
AutoByte: Automatic Configuration for Optimal Communication Scheduling in DNN
Training

Ma, Yiqing; Wang, Hao; Zhang, Yiming; Chen, Kai

Proceedings - IEEE INFOCOM, v. 2022-May, May 2022, article number 9796752, p.
760-769

Accepted Version

10.1109/INFOCOM48880.2022.9796752

IEEE

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE
must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works.

41st IEEE Conference on Computer Communications, INFOCOM 2022, Virtual;
London, United Kingdom, 2 - 5 May 2022, Code 180260

AutoByte: Automatic Configuration for Optimal
Communication Scheduling in DNN Training

Yiqing Ma1, Hao Wang1, Yiming Zhang2, Kai Chen1

1iSING Lab, Hong Kong University of Science and Technology
2NICEX Lab, Xiamen University

Abstract—ByteScheduler partitions and rearranges tensor
transmissions to improve the communication efficiency of dis-
tributed Deep Neural Network (DNN) training. The configuration
of hyper-parameters (i.e., the partition size and the credit size) is
critical to the effectiveness of partitioning and rearrangement.
Currently, ByteScheduler adopts Bayesian Optimization (BO)
to find the optimal configuration for the hyper-parameters
beforehand. In practice, however, various runtime factors (e.g.,
worker node status and network conditions) change over time,
making the statically-determined one-shot configuration result
suboptimal for real-world DNN training.

To address this problem, we present a real-time configuration
method (called AutoByte) that automatically and timely searches
the optimal hyper-parameters as the training systems dynam-
ically change. AutoByte extends the ByteScheduler framework
with a meta-network, which takes the system’s runtime statistics
as its input and outputs predictions for speedups under specific
configurations. Evaluation results on various DNN models show
that AutoByte can dynamically tune the hyper-parameters with
low resource usage, and deliver up to 33.2% higher performance
than the best static configuration in ByteScheduler.

Index Terms—Distributed training, communication scheduling,
meta network.

I. INTRODUCTION

Deep learning (DL) has been widely adopted for data min-

ing and analytics. DL drives rapid development of emerging

applications such as face recognition [19] and natural language

processing (NLP) [11]. To support these applications, the

datasets become larger and larger and the models become more

and more complex [15], making DL training increasingly time-

consuming. As a result, large-scale training is often conducted

in a distributed manner. In distributed training, communication

is usually the bottleneck [35]. Many studies have been done

to improve the communication performance for distributed

training, such as Parameter Server (PS) [32], All-reduce [37],

and Gradient Compression [34].

Most recently, communication scheduling [18], [25], [38] is

proposed to further improve the communication efficiency of

distributed training. The key idea of communication schedul-

ing is to change the transmission order of different DNN

layers, in order to better parallelize the communication and

computing tasks. The state-of-the-art ByteScheduler [38] pro-

vides a generic communication scheduling service for different

DL frameworks (such as MXNet [9], PyTorch [36] and Tensor-

flow [1]), which adopts tensor partitioning and priority-based

communication scheduling to realize pipelined communication

and computation of distributed training.

Based on experimental analysis, we observe that the con-

figuration of hyper-parameters (i.e., the partition size and

the credit size) is critical to ByteScheduler and inappropriate

hyper-parameters may significantly degrade the effectiveness

of partitioning and rearrangement. Currently, ByteScheduler

adopts Bayesian Optimization (BO) [5] to accelerate the

searching process by finding a near optimal configuration of

the hyper-parameters beforehand. BO assumes the optimal

values of the hyper-parameters stay constant throughout the

entire training procedure. In practice, however, various runtime

factors, such as worker node status and network conditions,

change over time, making the statically-determined one-shot

configuration result suboptimal for dynamic training environ-

ments.

To address this problem, in this paper we present a real-

time configuration method (called AutoByte) that automat-

ically and timely searches the optimal hyper-parameters as

the training systems dynamically change. AutoByte extends

the ByteScheduler framework with a meta-network, which

takes the system’s runtime statistics as the model input and

outputs predictions for speedups under specific configurations.

The runtime statistics include static parameters (such as the

numbers of workers and model types) and dynamic parameters

(such as layer-wise computation time and transmission rate

which characterize the dynamic computation and communi-

cation conditions). AutoByte integrates offline training with

online adaptation for its meta-network to better fit the practical

training scenarios. AutoByte executes reconfigurations for the

dynamically-generated optimal hyper-parameters based on an

optimization trigger mechanism, which can timely adjust the

hyper-parameters and always achieve high training perfor-

mance as runtime factors change.

Our evaluation on various DNN models shows that Au-

toByte can dynamically tune the hyper-parameters to effec-

tively improve the training performance. We show that the

configuration automatically generated by AutoByte performs

very close to the real optimal configuration found by Grid

Search [38], and that when multiple training jobs share the

network bandwidth (as in real cloud environments), AutoByte

can quickly find the optimal configuration under varying

network bandwidth and improve the training performance by

up to 19.2%. We further evaluate AutoByte’s effectiveness for

different bandwidth settings and communication architectures

(PS and All-reduce), and the results show that AutoByte

can outperform the state-of-the-art communication scheduling

BN-1 B1 B0GPU
Computation

Push
N-1

Communication
Time

Pull
N-1

Push 1

Pull 1

Push 0

Pull 0

F0 F1 FN-1

BP Iteration m-1 FP Iteration m

(a) Computation and communication in distributed deep learning
architecture

Time

B2 B1 B0

P2 P1 P0

Q2 Q1 Q0

F0 F1 F2

Baseline:FIFO

GPU

Push

Pull

 Tensor Partition

B2 B1 B0

P2

Q2

F0 F1 F2

P1 P1 P1 P0 P0 P0P0P0P0

Q1 Q1 Q1 Q0 Q0 Q0 Q0 Q0 Q0

P2

Q2

GPU

Push

Pull

Speedup : 1.28

(b) A contrived example showing performance gain with tensor
partitioning

 Tensor Partition with a large partition size

B1 B0 F0 F1 F2

P0 P0

Q1 Q0

GPU

Push

Pull

B2

P1 P0P2 P1

Q0Q0Q0Q1Q2

Time

Speedup : 1.19

(c) tensor partitioning with inappropriate partition size will cause
performance deficiency

Fig. 1. Tensor partitioning. An appropriate partition size brings significant
performance gains.

algorithms by up to 33.2 % at low resource usage cost.

The rest of this paper is organized as follows. In §II,

we introduce the necessary background of communication

scheduling in distributed training. We illustrate the down-

grading caused by inappropriate partition size and credit

size in ByteScheduler with both diagrams and experiments.

Meanwhile, we show that the original hyper-parameters tuning

technique Bayesian Optimization (BO) in ByteScheduler fails

to adapt with the dynamic factors changing, e.g., available

bandwidth and computation resource, which incurs suboptimal

decisions. In §III, we first explore the dynamic factors which

impact the choosing of optimal credit size and partition size.

Then we introduce the design of AutoByte, at its core, Auto-

Byte uses a meta network optimizer to automatically exploit

the relation of input metrics and training speed. To mitigate

the extra overhead, AutoByte leverages an offline training and

online adapting strategy. In §IV, we evaluate the speedup of

AutoByte compare to vanilla ML framework and ByteSheduler

on three different models. We also show the rapid adaptation

and low overhead of AutoByte.

II. BACKGROUND & MOTIVATION

In this section, we introduce the background of distributed

training. We describe the necessity of distributed training, the

basic workflow, the common distributed training architectures

and classical communication scheduling strategies.

A. Distributed Deep Learning

For a deep learning task, a DNN model can be trained

through an iterative way. The iterations are repeated over the

 Tensor Partition + Priority Scheduling

Time
B2 B1 B0

P2

Q2

F0 F1 F2

P1 P0 P0 P0 P0 P1P1P0P0

Q1 Q0 Q0 Q0 Q0 Q0 Q0 Q1 Q1

P2

Q2

GPU

Push

Pull

Credit Size =1

B2 B1 B0

P2 P1 P0

Q2 Q1 Q0

F0 F1 F2

Baseline:FIFO

GPU

Push

Pull

Speedup : 1.37

(a) Credit-based priority scheduling allow higher-priority tensors
to jump ahead of the queue

 Tensor Partition + Priority Scheduling

B2 B1 B0 F0 F1 F2

P2P2

GPU

Push

Pull

Credit Size =2P1P1 P0P0 P0P0 P0P0 P1

Q2Q2 Q1Q1 Q0Q0 Q0Q0 Q0Q0 Q1

Time

Speedup : 1.52

(b) An appropriate credit size can fully utilize the network
bandwidth and deliver positive gains

 Tensor Partition + Priority Scheduling

B2 B1 B0 F0 F1 F2

P2P2

GPU

Push

Pull
Credit Size =5

P1P1 P1 P0P0 P0 P0 P0 P0

Q2Q2 Q1Q1 Q1 Q0Q0 Q0 Q0 Q0 Q0

Time

Speedup : 1.12

(c) Inappropriate credit size brings negative effect

Fig. 2. Credit-based priority scheduling. An appropriate credit size also brings
considerable performance gains.

large training dataset until the loss function is minimized and

the model converges to an acceptable prediction accuracy [10].

Forward and backward propagation. When dealing with

the large training dataset, the dataset is firstly partitioned into

many mini-batches [16]. Then in each iteration, one mini-batch

travels through the model layer-by-layer and generates a loss.

This is the process of forward propagation (FP). After that,

the gradients are pushed through the last layer to the first layer.

This is the process of backward propagation (BP). Lastly, the

calculated gradients are used to update the model parameters

by using Stochastic Gradient Descent (SGD) [10]. Then the

model can start to deal with the next mini-batch similarly.

Figure 1(a) shows the whole process.

Data parallelism. Due to the high degree of computational

complexity in processing large amount of data and tuning

billions of parameters, training such a DNN model is tremen-

dously time consuming [16]. These days distributed training is

all the rage. Especially, data parallel distribution is a popular

method for accelerating the training. The strategy of data

parallelism is partitioning the dataset into multiple devices.

Each device has the same model parameters but with different

partitions of the dataset. In each iteration, the calculated

gradients are aggregated to update the model parameters, and

then broadcasted to all devices.

B. Communication Architecture

In the parameter update step, devices need to share their

gradients, which involves network communication issues. Two

kinds of communication architectures are widely used. They

are Parameters Server [32] and all-reduce [37].

Parameter Server (PS). The PS architecture leverage pa-

rameter servers to collect and aggregate the gradients. Each

worker computes the gradients locally and sends them to the

servers through push step. Each server sums the gradients

from different workers and update the parameters. Each worker

then fetches the parameters from the servers through pull step.

This architecture fully utilizes the computation power and is

able to guarantee the synchronization of DNN training. A PS

architecture also enables fault tolerance [32] .

All-reduce. Unlike PS, All-reduce does not require additional

servers for the update of parameters. Instead, every worker

collects the gradients from others’ and update their parameters

locally. One of the most popular all reduce methods is Ring

All-reduce [37]. A logical ring is formed among all workers.

Every worker receives gradients from its left neighbor worker

and sends the collected gradients to its right neighbor worker.

Then they adds the gradients to its own copy until all gradients

are aggregated. Then they broadcast the gradients along the

ring. Ring all-reduce architecture can alleviate the bottleneck.

It is also bandwidth optimal.

C. Communication Scheduling

The layer-wise structure of deep learning training makes it

convenient to parallel the communication tasks and computing

tasks. The communication scheduling strategies mainly targets

at minimizing the network communication time [18], [25],

[27], [28], [31], [35], [38], [45]–[47], [49]. Poseidon [49]

supports overlapping communication process with backward

propagation, reducing bursty network communication. P3 [25]

attempts to overlap communication with forward propagation

by layer partitioning and scheduling on MXNet PS architec-

ture. TicTac [18] proposes a similar idea that reduces the itera-

tion time by calculating the order of transmission. It guarantees

near-optimal overlap of communication and computation. It is

only implemented on TensorFlow PS. ByteScheduler [38] pro-

vides a generic communication scheduler for distributed DNN

training. It supports TensorFlow, PyTorch, and MXNet on both

Parameter Server and all-reduce architectures. PipeDream [35]

also exploits the scheduling on the model parallelism. it

proposes to aggressively pipeline mini-batch processing to

maximize the utilization of computing resources. However,

its coarse-grained partitioning potentially misses optimization

opportunities and may fail to scale extremely large layers.

TensorExpress [28] schedules tensor packets in-network using

P4 to mitigate network contention and reduce training time.

To sum up, there are two main techniques for communi-

cation scheduling, namely, tensor partition and priority-based

scheduling [25], [38], which have remarkable effects and thus

been widely used.

Tensor partitioning. During the forward propagation, the

computation of back layers must wait for the completion of

front layers [49]. However, during the communication, tensors

of back layers are transmitted first since they finish earlier in

the backward propagation [25]. To tackle this mismatching,

recent work propose tensor partitioning [38]. At its core,

a tensor will be divided into smaller chunks if its size is

larger than a threshold, i.e, partition size. With the help of

tensor partitioning, we are able to switch the transmission

from back layers to front layers. The forward propagation

can start immediately after receiving the front layers’ tensors.

Therefore, the overlap of the communication and computation

time is increased and the training time is reduced.

Priority-based scheduling. As we mentioned above, for-

ward propagation processes the front layers first, therefore,

a straightforward idea is to prioritize the transmission of

front layers. With the help of priority-based scheduling, we

can set the priority to be the index of the tensor’s layer.

Thus these front-layer tensors can be transmitted first and the

forward propagation can start earlier, which greatly mitigate

the communication overhead. Priority-based scheduling is also

proved to be the theoretical optimal [38].

D. Hyper-Parameters for ByteScheduler

There are two tunable parameters which are essential to the

training performance: the partition size and the credit size [38].

Partition size. Figure 1 shows the effect of partition size. Sp is

the threshold of splitting the communication tensor. As shown

in Figure 1(b), when the tensors are splitted into appropriate

small pieces, the communication and computation are well

overlapped, which results in a shorter training time, 1.28×
speedup. A larger partition size in Figure 1(c) brings about

performance deficiency(from 1.28× to 1.19×). Intuitively, the

ideal status is that the partition size is infinitesimal. Then

the backward propagation and the former communication

operation can start at the same time. This can lead to a shortest

training time.

However, there is a gap between theoretical upper bound

and the real world performance. The cost of tensor partition is

not small enough to be ignored. This partition overhead will

bring about additional time consumption, making infinitesimal

partition size hard to satisfy in practice. There is usually

an inherent partition size which can achieve optimal training

speed [38].

Credit size. Credit size Sc is the size of a sliding window. It

allows the tensor in the credit window size to be transmitted in

parallel. The credit size is usually the multiple of the partition

size. Intuitively, a larger credit size allows multiple tensors

sending together. It allows the tensors filling the sending

buffer in the network stack and fully utilize the network

bandwidth [38].

As shown in Figure 2. When the credit size equals to 1X

in Figure 2(a), the priority scheduling policy is stop-and-wait

since it allows one tensor in the sending buffer. Such a credit

size is far from optimal in a 10Gbps network because of low

bandwidth utilization. When the credit size equals to 2X as

shown in Figure 2(b), the training time is reduced since a larger

credit size leads to better bandwidth utilization. It increases the

training speed from 1.37× to 1.52×. However, a larger credit

size will undermine the priority-scheduling. In Figure 2(c),

when the credit size equals to 5X, the P0 tensors can not

ResNet

Best case
Worst case

VGG AlexNet DenseNet

<4,4>

<1,4>

<8,2><1,1>
<2,3>

<8,2>
<4,1>

<8,3>

S
pe

ed
 (

im
g/

se
c)

0

50

100

150

(a) Model influence

20Gbps

Best case
Worst case

8Gbps 5Gbps 3Gbps

<1,1>

<1,4>

<4,2>

<4,2>
<8,4><4,3>

<1,2>
<8,4>

S
pe

ed
 (

im
g/

se
c)

0

50

100

150

(b) Bandwidth influence

Fig. 3. Different models and available bandwidth have influence on optimal
pair of 〈Sp, Sc〉.

finish transmission before P1 tensors, thus F0 can not start

beforehand. A larger credit size performs worse than a smaller

credit size (the speedup drops to 1.12×). Actually, credit-size

is a critical parameter to balance the trade-off between the

network utilization and priority scheduling.

E. Motivating Examples

These two important parameters, partition size and credit

size, affect training performance. We use experiments to

showcase this. We train four typical models, ResNet [19],

VGG [40], AlexNet [29] and DenseNet [24] with MXNet [9]

PS [32] and PyTorch [36] Allreduce [37] (NCCL [26]). In the

motivation experiments, we vary partition size from 1M to 8M

and credit size from 1X to 4X. For the dynamic bandwidth

experiment, we vary the bandwidth from 3Gbps to 20Gbps.

The results are shown in Figure 3.

The results show two points. (1) Different ML jobs re-

sult in different optimal pair of 〈Sp, Sc〉. Different network

environments do the same. As shown in Figure 3(a), the

optimal 〈Sp, Sc〉 is 〈1, 4〉 for ResNet, 〈4, 1〉 for VGG, 〈1, 1〉
for AlexNet and 〈8, 2〉 for DenseNet. Different ML models

have respective proportion of communication to computation,

thus their inherent parallel ratios are different. This reflects to

different optimal configuration of 〈Sp, Sc〉.
Besides, in Figure 3(b) different bandwidth will have influ-

ence on the choice of optimal 〈Sp, Sc〉. The optimal 〈Sp, Sc〉 is

〈1, 4〉 for 20G bandwidth, 〈1, 2〉 for 8G bandwidth and 〈4, 2〉
for 5G and 3G bandwidth. This is because in the real-world,

scheduling and tensor partitioning have networking-related

overhead. And credit-based priority scheduling is designed to

fully utilize the network. Thus there exists an optimal pair of

〈Sp, Sc〉 in particular network setting.

TABLE I
CATEGORIZATION OF APPROACHES ON PARAMETER TUNING

Dynamic Static Cost
Methods Traffic GPUs Architecture Model Network Degree
Default Low

Grid Search � � � High
BO � � � Low

AutoByte � � � � � Medium

(2) Optimal pair of 〈Sp, Sc〉 can greatly improve the training

speed. As shown in Figure 3(a), the improvement of adjusting

configuration ranges from 5.4%−99.0% for different ML jobs

and 21.8%− 45.4% for different network setting.

Actually, current communication scheduling methods [25],

[38] have used different methods to tune these two knobs Sp

and Sc. Table I provides an overview and categorization of

these relevant methods. 1) Default method. P3 [25] uses a

default partition size of 160KB and credit size of 1X. This

method has no additional overhead. But this partition size is

far from optimal in 10Gbps network. This stable method may

lead to performance degradation in some particular network

condition and ml models. 2) The Grid Search method. It is a

simple way to search the best credit size and partition size.

It enumerates all possible combinations of 〈Sp, Sc〉. But the

cost of enumeration is too high. It is also ineffective where

background traffic exists. 3) Bayesian Optimization (BO).

ByteScheduler [38] adopts BO to tune 〈Sp, Sc〉 together.

BO can reach optimal configuration with much less cost and

give much more stable performance. However, BO only works

before the beginning of training. Once the train starts, the

〈Sp, Sc〉 stay constant. It can not deal with the dynamic

condition like bandwidth competition and computing power

change. 4) AutoByte. Our proposed method should not only

find the optimal pair for particular ML model and network,

but also keep the optimal performance when sudden change

happens.

The optimal pair are likely to vary with many factors as

listed in table I. The physical network bandwidth, gradient

synchronization method, DNN model types all have effects

on these parameters. Sudden change of network bandwidth

and computation power also have effects. Besides, the cost of

reconfiguration should be within an acceptable range.

Design goal. The design of AutoByte has three objectives.

• AutoByte should automatically choose the parameters to

achieve optimal training performance in different run-

time environments.

• AutoByte should adjust the parameters when dealing with

network or computation power change over the training

courses to keep optimal performance.

• AutoByte should have an acceptable search cost.

We will introduce how AutoByte achieves the three objectives

in §III.

III. DESIGN

Through conducting the motivation experiments, we have

demonstrated that how the DNN model and network band-

width affect the optimal setting of the credit-size and partition

TABLE II
IMPORTANT RUNTIME METRICS (INPUT FEATURES)

Symbol Shape Specification
Sc 1 Credit size
Sp 1 Partition size
n 1 Total number of workers
l 1 Total number of backward propagation layers
m m ∗ 1 Model type embedding vector
arc a ∗ 1 Architecture type embedding vector
Bd n ∗ 1 Network download speed for all workers
Bu n ∗ 1 Network upload speed for all workers
T l ∗ n Layer-wise computation time for all workers
V n ∗ 1 Training speed (image/s) for all workers

size. Therefore, we extend an existing priority communication

scheduling framework ByteScheduler to automatically config-

ure the hyper parameters. We call the plugin as AutoByte,

which can adjust two core parameters:1) partition-size and 2)

credit-size. We build a Meta Network Optimizer, which can

predict the training speedup under different hyper parameter’s

configuration according to the runtime metrics, i.e., the com-

putation power and background traffic bandwidth. Thus we

can choose the optimal hyper-parameter setting and increase

the training speedup.

However, dynamic tuning the two parameters is non-trivial

due to several reasons. Firstly, formally modeling and solv-

ing this problem is nearly impossible, since we can not

explicitly express the training performance as the function

of two parameters. Secondly, the distributed training system

is very complicated. This is reflected in many places. For

example, different DNN models vary in number of layers, each

layer’s computation time and the size of parameter.The tuning

experience in one DNN model can not be directly applied

to another. Next the computation power and communication

bandwidth settings are vary in different runtime environment.

Furthermore, it’s quite complex to analyze particular cases

such as computation straggling and communication straggling.

To solve this problem, the first thought that comes to mind

is to consistently search for the best values and use newly

profiled results. Grid search and Bayesian Optimization (BO)

[5] are both able to search for the optimal partition size

and credit size. But these method may incur significantly

search costs. The cost may even outweigh the improvement

of training performance.

Therefore, we propose to design a meta-network. This

network makes a prediction of training speed under different

pairs of parameter settings. Thus we can select the optimal

pair with the maximum training speedup at the cost of one

inference.

A. Meta Network Optimizer

Input runtime metrics. Our target is to learn the mapping

from the current environment and the partition size, credit

size to the model training speed. Besides this two key hyper-

parameters, the credit size Sc and the partition size Sp,

AutoByte need to collect runtime metrics and use them as

inputs to the meta network optimizer. We provide a detailed

specification of the input and output features in Table II, .i.e.,

the total number of workers n, the total number of backward

propagation layers l, the model type of current job m, the

architecture type of current work arc.

Since the network condition and computation power are

actually ever-changing during the training process, we should

choose appropriate metrics to represent the dynamic runtime

environment. We measure local computation time and commu-

nication time at the end of every mini-batch. Some background

traffic may preempt the bandwidth. Thus we need an index

to show the real-time bandwidth. So we choose the network

upload speed for all workers Bu and network download speed

Bd to show the real-time network transmission speed. Since

the bandwidth metrics may fluctuate, we apply a n-dimension

vector. On the other hand, the computation power also needs

to be monitored to prevent sudden machine breakdown. Here

we use a group of parameters to represent the real-time com-

putation power, namely the layer-wise backward computation

time of all workers T = [T1, T2,Tn]. With these runtime

metrics, the dynamic changes of allocated computation power

from GPU clusters and the network bandwidth can be detected.

We denote the V as the training speed, the objective of the

meta network is to learn the mapping

f : (T,B, Sc, Sp) → V, (1)

under the different settings of Sp and Sc. Then we can choose

the best pair of 〈Sp, Sc〉 to optimize the training speed.

Meta network architecture. The proposed meta network

architecture is shown as Figure 4(a). There are totally four

components. The first one is dynamic computation power

monitor. As analysis before, we use layer-wise computation

time to monitor the changing of computation power. It should

be noticed that as different training tasks usually result in

different number of layers. Therefore, we firstly embed layer-

wise computation time T into a fixed dimension feature space

to make the meta-network robust to various of models. Af-

terwards, we apply two-layer LSTM to extract the sequential

features in T . The second one is dynamic background traffic

(network) monitor. We use real-time measured bandwidth

series as Bd Bμ to display network change. The third one

is a static fixed-length parameter group, i.e. total number of

workers. The fourth one is the alternative of 〈Sp, Sc〉. We

concatenate the features extracted from the aforementioned

four components. After applying two dense layers on the

concatenated feature, the training speed V is expected to be

predicted.

As the objective of the meta-network is to predict precisely

the speed up vector V . we define the loss function of the

meta-network as a typical L2-loss function, i.e.,

L(V, V) = ‖V − V ‖L2. (2)

Here, the V denote the observed average training speed. We

set 10 iterations as a group. We calculate the average training

speed for this group to eliminate the error and jitters.

Throughput Time Series

Throughput B1

Dense Layer
(64 Units)

Dense Layer
(16 Units)

Alternatives of
(Partition-size,credit-size)

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

conv1_conv

conv1_bn

conv1_relu

conv1_pad pool1_pad

activation_50
t1 t2 t3

Tn-2 Tn-1 Tn

Layer-wise computation time

…
..

Feature Embedding
(64*N Units)

LSTM
(64)

LSTM
(16)

Throughput
Monitor

Predicted
Speed V

Throughput B2

Throughput Bn

Total number of workers N

Total number of propagation layers L

Static System Parameters

Model Type embedding M

Architecture type embedding Arc

(a) Meta Network Optimizer

Meta Network
Optimizer Initial

Dataset Offline
Online

Dataset Online

Similar (V,V’)?

No

Update the Dataset

Yes

Opt.Trigger Exe Dataset

Switch
Config.

V*-V >
Threshold?

Yes No

Meta Network Optimizer

Optimal
speed V*

Current
speed V’

(b) AutoByte Workflow

Fig. 4. The left figure illustrates the structure of Meta Network Optimizer. The right figure shows the workflow, and how Meta Network Optimizer Optimization
Trigger and Execution work together.

B. Training of Meta Network

Dataset collection. To train this meta network, the first step

is to collect the training data. We use the testbed to run

ByteScheduler to collect runtime data. We have implemented

the meta-network using Keras. To evaluate the meta-network,

we utilized ByteScheduler to train three typical models,

ResNet50, VGG16 and AlexNet. For the partition size exper-

iment, we vary the partition size from 4KB to 1024MB and

credit size from 1X to 16X. To simulate the dynamic system

conditions, we dynamically adjusted the network bandwidth

in a wide range. We vary the bandwidth from 0.5, 1, 5, 10,

25Gbps at 20 iterations interval to simulate the coexisting

with background traffic. we respectively collect each workers’

runtime statistics and record the average training speed after

10 iterations. A total of 360000 iterations of meta-data samples

have been collected. We can use the training data to develop

our meta model AutoByte.

Offline training online adapting. One critical issue is that

DNN is a data-driven approach which can not handle the out of

distribution problem. As the distributed deep-learning system

environment may vary in both hardware (GPU and network)

and software (model and DL architecture) settings, it is not

practical to acquire a perfect distributed training dataset.

One possible solution is to perform online training. we

can online train and update the meta-network on the target

distributed deep learning task. However, this also introduces

system overhead as we are required to try exhaustive parameter

settings recurrently to meet with various of system conditions.

This method violates our original intention, i.e.,maximizing

the training speed.

To overcome the issue, we proposed an offline training,

online adapting approach, whose key idea is use transfer

learning to quickly adapt the meta-network to the current

environment with low system overhead. This method has the

following three advantages. 1) It does not bring about much

additional system overhead. 2) Transfer learning helps the

meta network optimizer quickly adapt to the current condition.

3) This method provides higher accuracy of speed prediction

than offline trained version.

C. AutoByte workflow

The workflow of the AutoByte’s online framework is shown

in Figure 4(b). AutoByte contains three important components,

Meta Network Optimizer, Optimization Trigger and Execution.

The Meta Network Optimizer estimates the optimal configura-

tion for the running ML job using runtime metrics. Following

the decision of Optimization Trigger, the Execution applies

the necessary changes dynamically to partition size and credit

size without stopping the running job.

Meta network optimizer. When AutoByte is deployed, for

the Meta Network Optimizer, it collects runtime statistics and

turn those metrics to vector inputs. Then the meta network

will predict the speedup performance in different system

configurations based on runtime metrics. After finding the

configuration that is expected to be optimal, the Optimizer

will generate a better configuration. Through reconfiguration,

AutoByte changes the system configuration to the one with

better performance. But we need to make decisions such as

when to calculate a better configuration, whether to execute the

reconfiguration or not. To say that, we need an Optimization

Trigger.

Optimization trigger. In order to avoid the system from con-

tinuously reconfiguring back and forth around the estimated

optimum. Optimizer Trigger predicts the performance benefit

of a new configuration and skips that attempt if the gain is

less than a certain threshold. A threshold number from our

experience 5% is good enough to prevent the system from

oscillating, while allowing the system to undergo moderately-

sized optimizations.

The Optimization Trigger will also monitor the difference

between the predict V and the true speedup. When the

difference is larger than a certain threshold 10%. It will trigger

the online adapting scheme. The Meta Network Optimizer

opportunistically tries to adapt the model to the current en-

vironment. It will use transfer learning to update the offline

trained model and also update the dataset. Thus the optimizer

can adjust to find an optimal configuration including the new

online dataset.

Execution. The execution of the optimization is relatively

simple. The Meta Network Optimizer executes a plan by

simply invoking the Execution API that reconfigures system

transparently without stop training. Once the decision of a

reconfiguration is made, the execution will switch the con-

figuration of 〈Sp, Sc〉. Each time when the configuration is

changed, we checkpoint and restart the training. The Sp and

Sc can be modified by substituting the execution code.

IV. EVALUATION

A. Methodology

Testbed setup: Our testbed has 8 nodes, each with 20 CPU

cores, 64GB memory, 1 Tesla V100, and a Mellanox CX-5

single-port NICs. We use a leaf-spine topology with 2 racks

and 4 nodes in each rack. We use Mellanox SN2100 switch

with the Onyx 3.7.1134 operating system. The link bandwidth

is 100Gbps and the oversubscription ratio is 1. Our operation

system is Ubuntu 18.04 with Linux kernel version 4.15.0-135-

generic. The Mellanox driver version is 4.6-1.0.1.1.

Benchmarks: We choose 3 typical models, ResNet50 [19],

VGG16 [40] and Alexnet [40]. We run our AutoByte in

MXNet [9] with the PS [32] and PyTorch [36] with NCCL [26]

(Ring all-reduce [37]). For the PS, workers and servers are on

the same machines, and their numbers are equal. We measure

the performance under different NIC bandwidth. We chose

TCP as our transport protocol. Since TCP cannot saturate the

link bandwidth, we only test on 0.5, 1, 5, 10, 25 Gbps. We

leave the RDMA test as the future work.

Compared Schemes: We compare AutoByte with the follow-

ing two different communication scheduling methods.

• Baseline: We use the vanilla PS for MXNet and NCCL

for PyTorch. For illustration, the backward propagation

and forward propagation are executed sequentially with-

out tensor partitioning and priority-scheduling.

• ByteScheduler: ByteScheduler [38] is a generic commu-

nication scheduler, which combines priority scheduling

and tensor partitioning. We use the open-source code of

ByteSchedulerfor evaluation. We use two methods to set

the partition size and credit size, namely, grid search and

Bayes optimization [5].

To clearly show how AutoByte’s Meta Network Optimizer

works, especially how it optimizes the parameter configuration

when network resource changes and how much overhead it

incurrs. We first compare the Meta Network Optimizer with

other methods, i.e., the Grid Search and Bayesian Optimization

(BO). We use the code of BO method in ByteScheduler. We

compare these three optimizers on the speed and the cost of

reconfiguration. We measure how much iterations they need to

find the optimal pair of 〈Sp, Sc〉, and how much extra overhead

they bring.

We use training speed (samples/sec) as the main metric. We

measure the average training speed over the first 50 iterations

after a warm-up of 10 iterations.

Ps=2, Cs=3

Ps=8, Cs=3

Ps=2, Cs=2

Ps=1, Cs=4 Ps=1, Cs=4

Ps=2, Cs=2

ΔSwitch = 10 iterations

<2M,2X> AutoByte
<2M,2X> Static
<8M,3X> AutoByte
<8M,3X> Static
<1M,4X> Optimal

S
pe

ed
up

 (
im

g/
se

c)

0

50

100

150

200

of Iterations
0 5 10 15 20 25 30

Fig. 5. Training ResNet50 with 2 different configurations. The black line
indicates the optimum, the red line and the blue line show two different
configurations. The dotted lines show the performance without optimization.
The vertical lines represent the reconfiguration.

B. Overview of the experiments

We conduct the evaluation of AutoByte and illustrate the

result in the following four sections: (1) In § IV-C, we

validate that AutoByte can timely search for the optimal hyper-

parameters during the training. We firstly introduce the method

we use to find the optimal configuration. Then we show that

AutoByte can quickly find a nearly optimal hyper parameters.

(2) In § IV-D, we evaluate AutoByte when available bandwidth

and computing resources are changing, which are common in

a cloud environment. We emulate the resources changing by

artificially adding a new training job. The experiment shows

that AutoByte outperformances ByteScheduler with BO by

18.2% ∼ 39.3%. (3) In § IV-E, we show the speedup of

AutoByte in different environments. We compare AutoByte

with the baseline, ByteScheduler (with BO), on three models

under different network bandwidth, different architectures (PS

and Ring all-reduce). The result shows that with the help of

Meta Network Optimizer, AutoByte can improve the training

speed with up to 94.4% and 33.2%, compared with baseline

and ByteScheduler. (4) In § IV-F, we investigate the overhead

introduced by AutoByte. We also compare the reconfiguration

speed of AutoByte with other searching methods, namely, BO

and grid search.

C. AutoByte finds the Optimal Hyper-parameters

In this section, we evaluate AutoByte to show that: 1) The

output of AutoByte can be very close to the optimal. 2) The

hyper-parameters chosen by AutoByte can fast converge to the

optimal. 3) AutoByte can bring considerable speedup to the

training.

Optimal prediction. We can obtain the optimal setting of

〈Sp, Sc〉 by grid search. We first apply grid search to all

possible configurations 〈Spi
, Sci〉, to find the ground truth. The

step for partition size (Spi) is 2M, and for credit size (Sci) is

1X in grid search. We denote the optimal pair as 〈Sp∗ , Sc∗〉.
Figure 5 shows that the Meta Network Optimizer could predict

the optimal configurations very close to the ground truth even

with different initial parameters.

Fast convergence. In our setting, AutoByte conducts new

prediction every 10 iterations. Figure 5 shows that the output

(8M,3X)
-> (4M,2X)

 (4M,2X)->(8M,3X)

(8M,3X)
->(4M,2X)

(4M,2X)->(8M,3X)

AutoByte
BO

(8
->

)->)

(8
->

oBooB

S
pe

ed
 (

im
g/

se
c)

50

100

150

200

of Iterations
0 20 40 60 80

Fig. 6. Training speed under dynamic bandwidth condition. Blue line shows
AutoByte’s ability to adapt to dynamic network compared to BO drawn in
black line, which assume the values stay constant throughout the training. The
areas filled in sky-blue denote the reconfigurations.

(8M,3X)
-> (4M,2X)

(4M,2X)
->(2M,1X)

AutoByte
ByteScheduler

(8M,
-> (4

dulerdd

(4M,
->(2->(2

S
pe

ed
 (

im
g/

se
c)

0

50

100

150

200

of Iterations
0 10 20 30 40 50 60

Fig. 7. Training speed under dynamic changing of available resources. Black
line and red line indicates the training of AutoByte and ByteScheduler with
BO, repectively. Vertical lines and areas filled in orange represent the event
of reconfiguration.

of AutoByte can converge to the optimal after three times

prediction, which is corresponding to 30 iterations, far less

than the total iteration number in one epoch (often more than

one hundred). Therefore, in practice, AutoByte can quickly

find the optimal configuration.

Training improvement. As shown in Figure 5, for the red line,

when change from 〈Sp : 2, Sc : 2〉 to 〈Sp : 1, Sc : 4〉, AutoByte

speedup the training by 12.6%. For the blue line, when change

from 〈Sp : 8, Sc : 3〉 to 〈Sp : 1, Sc : 4〉, the speedup is 81%.

D. Optimization under Dynamic Resources

The above experiments are under a static environment.

Actually, AutoByte can further speedup the training with a

dynamic environment. AutoByte can keep track of dynamic

network and computation resources in the cluster and timely

updates the parameter configuration.

In the first experiment, we train a ResNet50 model. We

simulate throughput variation through artificially changing the

NIC bandwidth. We switch the bandwidth between 3Gbps and

10Gbps every 20 iterations. At the beginning, the bandwidth

is 10Gbps. We compare the training speed of AutoByte with

ByteScheduler (BO). BO chooses the best credit size and par-

tition size for the initial environment. Once chosen, it assumes

the value stay constant throughout the training process. Fig-

ure 6 shows the average speed of training for every 5 iterations.

At the 20th iteration, AutoByte’s configuration moves toward

〈Sp : 4, Sc : 2〉. This configuration better fits the low bandwidth

setting, achieving higher speedup than ByteScheduler. At the

40th iteration, AutoByte’s configuration returns to the previous

choice 〈Sp : 8, Sc : 3〉. Thus the AutoByte can achieve 6.4%-

23% improvement in the training speedup.

In the second experiment, we simulate the changing of

available bandwidth and computation resources by adding

new training jobs. We add a new training job at 5th and

25th iterations. Since the job initialization takes 15 iteration’s

time, in the first 20th iterations, the measured job occupy

the whole bandwidth (20Gbps) and the whole GPU. In the

next 20 iterations, two jobs share the resources. In the last 20

iterations, three jobs share resources. As shown in Figure 7,

we measure the average training speed of every 5 iterations.

At the 20th iteration, AutoByte’s configuration moves toward

〈Sp : 4, Sc : 2〉. This configuration better fit the low bandwidth

setting. Thus achieve higher speedup than ByteScheduler with

BO. At the 40th iteration, AutoByte’s configuration turns to

the 〈Sp : 2, Sc : 1〉. and AutoByte achieve 8.8% ∼ 19.2%
higher performance.

E. Optimization under Various Environments
Figure 8 and 9 compare the training speed of baseline

and ByteScheduler with AutoByte on three models under

different network bandwidth ranging from 500Mbps to 25

Gbps (500Mbps, 1Gbps, 5Gbps, 10Gbps, 25Gbps) under two

different architectures (PS & All-reduce), which are imple-

mented by MXNet and PyTorch respectively.

From Figure 8 (a)-(c) We observe that AutoByte can out-

perform baseline / ByteScheduler with BO by 16.7% to 60.1%
/ 3.1% to 17.5% for ResNet50, 30.2% to 94.4 % / 15.5% to

33.2% for VGG16, 40.7% to 79.7% / 10.6% to 31.1% for

AlexNet. AutoByte’s meta network takes into consideration

of the model’s layer-wise information and dynamic change of

available resources. This is the reason AutoByte outperform

baseline and ByteScheduler (BO) . We could observe the same

trend for Ring all-reduce in PyTorch in Figure 9 (a)-(c), 15.1%
to 144.4% improvements for baseline, and 2.3% to 17.4 %
improvements for ByteScheduler. This shows that AutoByte

is not only adapt to different run-time environments, but also

generic to different frameworks.

F. Reconfiguration Overhead and Speed

To make AutoByte ready deployable, we need to ensure a

low overhead and fast execution speed. To measure the over-

head, we compare AutoByte with a constant hyper-parameter

setting. We find that their cpu utilization is almost the same

(difference is less than 1%). To measure the execution speed,

we compare AutoByte with grid search and BO, as shown in

Figure 10, AutoByte reduce the execution time by 28% ∼ 81%
compared to the grid search and the performance is close to

BO.
V. RELATED WORK

Communication optimization for distributed training. Gen-

erally speaking, there are a wide range of approaches we can

Baseline
ByteScheduler
AutoByte

Parameter Server

S
pe

ed
(im

ag
es

/s
ec

)

0

100

200

Bandwidth (Gbps)
0.5 1 5 10 25

(a) ResNet50, PS, MXNet

Baseline
ByteScheduler
AutoByte

Parameter Server

S
pe

ed
 (

im
ag

es
/s

ec
)

0

10

20

30

40

50

Bandwidth (Gbps)
0.5 1 5 10 25

(b) VGG16, PS, MXNet

Baseline
ByteScheduler
AutoByte

S
pe

ed
 (

im
ag

es
/s

ec
)

0
20
40
60
80

100
120
140
160

Bandwidth (Gbps)
0.5 1 5 10 25

(c) AlexNet, PS, MXNet

Fig. 8. The training speed of ResNet, VGG, AlexNet models under different bandwidth conditions in Parameter Server.

Baseline
ByteScheduler
AutoByte

S
pe

ed
(im

ag
es

/s
ec

)

0

50

100

150

200

Bandwidth (Gbps)
0.5 1 5 10 25

(a) ResNet50, Ring, PyTorch

Baseline
ByteScheduler
AutoByte

S
pe

ed
 (

im
ag

es
/s

ec
)

0

10

20

30

40

50

Bandwidth (Gbps)
0.5 1 5 10 25

(b) VGG16, Ring, PyTorch

Baseline
ByteScheduler
AutoByte

S
pe

ed
 (

im
ag

es
/s

ec
)

0

20

40

60

80

100

120

Bandwidth (Gbps)
0.5 1 5 10 25

(c) AlexNet, Ring, PyTorch

Fig. 9. The training speed of ResNet, VGG, AlexNet models under different bandwidth conditions in All Reduce.

Bayes Optimize
AutoByte
Grid Search

N
um

. o
f i

te
ra

tio
ns

0

10

20

30

40

Models
ResNet50 VGG16 AlexNet

Fig. 10. Search costs of different searching algorithms

explore to optimize the communication for distributed DNN

training. These include, but are not limited to: 1) using large

mini-batch [16] and periodic communication [42] to reduce the

communication rounds; 2) using gradient compression tech-

nique, e.g., gradient sparsification [34] and quantization [3],

to reduce the taffic volume in each iteration; 3) relaxing

the synchronization requirement [22], [23], [46]; 4) taking

the intra-machine GPU topology into consideration [27]; 5)

designing a parameter exchanging scheme considering the

network topology [44]; 6) overlapping communication with

computation [25], [38], [49]; 7) leveraging advanced commu-

nication library, e.g., ZMQ [21] and NCCL [26]; 8) exploiting

fast network protocols, e.g., RDMA [17], [48]; 9) performing

in-network aggregation to reduce the in-network traffic vol-

ume [6], [30], [39]; 10) minimizing network flow completion

time by using congestion control [7], flow scheduling [4],

[33] or coflow scheduling [12], [43], [50], [51]. We note that,

while some of these methods have already been integrated

into distributed DNN training systems, others remain to be

explored in the future.

Automatic parameter configuration. Parameter configura-

tion is necessary for many applications, such as big data

analytics [2], tuning machine learning hyper-parameters [41],

and databases [14]. Recently, many works focus on automatic

configure the parameters. For datacenter congestion control,

PCC [13] leverages the reinforcement learning to automati-

cally set the congestion windows. For the flow scheduling,

AuTO [8] dynamically chooses the suitable priority for each

flow. For hyper-parameters tuning of machine learning, Au-

toML [20] can automatically find the optimal setting.

VI. CONCLUSION

In this paper, we have presented a methodology to au-

tomatically tune parameter configuration of ByteScheduler

communication scheduling system. We designed AutoByte,

which is composed of Meta Network Optimizer, Optimization

Trigger and Elastic Execution, to dynamically select the two

critical parameters, the partition size and the credit size. The

Meta Network Optimizer estimates the optimal configuration

using runtime metrics. Following the decision of Optimization

Trigger, the Elastic Execution applies the necessary changes

dynamically to partition size and credit size without stopping

the running job. Thus, AutoByte can further increase the

scheduling efficiency and decrease the training time. Our

evaluation shows that AutoByte frees ML developers of choos-

ing the right parameter configuration by tuning the system

configuration automatically.AutoByte can optimize the system

configuration when resource availability changes, reducing

33.2% training time in dynamic network environment.

ACKNOWLEDGMENT

This work is supported in part by the Hong Kong RGC TRS

T41-603/20R, GRF-16215119, GRF-16213621 and National

Natural Science Foundation of China (NSFC) under Grant

Number 61872376. We thank the anonymous reviewers for

their constructive feedback and suggestions. Kai Chen is the

corresponding author of the paper.

REFERENCES

[1] Mart’n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, et al. Ten-
sorflow: A system for large-scale machine learning. In OSDI, 2016.

[2] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram
Venkataraman, Minlan Yu, and Ming Zhang. Cherrypick: Adaptively
unearthing the best cloud configurations for big data analytics. In NSDI,
2017.

[3] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan
Vojnovic. Qsgd: Communication-efficient sgd via gradient quantization
and encoding. In NeurIPS, 2017.

[4] Wei Bai, Li Chen, Kai Chen, Dongsu Han, Chen Tian, and Hao Wang.
Information-agnostic flow scheduling for commodity data centers. In
NSDI, 2015.

[5] Eric Brochu, Vlad M. Cora, and Nando de Freitas. A Tutorial on
Bayesian Optimization of Expensive Cost Functions, with Application
to Active User Modeling and Hierarchical Reinforcement Learning.
arXiv:1012.2599 [cs], December 2010.

[6] Li Chen, Ge Chen, Justinas Lingys, and Kai Chen. Programmable switch
as a parallel computing device. arXiv preprint arXiv:1803.01491, 2018.

[7] Li Chen, Shuihai Hu, Kai Chen, Haitao Wu, and Danny HK Tsang.
Towards minimal-delay deadline-driven data center tcp. In HotNets,
2013.

[8] Li Chen, Justinas Lingys, Kai Chen, and Feng Liu. Auto: Scaling deep
reinforcement learning for datacenter-scale automatic traffic optimiza-
tion. In SIGCOMM, 2018.

[9] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang,
Tianjun Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. MXNet:
A Flexible and Efficient Machine Learning Library for Heterogeneous
Distributed Systems. arXiv:1512.01274 [cs], December 2015.

[10] J Michael Cherry, Caroline Adler, Catherine Ball, Stephen A Chervitz,
Selina S Dwight, Erich T Hester, Yankai Jia, Gail Juvik, TaiYun Roe,
Mark Schroeder, et al. Sgd: Saccharomyces genome database. Nucleic
acids research, 26(1):73–79, 1998.

[11] Gobinda G Chowdhury. Natural language processing. Annual review of
information science and technology, 37(1):51–89, 2003.

[12] Mosharaf Chowdhury, Yuan Zhong, and Ion Stoica. Efficient coflow
scheduling with varys. In SIGCOMM, 2014.

[13] Mo Dong, Qingxi Li, Doron Zarchy, P Brighten Godfrey, and Michael
Schapira. {PCC}: Re-architecting congestion control for consistent high
performance. In NSDI, 2015.

[14] Songyun Duan, Vamsidhar Thummala, and Shivnath Babu. Tuning
database configuration parameters with ituned. In VLDB, 2009.

[15] Luciano Floridi and Massimo Chiriatti. Gpt-3: Its nature, scope, limits,
and consequences. Minds and Machines, 30(4):681–694, 2020.

[16] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz
Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming
He. Accurate, large minibatch sgd: Training imagenet in 1 hour. arXiv
preprint arXiv:1706.02677, 2017.

[17] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye, Jitu
Padhye, and Marina Lipshteyn. Rdma over commodity ethernet at scale.
In SIGCOMM, 2016.

[18] Sayed Hadi Hashemi, Sangeetha Abdu Jyothi, and Roy H Campbell.
Tictac: Accelerating distributed deep learning with communication
scheduling. arXiv preprint arXiv:1803.03288, 2018.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In CVPR, 2016, 2016.

[20] Xin He, Kaiyong Zhao, and Xiaowen Chu. Automl: A survey of the
state-of-the-art. Knowledge-Based Systems, 212:106622, 2021.

[21] Pieter Hintjens. ZeroMQ: messaging for many applications. O’Reilly
Media, Inc., 2013.

[22] Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu Kim,
Phillip B Gibbons, Garth A Gibson, Greg Ganger, and Eric P Xing.
More effective distributed ml via a stale synchronous parallel parameter
server. In NeurIPS, 2013.

[23] Kevin Hsieh, Aaron Harlap, Nandita Vijaykumar, Dimitris Konomis,
Gregory R Ganger, et al. Gaia: Geo-distributed machine learning
approaching {LAN} speeds. In NSDI, 2017.

[24] Forrest Iandola, Matt Moskewicz, Sergey Karayev, Ross Girshick, Trevor
Darrell, and Kurt Keutzer. Densenet: Implementing efficient convnet
descriptor pyramids. arXiv preprint arXiv:1404.1869, 2014.

[25] Anand Jayarajan, Jinliang Wei, Garth Gibson, Alexandra Fedorova,
and Gennady Pekhimenko. Priority-based Parameter Propagation for
Distributed DNN Training. arXiv:1905.03960 [cs], May 2019.

[26] Sylvain Jeaugey. Nccl 2.0. In GPU Technology Conference, 2017.
[27] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui, and Chuanx-

iong Guo. A unified architecture for accelerating distributed {DNN}
training in heterogeneous gpu/cpu clusters. In OSDI, 2020.

[28] Minkoo Kang, Gyeongsik Yang, Yeonho Yoo, and Chuck Yoo. Ten-
sorexpress: In-network communication scheduling for distributed deep
learning. In CLOUD, 2020.

[29] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet
classification with deep convolutional neural networks. Communications
of the ACM, 60(6):84–90, May 2017.

[30] ChonLam Lao, Yanfang Le, Kshiteej Mahajan, Yixi Chen, Wenfei Wu,
Aditya Akella, and Michael Swift. Nsdi. 2021.

[31] Woo-Yeon Lee, Yunseong Lee, Joo Seong Jeong, et al. Automating
system configuration of distributed machine learning. In ICDCS, 2019.

[32] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr
Ahmed, Vanja Josifovski, James Long, Eugene J Shekita, et al. Scaling
distributed machine learning with the parameter server. In OSDI, 2014.

[33] Ziyang Li, Wei Bai, Kai Chen, Dongsu Han, Yiming Zhang, Dongsheng
Li, and Hongfang Yu. Rate-aware flow scheduling for commodity data
center networks. In INFOCOM, 2017.

[34] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J Dally.
Deep gradient compression: Reducing the communication bandwidth
for distributed training. arXiv preprint arXiv:1712.01887, 2017.

[35] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri,
Nikhil R Devanur, Gregory R Ganger, Phillip B Gibbons, and Matei
Zaharia. Pipedream: generalized pipeline parallelism for dnn training.
In SOSP, 2019.

[36] Adam Paszke, Sam Gross, et al. Pytorch: An imperative style, high-
performance deep learning library. In NeurIPS, 2019.

[37] Pitch Patarasuk and Xin Yuan. Bandwidth optimal all-reduce algorithms
for clusters of workstations. Journal of Parallel and Distributed
Computing, 69(2):117–124, 2009.

[38] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao, Bairen Yi, Chang
Lan, Chuan Wu, and Chuanxiong Guo. A generic communication
scheduler for distributed dnn training acceleration. In SOSP, 2019.

[39] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis,
Changhoon Kim, Arvind Krishnamurthy, Masoud Moshref, Dan Ports,
and Peter Richtarik. Scaling distributed machine learning with in-
network aggregation. In NSDI, 2021.

[40] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional
Networks for Large-Scale Image Recognition. arXiv:1409.1556 [cs],
April 2015.

[41] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian
optimization of machine learning algorithms. In NeurIPS, 2012.

[42] Sebastian U Stich. Local sgd converges fast and communicates little.
arXiv preprint arXiv:1805.09767, 2018.

[43] Hengky Susanto, Hao Jin, and Kai Chen. Stream: Decentralized
opportunistic inter-coflow scheduling for datacenter networks. In ICNP,
2016.

[44] Xinchen Wan, Hong Zhang, Hao Wang, Shuihai Hu, Junxue Zhang, and
Kai Chen. Rat-resilient allreduce tree for distributed machine learning.
In APNet, 2020.

[45] Hao Wang, Jingrong Chen, Xinchen Wan, Han Tian, Jiacheng Xia,
Gaoxiong Zeng, Weiyan Wang, Kai Chen, Wei Bai, and Junchen
Jiang. Domain-specific communication optimization for distributed dnn
training. arXiv preprint arXiv:2008.08445, 2020.

[46] Weiyan Wang, Cengguang Zhang, Liu Yang, Jiacheng Xia, Kai Chen,
and Kun Tan. Divide-and-shuffle synchronization for distributed ma-
chine learning. arXiv preprint arXiv:2007.03298, 2020.

[47] Jiacheng Xia, Gaoxiong Zeng, Junxue Zhang, Weiyan Wang, Wei Bai,
Junchen Jiang, and Kai Chen. Rethinking transport layer design for
distributed machine learning. In APNet, 2019.

[48] Bairen Yi, Jiacheng Xia, Li Chen, and Kai Chen. Towards zero copy
dataflows using rdma. In SIGCOMM Posters and Demos, 2017.

[49] Hao Zhang, Zeyu Zheng, Shizhen Xu, Wei Dai, Qirong Ho, Xiaodan
Liang, et al. Poseidon: An efficient communication architecture for
distributed deep learning on {GPU} clusters. In ATC, 2017.

[50] Hong Zhang, Li Chen, Bairen Yi, Kai Chen, Mosharaf Chowdhury, and
Yanhui Geng. Coda: Toward automatically identifying and scheduling
coflows in the dark. In SIGCOMM, 2016.

[51] Yangming Zhao, Kai Chen, Wei Bai, Minlan Yu, Chen Tian, Yanhui
Geng, Yiming Zhang, Dan Li, and Sheng Wang. Rapier: Integrating
routing and scheduling for coflow-aware data center networks. In
INFOCOM, 2015.

