention is much more common in networking and
presumably also in future V2X applications as abundant re-
sources are often available. We show that in low contention,
the interaction mechanism is a potential game with NE. We
use the concept of potential functions to do so [38]:

Definition III.1. 𝐺 (𝐼, 𝐴, 𝑢) is an exact potential game if and
only if there exists a potential function 𝜙(𝐴) : 𝐴→ R s.t. ∀𝑖 ∈
𝐼, 𝑢𝑖 (𝑏𝑖 , 𝑏−𝑖) − 𝑢𝑖 (𝑏′𝑖 , 𝑏−𝑖) = 𝜙𝑖 (𝑏𝑖 , 𝑏−𝑖) − 𝜙𝑖 (𝑏′𝑖 , 𝑏−𝑖), 𝑏 ∈ 𝐴.

Remark III.1. Players in a finite potential game that jointly
maximize a potential function end up in NE.

Proof. See [38]. �

Theorem III.1. Bidders with utility as Eq.3 participate in a
game as described in Sec.II-B in low contention, the game is
a potential game, and the outcome is an NE.

Proof. In low contention, 𝑝𝑖,𝑘 = 0, as all bids are accepted.
𝑢𝑖 is reduced to: 𝑢𝑖 (𝛼𝑖 , 𝛼−𝑖) =

∑
𝑘

𝑞𝑖,𝑘 −
∑
𝑘

𝛼𝑖,𝑘𝑞𝑖,𝑘 + 𝑊
(
1 −∑

𝑗 𝛼 𝑗 ·
𝜔 𝑗

𝐶

)
, where −𝑖 denotes bidders other than 𝑖. 𝜔 𝑗 ∈ R |𝐾 |

is each bid’s resource requirement, 𝐶 is system capacity. Thus,
the auction is reduced to a potential game with discrete action
space 𝛼𝑖 ∈ R |𝐾 | , and potential function 𝜙(𝛼𝑖 , 𝛼−𝑖) =

∑
𝑗 ,𝑘

𝑞 𝑗 ,𝑘 −∑
𝑗 ,𝑘

𝛼 𝑗 ,𝑘𝑞 𝑗 ,𝑘 +𝑊
(
1 −∑ 𝑗 𝛼 𝑗 ·

𝜔 𝑗

𝐶

)
,∀𝑖, 𝑗 ∈ 𝐼,∀𝑘 ∈ 𝐾 .

We prove in Appendix A that 𝑢𝑖 (𝛼𝑖 , 𝛼−𝑖) − 𝑢𝑖 (𝛼′𝑖 , 𝛼−𝑖) =
𝜙(𝛼𝑖 , 𝛼−𝑖) − 𝜙(𝛼′𝑖 , 𝛼−𝑖), and hence it is a potential game,
and bidders maximizing their utilities 𝑢𝑖 also maximize the
potential function 𝜙. Since 𝛼𝑖 ∈ R |𝐾 | , it is a finite potential
game. According to Remark III.1, the outcome is an NE. �

In low contention, our computation offloading problem be-
comes a potential game. This enables us to use online learning
algorithms such as in [39] that converge regardless of other
bidders’ behaviors. The NE is a local maximization of the
potential function: each bidder finds a balance between its
backoff cost and the incentive to reduce overall utilization.
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𝑡

Critic: value func. estimator

reward 𝑢𝑚
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Action
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𝑌𝑚
𝑡−1=(𝑎𝑚

𝑡−ν+1,…, 𝑎𝑚
𝑡−1),sl𝑚

𝑡

SL

RL

Figure 2: RL and SL algorithms

Empirical results in Sec.IV confirm that over time this results
in a more balanced load.

C. High contention

In high contention, 𝛼 is used in a repeated auction to avoid
congestion and ensure better reward over time. To simplify the
proofs, we consider only the time steps where 𝛼 = 1 (bidder
joins auction). We also take a small enough 𝑊 , such that the
last term in Eq.3 can be omitted in high contention, to further
simplify the utility function in the proof.

Theorem III.2. In a second-price auction, where bidders with
utility as Eq.3 compete for service slots as commodities in high
contention, 1) bidders’ best-response is of linear form, 2) the
outcome is an NE and 3) welfare is maximized.

Proof. See Appendix B. �

When bidders bid for service slots, the required resources
are allocated. Theorem III.2 guarantees the maximization of
welfare (total utility of bidders), but it does not guarantee
the optimality of the resource allocation, unless the following
conditions are met: if bidders’ valuation of the commodity is
linear to its resource requirement, and all bidders have some
access to resources (fairness).

Corollary III.2.1. In a second-price auction, where 𝑀 bidders
with utility as Eq.3 compete in high contention, the outcome
is an optimal resource allocation, if the bidders’ valuation of
commodities is linear to resource requirement and all bidders
have a positive probability of winning.

Proof. See Appendix C. �

Our setup meets both conditions.

D. The FSP algorithm

The FSP algorithm addresses the convergence challenge of
a best-response algorithm (C3). FSP balances exploration and
exploitation by replaying its own past actions to learn an aver-
age behavioral strategy regardless of other bidders’ strategies;
then it cautiously plays the behavioral strategy mixed with best
response [28]. The method consists of two parts: a supervised
learning (SL) algorithm predicts the bidder’s own behavioral
strategy 𝜓, and an RL algorithm predicts its best response
Z to other bidders. The bidder has [, lim

𝑡→∞
[ = 0 probability

of choosing action a = Z , otherwise it chooses a = 𝜓. The

Algorithm 1 FSP algorithm for bidder 𝑚
1: Initialize 𝜓𝑚, Z𝑚 arbitrarily, 𝑡 = 1, [ = 1/𝑡, a, 𝑃𝑡−1

−𝑚 = 0, 𝑢𝑡−1
𝑚 = 0,

observe 𝑒𝑡𝑚, create rl𝑡𝑚, sl𝑡𝑚 and add to memory
2: while true do
3: Take action a𝑡𝑚 = (1 − [)𝜓𝑡𝑚 + [Z 𝑡𝑚
4: Receive 𝑃𝑡𝑚, calculate 𝑢𝑡𝑚, observe 𝜌𝑡+1𝑚 , e𝑡+1𝑚
5: Create and add state to RL memory: rl𝑡+1𝑚
6: Create and add state to SL memory: (sl𝑡+1𝑚 , a𝑡𝑚)
7: Construct 𝑆𝑡𝑚, 𝑆

𝑡+1
𝑚 , calculate Z 𝑡+1𝑚 = RL(𝑆𝑡𝑚, 𝑆𝑡+1𝑚 , 𝑢𝑡𝑚)

8: Calculate 𝜓𝑡+1𝑚 = SL(sl𝑡+1𝑚 )
9: 𝑡 ← 𝑡 + 1, [← 1/𝑡

10: end while

action includes backoff decision 𝛼 and bidding price 𝑏. If 𝛼 is
above a threshold, the bidder submits the bid; otherwise, the
bidder backs off for a duration linear to 𝛼. We predefine the
threshold to influence bidder behavior: with a higher threshold,
the algorithm becomes more conservative and tends to back
off more service requests. A learned threshold (e.g., through
meta-learning algorithms) is left to future work.

Although FSP is only convergent in certain classes of games
[40], and in our case of a multi-player, general-sum game with
infinite strategies, it does not necessarily converge to an NE,
it is still an important experiment as our application belongs
to a very general class of games; and empirical results show
that by applying FSP, overall performance is greatly improved
compared to using only RL. The FSP is described in Alg.1.

Input to SL includes bidder 𝑚’s service requests—
service type, resource amount required, and deadline: 𝜌𝑡𝑚 =

{(𝑘𝑖 , 𝜔𝑖,ℎ , 𝑄𝑖) |𝑖 ∈ 𝐼, ℎ ∈ 𝐻} (𝑚 can create multiple bids, each
an independent request for service type 𝑘𝑖; 𝜌𝑡𝑚 is the set of
all 𝑚’s bids at 𝑡), and current environment information visible
to 𝑚, denoted 𝑒𝑡𝑚 (e.g., number of bidders in the network and
system utilization 𝛽𝑡 ). SL infers behavioral strategy 𝜓𝑡𝑚. The
input sl𝑡𝑚 = (𝜌𝑡𝑚, 𝑒𝑡𝑚) and actual action a𝑡𝑚 are stored in SL
memory to train the regression model. we use a multilayer
perceptron in our implementation.

Input to RL is constructed from 𝑚’s present state rl𝑡𝑚. rl𝑡𝑚
includes 1) 𝜌𝑡𝑚; 2) 𝑒𝑡𝑚; 3) previous other bidders’ state 𝑃𝑡−1

−𝑚 ,
represented by the final price 𝑝𝑘 , or 𝑃𝑡−𝑚 = p𝑡 = {𝑝𝑡

𝑘
|𝑘 ∈ 𝐾};

and 4) calculated utility 𝑢𝑡−1
𝑚 according to Eq.3. To consider

historical records, we take a most current states to form the
complete state input to RL: 𝑆𝑡𝑚 = {rl𝜏𝑚 |𝜏 = 𝑡−a+1, · · · , 𝑡}. RL
outputs best response Z𝑚 (Fig.2). The input consists of bidder’s
private information and easily obtainable public information,
e.g., environment data and past prices, thus addressing C2.

E. The RL algorithm

Authors of [41] use VCG and a learning algorithm for the
bidders to adjust their bidding price based on budget and
observation of other bidders. Our approach is similar in that we
estimate other bidders’ state 𝑃−𝑚 from payment information
and use the estimate as basis for a policy. Also, similar to their
work, payment information is only from the seller.

Our approach differs from [41] in several major points. We
use a continuous space for bidder states (i.e., continuous value
for payments). As also mentioned in [41], a finer-grained state
space yields better learning results. Moreover, we consider
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Algorithm 2 RL algorithm for bidder 𝑚
1: Initialize \, 𝑤 arbitrarily. Initialize _
2: while true do
3: Input 𝑡 and 𝑆𝑡𝑚, 𝑆

𝑡+1
𝑚 constructed from RL memory

4: Run critic and get �̂� (𝑆𝑡𝑚,w), �̂� (𝑆𝑡+1𝑚 ,w)
5: Calculate �̄�𝑚 = _�̄�𝑚 and 𝛿 (utility 𝑢 is reward 𝑅)
6: Run actor and get `(\),Σ(\)
7: Sample Z 𝑡+1𝑚 from 𝐹 (`,Σ), update w and \
8: end while

multiple commodity/service types, which is more realistic, and
therefore has a wider range of applications. Further, we do
not explicitly learn the transition probability of bidder states.
Instead, we use historical states as input and directly determine
the bidder’s next action.

We use the actor-critic algorithm [42] for RL (Alg.2). The
critic learns a state-value function 𝑉 (𝑆). Parameters of the
function are learned through a neural network that updates
with w← w + 𝛾𝑤𝛿∇�̂� (𝑆,w), where 𝛾 is the learning rate and
𝛿 is the temporal difference (TD) error. For a continuing task
with no terminal state, the average reward is used to calculate
𝛿 [42]: 𝛿 = 𝑢 − �̄� + �̂� (𝑆′,w) − �̂� (𝑆,w). In our case, the reward
is utility 𝑢. We use exponential moving average (with rate _)
of past rewards as �̄�.

The actor learns the parameters of the policy 𝜋 in a multidi-
mensional and continuous action space. Correlated backoff and
bidding price values are assumed to be normally distributed:
𝐹 (`,Σ) = 1√

|Σ |
exp(− 1

2 (x − `)
𝑇 Σ−1 (x − `)). For faster calcu-

lation, instead of covariance Σ, we estimate lower triangular
matrix 𝐿 (𝐿𝐿𝑇 = Σ). Specifically, the actor model outputs the
mean vector ` and the elements of 𝐿. Actor’s final output Z is
sampled from 𝐹 through: Z = `+𝐿y, where y is an independent
random variable from standard normal distribution. Update
function is \ ← \+𝛾 \𝛿∇ ln 𝜋(a|𝑆, \). We use 𝜕 ln𝐹

𝜕`
= Σ(x−`)

and 𝜕 ln𝐹
𝜕Σ

= 1
2 (Σ(x − `) (x − `)

𝑇 Σ − Σ) for back-propagation.
The objective is to find a strategy that, given input 𝑆𝑡𝑚,

determines a to maximize 1
𝑇 −𝑡E[

∑𝑇
𝑡′=𝑡 𝑢

𝑡′
𝑚]. To implement the

actor-critic RL, we use a stacked convolutional neural network
(CNN) with highway [43] structure similar to the discriminator
in [44] for both actor and critic models. The stacked-CNN has
diverse filter widths to cover different lengths of history and ex-
tract features, and it is easily parallelizable, compared to other
sequential networks. Since state information is temporally
correlated, such a sequential network extracts features better
than multilayer perceptrons. The highway structure directs
information flow by learning the weights of direct input and
performing non-linear transform of the input.

In low contention, authors of [39] prove that an actor-critic
[42] RL algorithm converges to NE in a potential game. In
high contention, although we prove the existence of an NE in
the static case, the convergence property of our algorithm in a
stochastic game is not explicitly analyzed. We show it through
empirical results in Sec.IV.

IV. EVALUATION

We develop a Python discrete-event simulator, with varying
number of vehicles of infinite lifespan, one MEC with ACA
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floading failure rate.
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(b) DRACO learns to better utilize
resource in remote computing site.

Figure 3: OFR and resource utilization, capacity=60, MP=1

and edge computing site, and one remote computing site
(extention to multiple ACA units and computing sites is left
to future work). The edge and remote sites have different
resource profiles. To imitate a realistic, noisy environment,
the remote site is some distance to the ACA unit, such that
data transmission would cause non-negligible delay in state
information update. We also add a small, normally distributed
noise to this delay, as well as to the actual resource required
for a service. Each vehicle is randomly and independently ini-
tialized with a budget of “high” or “low” with 50% probability.
For the operating-side load-balancing policy, we apply state-
of-the art resource-intensity-aware load-balancing (RIAL) [45]
with slight modifications. The method achieves dynamic load-
balancing among computing sites through resource pricing
that is correlated to the site’s load, and loads are shifted to
“cheaper” sites. Finally, we compare the performance of active
agents (DRACO on the user side, RIAL on the operating side,
or D+R) to passive agents (only RIAL on the operating side),
as shown in Fig.1b.

We test our approach in two steps. First, we comprehensively
study the performance of active agents in a synthetic setup
with randomized inputs and a wide range of environment
parameters. Then, we choose a realistic scenario, a 4-way
traffic intersection with realistic mobility model for vehicles
and with incoming service requests modeled after specific V2X
applications, to show the generalization properties of DRACO.
We evaluate the following metrics:
• Offloading failure rate (OFR): Ratio of failed offloading

requests rejected by ACA or not executed before deadline.
• Resource utilization: Ratio of resources effectively uti-

lized at computing sites.
• Rebidding overhead: If a bid is rejected before deadline,

the vehicle can bid again. More rebidding causes commu-
nication overhead, but less rebidding reduces the chance
of success. We study this tradeoff, comparing the average
number of actual rebiddings per vehicle within maximum
permitted-rebidding (MP).

A. Synthetic setup
In this setup, we cover a wide range of hypothetical scenar-

ios by varying parameters such as system capacity, service/task
types and number of rebidding:
• Task types by resource needs in time-resource units: F1:

3 units, and F2: 30 units.
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Figure 4: (a): OFR vs capacity, (b): required capacity to reach OFR≤ 10%, (c): rebidding overhead, (d): utilization by capacity
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Figure 5: CDF of individual OFRs (capacity=70, MP=1):
DRACO reduces individual OFRs.

• Service types by deadline and probability: F1, 300ms:
18.75%; F1, 50ms: 18.75%; F2, 300ms: 6.25%; F2, 50ms:
6.25%; F1-F2, 300ms: 18.75%; F1-F2, 50ms: 18.75%;
F2-F1, 300ms: 6.25%; F2-F1, 50ms: 18.75%.

• Service arrival rate per vehicle: randomized according to
a two-state Markov modulated Poisson process (MMPP)
[46], with _high ∈ (0.48, 0.6), _low ∈ (0, 0.12) and transi-
tion probabilities 𝑝high = 𝑝low = 0.6.

• Capacity: 50-230 resource units.
• Maximum permitted rebidding: 1 or 5 times, respectively.
• Vehicle count: constant at 30.
• Vehicle arrival rate: 0, always in the system; speed: 0.
• Data size: uniform random between 2.4-9.6kbit.
• Uplink and downlink latency: 0.

Fig.3a shows a training example where D+R’s OFR is 14%
compared to RIAL’s 20% at the end of training, or a reduction
of 30%. The lines are the mean OFR of serveral simulation
runs, and the shaded area marks the standard deviation. Fig.3b
shows where the learning is most useful. We depict the remote
site’s resource utilization. Since the ACA unit’s information of
site utilization is delayed, with only RIAL, the site is either
over-utilized or starved, in distinctive cycles (dotted line).
When the vehicles learn with DRACO, they achieve better
utilization (solid line).

Overall OFR in all parameter settings is shown in Fig.4a.
Evaluation data is collected from additional evaluation runs
after the models are trained, with random incoming service
requests newly generated by the MMPP. Besides requests
that are not admitted by the ACA unit, the failure rate also
includes requests that are admitted, but cannot be executed
by the operating side before deadline (reliability). We observe
that with D+R, reliability is 99% and consistently higher
than with RIAL for all results in the paper. We also observe
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price tradeoff: for all deadlines, ve-
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(b) MP=5, long deadline, high con-
tention: backoff time decreases with
higher capacity, but the tradeoff with
price remains.

Figure 6: Backoff and price tradeoff
that DRACO significantly reduces OFR (on average 40%
reduction), especially when MP is low. In low contention,
i.e., capacity≥ 100, by efficient use of resource, D+R achieves
the same level of OFR with much less resource (Fig.4b). The
improvement becomes more significant as OFR decreases. In
particular, D+R reaches 1% OFR with much less resource
compared to RIAL regardless of MP.

We also observe that higher MP reduces D+R’s advantage
over RIAL. This result is to be expected: when more rebid-
ding is permitted, low OFR can be achieved by trial-and-
error, limiting the advantage of DRACO’s backoff strategy.
However, trial-and-error comes with a cost: Fig.4c compares
the rebidding overhead used by both algorithms when MP=5.
In high contention, both active and passive agents leverage
on rebidding, and the difference in rebidding overhead is
small. D+R’s advantage becomes more significant as capacity
increases. The box plot shows the median (line), mean (dot),
1st to 3rd quartiles (box), and data range (whiskers). D+R
imposes on average 32% lower rebidding overhead.

To validate our findings in Fig.3b, we compare resource
utilization under different capacities. Fig.4d shows the remote
site’s utilization when MP=1. In high contention, the increase
in utilization is up to 18%—when capacity is limited, D+R
achieves lower OFR through more efficient resource usage.
In low contention, capacity is less critical, active and passive
agents result in similar utilization. Regardless of capacity level,
D+R reduces the standard deviation in utilization by up to 21%.

Fig.5 shows the cumulative probability of vehicles’ indi-
vidual OFRs. With DRACO, as system overall OFR reduces,
the individual OFRs reduce accordingly: the auction does not
cause disadvantage to individual vehicles. Moreover, vehicles
with lower budget improve by a greater margin: they learn to
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(a) Training env.: low contention with abundant resource, traffic
phase=10-40s, low vehicle speed(10km/h), low arrival rate=(1/2.2s),
low variation in vehicle count(22-30): OFR in training(left) and evalu-
ation(right).
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(b) Test env.: high contention with limited resource, traffic phase=20s,
high vehicle speed(30km/h), high arrival rate(1/1s), high variation in
vehicle count(14-30): vehicle count over time(left) and OFR(right).

Figure 7: Offloading failure rate (OFR) in training and test environments
utilize backoff mechanism to overcome their disadvantage in
initial parameterization. Fig.6a shows how vehicles learn to
trade off between bidding price and backoff time. They are
separated into two groups: a vehicle is in the “low price”
group if it bids on average lower than the average bidding
price of all vehicles; otherwise, it is in the “high price”
group (here we analyze actual bidding prices instead of the
predefined budgets). When service requests have a longer
deadline, vehicles in both price groups learn to utilize longer
backoff. Regardless of the service request deadline, “low price”
vehicles always use longer backoff in their bidding decisions,
compared to the “high price” group. Fig.6b demonstrates the
tradeoff effect with increasing capacity. As capacity increases,
backoff time decreases, but the tradeoff is present in all cases.

To summarize: Fig.3 and 4 demonstrate DRACO’s excellent
overall system performance. More importantly, Fig.5 shows
that system objective is aligned with individual objectives
through incentivization (C1), and Fig.6 demonstrates where
our approach fundamentally differs from previous approaches:
differently initialized agents learn to select the most advan-
tageous strategy based on limited feedback signal (C2). The
capability to learn and behave accordingly makes our agents
highly flexible in a dynamic environment. Finally, Fig.3a shows
good convergence speed despite computation and communica-
tion complexity of the problem (C3).

B. Realistic setup

In this setup, we adopt the data patterns of segmentation
and motion planning applications extracted from various self-
driving data projects [47] or referenced from relevant studies
[48] [49]. We also use Simulation of Urban Mobility (SUMO)
[50] to create a more realistic mobility model of a single
junction with a centered traffic light; the junction is an area
downloaded from open street map. Assuming 802.11ac proto-
col, we place the ACA unit in the middle of the graph and
limit the edges to within 65m of the ACA. The net is with
two lanes per street per direction, SUMO uniform-randomly
creates a vehicle at any one of the four edges.

Parameters of the setup are as follows [47]–[49]:
• Task types: F1: 80 units, and F2: 80 units.
• Service types and deadline: F1: 100ms and F2: 500ms.
• Service arrival rate per vehicle: fixed at F1: every 100ms,

and F2: every 500ms.

• Capacity: 20 in high contention, 30 in low contention.
• Maximum permitted rebidding: 1.
• Vehicle count: 14-30 from simulated trace data.
• Vehicle arrival rate: constantly at 1 every 1 or 2.2 seconds;

speed: 10 or 30 km/h when driving.
• Data size: uplink: F1: 0.4Mbit, F2: 4Mbit. Downlink: F1:

0 (negligible), F2: 0.4Mbit.
• Latency: we take 802.11ac protocol that covers a radius

of 65 meters, and assume maximum channel width of ca.
1.69 Gbps. We model the throughput as a function of
distance to the ACA unit: throughput=−26 × distance +
1690 Mbps [51]. If there are 𝑁 vehicles transmitting data
to the ACA unit, we assume that each gets 1/𝑁 of the
maximum throughput at that distance.

For training, we set the traffic light phases to 10-40s of green
for each direction, alternatively. We train our active agents with
DRACO in low contention. Fig.7a-left shows convergence to
OFR of 2%. Then we evaluate the trained models in the same
environment with newly simulated trace data from SUMO,
our approach still reaches OFR of 4% and outperforms RIAL
(Fig.7a-right). All simulations are repeated several times to
take randomness into account.

Finally, we test our trained models in a significantly different
environment, changing traffic light phases, vehicle arrival rate
and speed to make the environment more volatile and dynamic,
and reducing capacity to create a high-contention situation.
The resulting vehicle count over time (Fig.7b-left) shows a
much heavier and more frequent fluctuation compared to the
training environment. Note that vehicle count and OFR do
not vary synchronously—OFR is determined by vehicle count
and numerous other complicating factors such as transmission,
queueing and processing time, past utilization, etc. Despite the
significant changes to the environment, D+R still outperforms
RIAL, reaching low OFRs in high contention without requiring
any further training (Fig.7b-right). It shows that DRACO
has very good generalization properties—in fact, in the more
volatile and dynamic environment, the superiority of active
agents becomes more obvious.

V. RELATED WORK

Centralized approaches such as [20], [21] for resource allo-
cation, and [14], [52], [53] for offloading, are suited to core-
network and data-center applications, when powerful central
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ACA can be set up, and data can be relatively easily obtained.
They are not the focus of our study.

Previous studies of decentralized systems address some
of the issues in centralized approaches. [54], [55] propose
distributed runtime algorithm to optimize system goals, but
disregard user preferences. [56]–[58] only consider cooperative
resource-sharing or offloading. [22], [23], [59] require com-
plete information to compute the desired outcome. [60] only
considers discrete actions. [19] learns with partial information,
but it reduces complexity by assuming single service type and
arrival rate. Our approach also differs from [41] as we consider
a multi-dimensional continuous action space with multiple
service types, and both cooperative and competitive behaviors.

Besides the previously mentioned decentralized learning
algorithms [25]–[28] for a dynamic environment, independent
learner methods [61] are used to reduce modeling and compu-
tation complexity, but they fail to guarantee equilibrium [62],
and have overfitting problems [63]. Finally, federated learning
[64] is not applicable, as it provides a logically centralized
learning framework.

VI. CONCLUSION

Our algorithm learns how to best utilize backoff option
based on its initialization parameters. As a result, the algorithm
achieves significant performance gains and very good gener-
alization properties. Our interaction mechanism aligns private
and system goals without sacrificing either user autonomy or
system-wide resource efficiency, despite the distributed design
with limited information-sharing.

We assume there is no “malicious” agent with the goal to
reduce social welfare or attack the system. In general, agents
with heterogeneous goals is left to future research. In V2X, all
devices are potential computing sites; offloading between any
devices should be considered. Long-term effect of decisions—
e.g. if unused budget can be saved for the future, is also an
interesting topic. How initialization and predefined parameters
affect agent behavior and the algorithm’s convergence property,
needs to be studied in detail.

APPENDIX A
PROOF OF POTENTIAL GAME

Proof. We define player 𝑖’s utility as 𝑢𝑖 (𝛼𝑖 , 𝛼−𝑖) =
∑
𝑘∈𝐾

𝑞𝑖,𝑘 −∑
𝑘∈𝐾

𝛼𝑖,𝑘𝑞𝑖,𝑘 +𝑊
(
1−

∑
𝑗 𝛼𝑗 ·𝜔 𝑗

𝐶

)
, where 𝜔 𝑗 ∈ R𝐾 is the resource

requirement of each commodity, 𝐶 is the system capacity.
We define potential function: 𝜙(𝛼𝑖 , 𝛼−𝑖) =

∑
𝑗∈𝐼 ,𝑘∈𝐾

𝑞 𝑗 ,𝑘 −∑
𝑗∈𝐼 ,𝑘∈𝐾

𝛼 𝑗 ,𝑘𝑞 𝑗 ,𝑘 +𝑊
(
1 −

∑
𝑗 𝛼𝑗 ·𝜔 𝑗

𝐶

)
.

To simplify, we substitute with 𝑄𝑖 =
∑
𝑘∈𝐾

𝑞𝑖,𝑘 , 𝐴𝑖 =∑
𝑘∈𝐾

𝛼𝑖,𝑘𝑞𝑖,𝑘 , 𝐴−𝑖 =
∑

𝑗∈𝐼 , 𝑗≠𝑖,𝑘∈𝐾
𝛼 𝑗 ,𝑘𝑞 𝑗 ,𝑘 , 𝐵𝑖 =

∑
𝑘

𝛼𝑖,𝑘𝜔𝑖,𝑘 ,

𝐵−𝑖 =
∑

𝑗∈𝐼 , 𝑗≠𝑖,𝑘∈𝐾
𝛼 𝑗 ,𝑘𝜔 𝑗 ,𝑘 , and rewrite: 𝑢𝑖 (𝛼𝑖 , 𝛼−𝑖) = 𝑄𝑖−𝐴𝑖+

𝑊 − 𝑊
𝐶
(𝐵𝑖 +𝐵−𝑖) and 𝑢𝑖 (𝛼′𝑖 , 𝛼−𝑖) = 𝑄𝑖 − 𝐴′𝑖 +𝑊 −

𝑊
𝐶
(𝐵′
𝑖
+𝐵−𝑖);

hence, 𝜙(𝛼𝑖 , 𝛼−𝑖) =
∑
𝑗

𝑄 𝑗 − (𝐴𝑖 + 𝐴−𝑖) + 𝑊 − 𝑊 (𝐵𝑖+𝐵−𝑖)
𝐶

,

𝜙(𝛼′
𝑖
, 𝛼−𝑖) =

∑
𝑗

𝑄 𝑗 − (𝐴′𝑖 + 𝐴−𝑖) + 𝑊 −
𝑊 (𝐵′

𝑖
+𝐵−𝑖)
𝐶

, which

implies 𝑢𝑖 (𝛼𝑖 , 𝛼−𝑖) − 𝑢𝑖 (𝛼′𝑖 , 𝛼−𝑖) = −(𝐴𝑖 − 𝐴′𝑖) −
𝑊
𝐶
(𝐵𝑖 − 𝐵′𝑖) =

𝜙(𝛼𝑖 , 𝛼−𝑖) − 𝜙(𝛼′𝑖 , 𝛼−𝑖). �

APPENDIX B
SECOND-PRICE AUCTION

Under high contention, as defined in Sec.III-A, 𝑢𝑖 is reduced
to:

𝑢𝑖 =
∑︁
𝑘∈𝐾

(
𝑥𝑖,𝑘 · (𝑣𝑖,𝑘 − 𝑝𝑖,𝑘 ) − (1 − 𝑥𝑖,𝑘 ) · 𝑐𝑖,𝑘

)
(4)

We prove the theorem for |𝑀 | = 2 and |𝐾 | = 1, extension
to other settings is straightforward. Our proof is an extension
from [65]. Unlike [65], we include in utility the second-price
payment and cost for losing a bid. Based on [65], it can also
be extended to multiple bidders.

2 bidders receive continuously distributed valuations 𝑣𝑖 ∈
[𝑙𝑖 , 𝑚𝑖], 𝑖 ∈ {1, 2} for 1 commodity, and choose their strategies
𝑓1 (𝑣1), 𝑓2 (𝑣2) from the strategy sets 𝐹1 and 𝐹2. The resulting
NE strategy pair is ( 𝑓 ∗1 , 𝑓

∗
2 ). Any strategy function 𝑓 (𝑣) is

increasing in 𝑣, with 𝑓1 (𝑙1) = 𝑎, and 𝑓1 (𝑚1) = 𝑏. We assume
users have budgets (𝐵1, 𝐵2), and that they cannot bid more
than the budget. We define cost for losing the bid 𝑐𝑖 .

We formulate the problem into a utility maximization prob-
lem: max

𝑓2∈𝑆2 ( 𝑓1)
𝑢2 ( 𝑓1, 𝑓2). We say 𝑓2 is a best response of bidder

2, if 𝑢2 ( 𝑓1, 𝑓2) ≥ 𝑢2 ( 𝑓1, 𝑓 ′2 ), ∀ 𝑓
′
2 ∈ 𝑆2 ( 𝑓1). A NE strategy pair

( 𝑓 ∗1 , 𝑓
∗
2 ) has the strategies as each other’s best responses.

Theorem B.1. Given bidder 1’s bidding strategy 𝑓1 ∈
𝐹1, 𝑓1 (𝑙1) = 𝑎1, 𝑓1 (𝑚1) = 𝑏1, bidder 2’s best response has the

form


𝑓2 (𝑣2) ≤ 𝑎1 for 𝑣2 ∈ [𝑙2, \1]
𝑓2 (𝑣2) = 𝑗2 · 𝑣2 + 𝑑2 for 𝑣2 ∈ [\1, \2]
𝑓2 (𝑣2) ≥ 𝑏1 for 𝑣2 ∈ [\2, 𝑚2]

, where \1, \2 ∈

[𝑙2, 𝑚2] and 𝑗2\1 + 𝑑2 = 𝑎1, 𝑗2\2 + 𝑑2 = 𝑏1.

Theorem B.1 implies that the best response of bidder 1 and
2 are both of the linear form. Using the new best responses
function, we similarly extend the proof of the NE outcome
and welfare maximization to suit our case. Detailed proof is
provided in supplemental meterial [29].

APPENDIX C
PARETO OPTIMALITY

Valuation of the service request is a linear function of the
resource needed: 𝑣1 = 𝑔1𝜔1 + 𝑘1, 𝑣2 = 𝑔2𝜔2 + 𝑘2, 𝑔, 𝑘 are
constants, 𝜔 is amount of resource required. The allocation rule
under NE is: 𝐴∗𝑣1 ,𝑣2 = 1, if 𝑗1𝑣1 + 𝑑1 ≥ 𝑗2𝑣2 + 𝑑2, otherwise 2.
Form of the condition is from best response form in appendix
Sec.B. We also assume that both bidders have at least some
access to the resources, as a form of fairness. We define the
fairness constraint: E[𝜔1 |𝐴𝑣1,𝑣2=1]/E[𝜔2 |𝐴𝑣1,𝑣2=2] = 𝛾 ∈ R>0.

Theorem C.1. The allocation 𝐴∗𝑣1 ,𝑣2 maximizes overall re-
source allocation 𝜔1 + 𝜔2, subject to the fairness constraint,
when the valuations are linear functions of resources. Or, the
NE of the game achieves optimal resource allocation.

Proof. Find the Lagrangian multiplier _∗ that satisfies the
fairness constraint with NE allocation 𝐴∗𝑣1 ,𝑣2 . Define 𝑔, 𝑘 as:

9



𝑔1 = (1 + _∗)/ 𝑗1 , 𝑘1 = −𝑑1/ 𝑗1, and 𝑔2 = (1 − 𝛾_∗)/ 𝑗2 , 𝑘2 =

−𝑑2/ 𝑗2. We rewrite the allocation: 𝐴∗𝜔1 ,𝜔2 = 1, if 𝜔1 (1+_∗) ≥
𝜔2 (1−𝛾_∗), otherwise 2. Rest of the proof is same as [65]. �
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