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Abstract—Attacks against industrial control systems (ICSs)
often exploit the insufficiency of authentication mechanisms.
Verifying whether the received messages are intact and issued
by legitimate sources can prevent malicious data/command in-
jection by illegitimate or compromised devices. However, the key
challenge is to introduce message authentication for various ICS
communication models, including multicast or broadcast, with a
messaging rate that can be as high as thousands of messages per
second, within very stringent latency constraints. For example,
certain commands for protection in smart grids must be delivered
within 2 milliseconds, ruling out public-key cryptography. This
paper proposes two lightweight message authentication schemes,
named CMA and its multicast variant CMMA, that perform
precomputation and caching to authenticate future messages.
With minimal precomputation and communication overhead,
C(M)MA eliminates all cryptographic operations for the source
after the message is given, and all expensive cryptographic
operations for the destinations after the message is received.
C(M)MA considers the urgency profile (or likelihood) of a set
of future messages for even faster verification of the most time-
critical (or likely) messages. We demonstrate the feasibility of
C(M)MA in an ICS setting based on a substation automation
system in smart grids.

Index Terms—industrial control system, IEC 61850, message
authentication, multicast

I. INTRODUCTION

In industrial control systems (ICSs), enabling the devices
to verify that the packets originated from their claimed source
and have not been modified while in transit is critical for
reliable and trustworthy operation. On the other hand, many
ICSs require low-latency, and often high-volume messaging,
which pose a significant challenge when integrating security
mechanisms into the network. According to the IEEE Power
and Energy Society guidelines, periodic status updates and
automated control for protection in a field substation of a smart
grid, e.g., circuit breaker control upon over-current, requires
response time to be 1-2 ms, including all the network-related
and processing delays, and involves up to 4,000 messages per

This research is supported by the National Research Foundation, Prime
Minister’s Office, Singapore under its Campus for Research Excellence and
Technological Enterprise (CREATE) programme.

second [1], [2]. Due to this tight requirement, IEC 61850 —
an increasingly adopted standard for substation automation [3],
[4] — utilizes link-layer multicast for sharing emergency event
information with as many as hundreds of devices.

In point-to-point communication settings, the straightfor-
ward method of appending a message authentication code
(MAC) to each packet using a shared secret key allows the
destination to perform this verification. While computationally
inexpensive, such symmetric cryptography approaches with a
group key are not secure for broadcast and multicast com-
munication settings, because any destination in possession of
the shared secret key can impersonate the source and inject
forged packets. To prevent this attack, pairwise symmetric
keys are necessary. With pairwise symmetric keys, however,
the source would need to generate a separate MAC for each
destination, increasing the computational load linearly with the
number of destinations. Other downsides are the complicated
key distribution and storage overhead. Hence, one should look
for asymmetry between the source and destinations.

Digital signatures are widely used for multicast/broadcast
communication, as signing a packet with a private key enables
its verification by any entity that possesses the corresponding
public key. Indeed, digital signatures are secure for multicast
message authentication, and they offer additional properties
such as non-repudiation. IEC 62351-6 standard recommends
using RSA signatures for IEC 61850 GOOSE message au-
thentication [5]. However, one common drawback of the
digital signatures is expensive computations, such as modular
exponentiation (RSA [6]), elliptic curve scalar multiplication
(ECDSA [7]), and cryptographic pairing, which introduce high
overhead for signing and verification, especially on resource-
constrained devices (e.g., legacy ICS devices). There are other
methods for generating asymmetry between the source and
destinations while retaining the computational efficiency of
symmetric cryptography. Hash-chains [8] and the notion of
delayed key disclosure [9]–[14] have been used to authenticate
routing updates in routing protocols. These methods generate
time asymmetry between the source and destinations, hence
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achieving public verifiability without having to resort to expen-
sive asymmetric cryptography. However, one major drawback
of delayed key disclosure is that the destinations cannot verify
a message until the corresponding key is disclosed. Clearly, a
disclosure delay in the order of a few messaging cycles is not
acceptable for time-critical ICSs.

Besides the constraints, ICS messages have certain domain-
related features, such as structured and predictable message
content. ICS messages are semantically fragmented into prede-
fined fields, each with a relatively small set of possible values.
Some message fields contain predetermined values such as
IDs, sequence numbers, and expiry period known to the source
long before the message is sent. Other fields may contain
measurements that constantly fluctuate around specific values
or several binary flags indicating urgent commands/alerts.
The measurement values can be largely predictable due to
their almost constant base value, while the urgent binary
values only yield a limited number of possible outcomes. The
limited entropy of ICS messages can be exploited to accelerate
message authentication as elaborated in Section II-B.

In this paper, we first evaluate several baseline caching
approaches that precompute and store cryptographic evidence
— a piece of information to verify the source and integrity
of the message — for potential future messages. These
relatively primitive designs incur significant precomputation
and communication overhead in order to minimize the com-
putations after the message is given (post-message). Then,
we introduce Caching-based Message Authentication (CMA)
and the multicast variant Caching-based Multicast Message
Authentication (CMMA). Given a set of potential future
messages, both schemes precompute and cache cryptographic
evidence for a set of possible messages, hence building a cache
for message authentication. The proposed schemes employ
authenticated data structures to mitigate the overhead suffered
by the baseline designs. In particular, we use Huffman Hash
Tree (HHT) to ensure faster verification of urgent or likely
messages over relatively time-tolerant or less-likely messages.
C(M)MA relies on symmetric keys hence does not suffer from
the drawbacks of asymmetric cryptography. CMA is based on
MACs, and is suitable when the communication is unicast
or the number of destinations is small. CMMA employs an
adaptation of delayed key disclosure. Thus its overhead does
not depend on the number of destinations, making it suitable
for multicast/broadcast communication, however it requires
loose time synchronization. Despite the delayed disclosure of
keys, CMMA does not suffer from the disclosure delay of such
schemes, as discussed in Section IV-B. To our knowledge,
we are the first to demonstrate the feasibility and practical-
ity of multicast message authentication using a precomputa-
tion cache for low-latency, high-rate ICS communication on
resource-constrained devices.

II. APPROACH

A. Design Goals and Threat Model

In ICSs in general, ensuring message integrity and authen-
ticity is critical for defending against threats. For instance,

verifying that the commands/messages have been initiated
only by trusted devices and have not been altered by an
unauthorized party can thwart malicious command injection
and false data injection attacks. In the power grid system,
as is the case with many other ICSs, timely communication
among the devices is imperative. In the modernized power
grid systems, IEC 61850 GOOSE (Generic Object Oriented
Substation Event), a link-layer multicast, publisher-subscriber
communication protocol, is used among a predefined group
of devices, e.g., intelligent electronic devices (IEDs) and
programmable logic controllers (PLCs), for regular status
updates and urgent control communication. The status updates
are announced both regularly and in an on-demand manner
whenever the status or measurement of the power grid device
is updated, and messages for propagating events such as
over current and automated protection control (e.g., opening
circuit breakers) require very short latency (1-2 ms) [1], [15].
Besides the end-to-end latency, throughput requirement also
poses a challenge. For instance, IEC 61850 SV (Sampled
Value) protocol has almost the identical message structure and
communication model, but it is sent with a constant and much
higher rate (e.g., 4,000 messages/sec) [3], [4].

We consider typical remote attackers for false data injection
attacks [16], where attackers have a footprint in the system
(e.g., via compromised VPN [17] and malware [18]). Such
remote attackers could inject arbitrary packets and observe
network traffic. However, they are unable to manipulate the
configuration of devices (e.g., installation of malicious soft-
ware/firmware) since the configuration of ICS devices is typi-
cally done through local, serial connections. Against this threat
model, we aim to design a message authentication mechanism
that incurs minimal overhead even for multicast traffic and
is also verifier-efficient. Such a defense mechanism is to be
deployed on ICS devices or Bump-in-the-wire (BITW) devices
in front of them. Note that BITW devices are not addressable
and thus not accessible to remote attackers in our scope.

B. Entropy of ICS Messages

At the high level, our approach to reducing the latency
in authenticating ICS messages involves precomputation and
caching of the cryptographic evidence for potential future
messages. Such a strategy could be feasible when the timing
and content of ICS messages are, to some extent, predictable.
While we target ICSs in general, in this section, we discuss
the entropy of ICS messages by using IEC 61850 GOOSE as
a concrete example.

As shown in Fig. 1, a GOOSE Protocol Data Unit (PDU)
consists of a GOOSE control block reference (gocbRef), a two-
byte long timeAllowedtoLive field specifying the lifetime of
the message, an identifier of the dataset included (datSet), a
GOOSE ID (goID), an 8-byte long timestamp (t), a status
number (stNum), a sequence number (sqNum) which is in-
cremented by one or rolled over to zero upon each packet
transmission, a test bit test, configuration revision (confRev)
and needs commissioning (ndsCom) flags, and the number of
user-defined data entries (numDatSetEntries) [19], [20]. The



Fig. 1: The contents of the GOOSE Protocol Data Unit.

last portion of the GOOSE packet is the allData field, which
stores device/alarm status and measurements.

The prediction of GOOSE PDU fields is trivial except for
the timestamp t and user-defined allData field. For example,
either the status or sequence number is incremented by one
in each packet, gocbRef and datSet fields are known from
the IED’s configuration file (called IEC 61850 SCL file), and
confRev, ndsCom, test, timeAllowedtoLive values are static for
a given system and source-destination(s) setting. t is (not the
timestamp of the message itself, but) the timestamp of the
last status change, and thus remains the same until the next
change. An approximate timestamp value would be sufficient
for messages to be accepted at their destination given that
timeAllowedtoLive is typically greater than 100 ms, much
larger than the targeted latency of 1-2 ms. The data conveyed
in allData field consists of several binary values or a few
multi-byte values to convey current, voltage, frequency read-
ings depending on the type of dataset in the GOOSE message.
Based on our observation from the SCL files of Electric
Power and Intelligent Control (EPIC) testbed in the Singapore
University of Technology and Design, there are three types
of messages: Control, Protection, and Measurement. Control
data includes two boolean values indicating circuit breaker
status and a quality value (generally “0000”) associated with
each. Similarly, the Protection data contains a boolean field
indicating a fault occurrence, the same quality value. The
prediction of these binary values is viable given the limited
space for possible outcomes.

Measurement data involves 10-12 measurements, each con-
sisting of several bytes representing voltage, current, or fre-
quency. Such measurements fluctuate within a certain range
(e.g., around 49.9-50.1 Hz) and do not change markedly over
time. Using a prediction method (e.g., [21], [22]) can narrow
down the space further. Thus, the set of possible measurements
can be reduced to a much smaller set of Measurement packets
to be prioritized. While predicting a large number of mea-
surements is often non-trivial, Measurement packets are not
as time-critical as Protection and Control packets. Thus, our
scheme can still be opportunistically applied to Measurement

packets with lower priority, as shown in Section IV.

III. BASELINE CACHING-BASED APPROACHES

To meet the stringent latency constraints (illustrated as
‘Delay threshold’ in Fig. 2), a straightforward solution is to use
lightweight cryptographic MAC without any need for message
prediction. Such methods based on symmetric cryptography
enable very fast message authentication in unicast settings,
however, in the case of multicast or broadcast, the source
needs to calculate cryptographic evidence separately for each
recipient (using pairwise shared secret keys), which increases
the computation time at the publisher linearly with the number
of recipients. Such no precomputation setting is illustrated in
Fig. 2(a), and its performance is given in Table I.
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Fig. 2: Processing loads and packet delays under different
designs. The scaling does not represent true values.

Based on the IEC 61850 GOOSE specification, messages
are sent at arbitrary times whenever a change occurs or at
regular intervals in the case of no change. The source can
cache the cryptographic evidence within each timeAllowedto-
Live period. If the source caches cryptographic evidence in
anticipation of a state change, but no state change occurs
within that timeAllowedtoLive period, the cache is not used
and discarded. This results in a higher rate of cache build-up
than the actual message arrival rate. Thus, the rate required
to build cache for a message (R2 = 1/timeAllowedtoLive)
would be greater than the actual message arrival rate (R1).
Predict-one design: This design significantly reduces the
average processing delay by caching the cryptographic evi-
dence for only a single prospective message (preferably, the
message with the highest probability to be sent), before the
actual message is given. The second row of Table I shows
the required number of secure hash operations post-message.
Fig. 2(b) illustrates the processor loads and packet delays for a
case where the first two predictions hold true; hence the delays
are minimal. However, the third prediction is wrong, and the
evidence for the “surprise” message needs to be generated
on-the-fly, and this will still incur a delay as large as the



TABLE I: Complexity analysis. N: number of subscribers, k: number of unpredictable binary fields, ku: number of unpredictable
binary fields in an urgent message (ku < k), R1: message arrival rate, R2: 1/timeAllowedtoLive, D: depth of the true message.

Design # of secure hashing
in post-message

# of secure hashing at the
publisher

# of secure hashing
at the subscriber

communication over-
head

No precomput. 2N 2N × R1 2R1 N × R1

Predict-one ∼0 2N × R2 2R1 N × R1

Precompute-all 0 2N × 2k × R2 2R1 N × R1

State change ∼2N 2N × (R1+2ku×R2) 2R1 N × R1

CMA w/ MHT 0 (2N+2k+1 −1) × R2 (k+3) × R1 N × (k + 2) × R1

CMA w/ HHT 0 (2N+2k+1 −1) × R2 (D+3) × R1 N × (D + 2) × R1

CMMA w/ MHT 0 (3+2k+1) × R2 (k+5) × R1 (k+3) × R1

CMMA w/ HHT 0 (3+2k+1) × R2 (D+5) × R1 (D+3) × R1

no precomputation setting. Predict-one design would only be
suitable for systems that require low average communication
delay, but can tolerate higher delay occasionally for surprise
messages.
Precompute-all design: If the source could cache the cryp-
tographic evidence for all the possible prospective messages,
it would avoid cryptographic operations in the post-message
phase. As shown in Fig. 2(c), this design is feasible if pre-
computing a MAC for each possible message and destination
is within the computing capability of the source hardware.
This design ensures a delay upper bound at the cost of
increased computation load. However, the computation load
grows exponentially with the number of unpredictable binary
fields in a message.
Prepare for state change: As discussed in Section II-A,
the periodic reporting messages of GOOSE can typically
tolerate some delay, while the timely delivery of urgent
control messages (triggered by an unexpected event such as
a circuit breaker failure) is critical. In this design, the source
always caches the cryptographic evidence only for such urgent
messages. Although the load for precomputing for the urgent
messages still grows exponentially with the number of binary
fields in an urgent message (∼N × 2ku × R2), this is still lower
than the precompute-all design, since such urgent messages
report a smaller number of unpredictable binary fields, i.e.,
ku < k. The first two messages in Fig. 2(d) are periodic
messages containing no state change. Therefore, the source has
to generate the cryptographic evidence for the actual message
after its arrival, incurring a delay equivalent to that of the
no precomputation setting. When an urgent message arrives
as in the third one, the delay is much smaller because the
cryptographic evidence has already been cached.

Although the baseline approaches can be useful in certain
settings, they rely on heavy precomputation to reduce message
authentication delay. The precomputation and communication
loads increase dramatically with the number of unpredictable
binary fields and the number of destinations. Next, we discuss
the use of authenticated trees and their integration with delayed
key disclosure, which results in smaller loads and delays as
illustrated in Figure 2(e)-(f).

IV. CACHING-BASED (MULTICAST) MESSAGE
AUTHENTICATION

Using authenticated data structures, C(M)MA reduces the
precomputation load and communication overhead. Instead

of computing cryptographic evidence separately for each
message, the source constructs a binary tree on the set of
prioritized messages, and uses the tree’s root as an aggregate
prioritization outcome. This root is shared with the destina-
tion(s) in the pre-message phase. Thus, instead of sharing each
possible or prioritized future message and their corresponding
evidence separately, the source caches the binary tree, then
shares its root (and a proof to authenticate it), which serves as
a public meta-data to authenticate the true message, provided
that the true message is among the set of prioritized messages.
We present the use of MACs, as well as an adaptation of
TESLA protocol [10] to authenticate the root.

Analogous to the construction of minimum redundancy
codes [23], Huffman Hash Tree (HHT) is constructed on the
possible messages, in a way that the expected depth of the leaf
corresponding to the true message is minimized. To achieve
this, the depth of the leaf corresponding to a certain message
is set to the equivalent of the coding length of that message
in Huffman Coding. As illustrated in Figure 3, this setup
situates the prioritized messages (e.g., mi,1) closer to the root.
Since Merkle Hash Tree (MHT) is a special case of HHT
where the frequencies or delay tolerance profiles of different
messages are equal, we provide our example over an HHT.
In an HHT implementation, the most likely messages, such
as the expected measurements, or alternatively the most delay
stringent messages (e.g., certain alerts) can be placed closer
to the root.

A. CMA for Unicast ICS Communication

In the following, we describe the protocol using MACs to
authenticate the root.
Initialize(λ)−→{K} : In this procedure, given the security
parameter λ, the source establishes pairwise symmetric keys
K = {sk1, . . . , skN} with each destination. This procedure is
performed only during initialization, and repeated for every L
messages.
Prioritize(preferences, system data)−→{Mi, Pi}: The input
to the Prioritize procedure includes operator’s preference
(e.g., in terms of message type or target devices to pri-
oritize) and historical system data. The output consists of
the set of possible messages Mi = {mi,1, . . . ,mi,2k}, and
(if available) the normalized weight of each message Pi =
{pi,1, . . . , pi,2k} (based on probabilities or tolerable delays),
such that

∑2k

j=1 pi,j=1, for time interval i ∈ {1, . . . L}. The
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Fig. 3: C(M)MA model. mi,1 is the most delay stringent (or
likely) message, followed by mi,2.

output {Mi, Pi} is collectively referred to as the prioritization
outcome. Whenever timeAllowedtoLive is about to expire, or
a new input is available, the procedure is repeated.
Tree construction(Mi, Pi, K, tsi)−→{treei, rooti, Si}: The
inputs to this procedure are Mi, Pi obtained from the output
of the Prioritize procedure, the symmetric keys K shared
with each destination, and the timestamp tsi for freshness.
The outputs are the tree treei, its root value rooti, and the
set of HMACs Si = {si,1, si,2, . . . , si,N} calculated from
rooti, using the corresponding shared key of each destination
n ∈ {1, . . . , N}. The constructed tree binds the prioritized
messages to a root value rooti. To prevent an adversary
from predicting the messages and hence calculating the same
root value, each message is concatenated with a nonce in
{ri,1, . . . , ri,2k} before calculating the leaf values. Then, the
root is obtained by pairwise hashing of sibling nodes starting
from the deepest nodes. Finally, the root is timestamped and
shared with the destination(s) along with its HMAC, calculated
separately for each destination using the pairwise symmetric
keys established in the Initialize procedure. In other words,
si,n = HMAC(skn, tsi, rooti) is shared with destination n,
∀n ∈ {1, . . . ,N}, where skn is the key shared between the
source and destination n, and tsi is the timestamp for the
corresponding interval. The tree is only known to the source
at this point, thus serves as the private meta-data.
Prove(mi,t, treei)−→{proofi}: The inputs are the true mes-
sage mi,t, and the treei constructed in the previous procedure,
and the output proofi is a collection of values from the tree
between mi,t and the root. After the true message (say mi,t) is
known to the source, it sends mi,t and the other corresponding
values of the HHT as proofi to allow the destination(s) to
calculate the root value. For example, if mi,t = mi,2 in Fig. 3,
the proof contains {ri,2, Hi,1, Hi,3, H(Hi,4∥Hi,.)}. No hash
operations are performed in this procedure.

Next, we introduce the steps at the destination device(s).
Pre-Verify(skn, si,n, rooti)−→{accept, reject}: For destina-
tion n, the inputs are the shared key skn, the root rooti and its

HMAC si,n sent by the source following its Tree Construction
procedure. When the destination n receives the root value rooti
and its claimed HMAC si,n, it verifies rooti using the shared
key skn established in the Initialize procedure. If accepted,
rooti is stored for a timeAllowedtoLive period. Note that this
pre-verification is done before the actual message is given to
the destination device.
Verify(m′

i,t, proofi, rooti)−→{accept, reject}: The inputs are
the message m′

i,t to be verified, its proof proofi, sent by the
source following its Prove procedure and the stored root value
rooti corresponding to the ith interval. Once the message m′

i,t

and its proof (corresponding values of the HHT) are received,
the destination calculates the root by traversing the tree to
retrieve hashes of siblings of nodes on a path between the leaf
holding m′

i,t and a root of the hash tree. Finally, the destination
compares the calculated root with the previously stored roots
which had been received within the last timeAllowedtoLive
duration. If a match is found, m′

i,t is authenticated.

B. CMMA for Broadcast/Multicast ICS Communication

Using binary trees to combine the prioritization outcome
into a single root value reduces the communication overhead
and the computation overhead of the source. However, the
factor of N still appears in the corresponding complexity
expressions in Table I, because the cryptographic evidence
to prove the root integrity is generated separately for each
destination. In a multicast setting, to avoid computing MACs
separately for each destination, we need to introduce a
source of asymmetry between the source and destinations.
The asymmetry ensures that the destinations can only verify
the prioritization outcomes, but not generate valid evidence
for them. We use an adaptation of TESLA protocol [10] to
introduce time asymmetry while relying on the reasonable
assumption that the destinations are loosely time synchronized
with the source in a smart grid.

The plain TESLA protocol: We first discuss how the plain
TESLA protocol operates. The source generates a hash chain
by iteratively applying a one-way function H — constructed
using a pseudorandom function family — starting from a
random number CL. That is, Ci−1 = H(Ci), ∀i ∈ 1, . . . , L
hence producing the sequence, C0, C1, . . . , CL in the reverse
order of generation. Since H is one-way, no user other than the
source knows Ci given Ci−1. However, any user possessing
C0 can readily verify if a given value belongs to the hash
chain (and hence generated by the source) by checking if
Hi(value) = C0 for some i.

After generating the hash chain, the source distributes C0

to every destination securely, e.g., using digital signatures,
or using the commitment of the previous hash chain (CL)
if any. To authenticate each message, the source computes
and attaches the MAC using the key chain in the reverse of
generation: C1, C2, . . . , CL. I.e., for the j’th message, Cj is



used.1 Also along with the j’th message, the source reveals
the key Ci, which was used to compute the MAC of the
earlier i’th message, so that the destination(s) can verify the
authenticity of message i by checking Hi(Ci) = C0, or
simply H(Ci) = Ci−1 if the destination possesses Ci−1.
d = j − i number of messaging intervals is the disclosure
delay of TESLA, and ensures source-destination(s) asymmetry
without having to resort to expensive public key cryptography.

In TESLA, one MAC per message is sufficient to
provide broadcast/multicast authentication, provided that the
destinations have loose time synchronization with the source.
However, the major drawback of TESLA (or delayed key
disclosure schemes in general) is, the delay in verification of
each message, introduced by the disclosure delay. Clearly,
disclosure delay in the order of a few messaging intervals
(i.e., larger than the sum of maximum network delay and
synchronization error) is not tolerable in the time-critical
setting we are targeting.

CMMA: CMMA relies on authenticating the prioritization
outcomes with TESLA, rather than the true message itself,
as shown in Fig. 4. Therefore, it does not suffer from the dis-
closure delay of TESLA, despite using it to introduce source-
destination asymmetry. Next, we describe the procedures.

… ...

CLC2C1

C’LC’2C’1

… ... … ...

…C0

Interval: 1 2 L

HMAC(C’1, root1)

C1, m1,t, proof1

HMAC(C’2, root2) HMAC(C’L, rootL)

Time

root1 root2 rootL

…
Disclosed 

values 
(d = 1)

TESLA key chain:

CL-1, mL-1,t, proofL-1

…
Fig. 4: The disclosure schedule of CMMA.

Initialize(C ′
L)−→{C0, . . . , CL, proof for C0}: This procedure

outputs a key chain of L+1 values, and the proof for the first
value by using the commitment of the previous hash chain,
C ′

L. The source selects a random number CL, and commits
it to generate a hash-chain of length L + 1, by repeatedly
applying a one-way function H , such that Ci−1 = H(Ci),
∀i ∈ 1, . . . , L. We call {Ci}’s as the TESLA keys and they
are used in the reverse order of generation, i.e., from C1 to
CL, to authenticate the root values for the messages in the

1In TESLA protocol another one way function H′ — derived in the same
way as H — is applied on Ci’s to derive the actual keys used in MAC
computation. This is because using the same key both to derive the hash
chain and to compute MACs may lead to cryptographic weaknesses.

next L time intervals. Finally, the source generates a proof
for the first TESLA key C0 and the key disclosure schedule
using the commitment of the previous hash chain (C ′

L) if any,
otherwise digitally signs C0 and the key disclosure schedule
before sending them to the destination(s).

As stated above, in TESLA another hash function H ′ is
applied on Ci’s to derive the actual keys used in MAC
computation. Thus, we follow the same rule and use another
set of keys derived from the TESLA keys, C ′

i = H ′(Ci),
∀i ∈ 0, . . . , L, to compute the MAC for messages in the next
L time intervals.
Prioritize(preferences, system data)−→{Mi, Pi}: This proce-
dure is the same as the Prioritize procedure of CMA above.
Tree Construction(Mi, Pi, Ci, tsi)−→{treei, rooti, si}: The
inputs to this procedure are Mi, Pi obtained from the output of
the Prioritize procedure, the TESLA key Ci for time interval
i, and the timestamp tsi. The outputs are the tree treei, its root
value rooti, and the MAC si for rooti, computed using Ci.
In this procedure, the source constructs an HHT on the set of
prioritized messages. Since an adversary can also predict such
messages, each leaf node should be nonced with a random
value in {ri,1, . . . , ri,2k}. The source then computes a MAC
for the tree’s root, rooti, using the hash of the corresponding
TESLA key Ci, such that si = HMAC(H ′(Ci), tsi, rooti).
si is shared with the destination(s) and serves as the public
meta-data. The tree is only known to the source, thus serves as
the private meta-data. Note that only a single public meta-data
value si is computed for all destinations.
Prove(mi,t, treei)−→{proof}: The inputs are the true message
mi,t ∈ Mi, and the treei constructed in the previous proce-
dure, and the output proofi is a collection of values from the
tree. After the true message mi,t is known to the source (say d
time intervals later), it sends mi,t and the corresponding values
of treei that will allow the destination(s) to calculate rooti. The
source also discloses the TESLA key Ci together with the
message to allow the destination(s) to verify rooti. Note that
the TESLA key Ci used to verify the rooti is disclosed in time
interval d + i to create time asymmetry between the source
and destination(s), but this disclosure delay is not reflected
in the authentication of mi,t, as long as the prioritization
outcome precedes the true message by more than the minimum
disclosure delay allowable by the system.2

Pre-Verify: This step is null in CMMA.
Verify(Ci, Ci−1, si,mi,t, proofi)−→{accept, reject}: The in-
puts are TESLA keys Ci, Ci−1, the MAC si of rooti, the true
message mi,t and the proof proofi for the true message. In
this procedure, first, the destination verifies the TESLA key
Ci using a previously disclosed key, e.g., H(Ci) = Ci−1. If
Ci−1 was not received due to packet loss etc., the destination
can still verify Ci by repeatedly applying H on Ci to obtain
the last received TESLA key, i.e., Hj(Ci) = Ci−j . If verified,
Ci is used to verify the true message, and also stored to verify
the future values of the hash chain to be received. Then, using

2The disclosure delay depends on the level of time synchronization, and the
network delay between the source and destination(s). Typically, the disclosure
delay should be the sum of the network delay and synchronization error [11].



the proofi, the destination traverses the tree to retrieve hashes
of siblings of nodes on a path starting from the leaf holding
mi,t, hence calculates the root value. Finally it verifies if
si = HMAC(H ′(Ci), tsi, rooti). If verified, the true message
is authenticated.

C. Performance and Security Analysis

We discuss the complexity of CMA and CMMA over
Table I. In both schemes the source does not perform any
computations other than memory reads and packet assembly in
the post-message phase. It simply collects the corresponding
values from the tree and piggybacks them to the message.
For the pre-message phase, given k possible binary fields and
hence 2k possible messages in a prioritization outcome, the
binary tree can be constructed with 2k+1 − 1 hash operations
(i.e., 2k to generate the leaves, plus 2k − 1 to construct the
rest of tree). Given prioritization outcomes at a rate of R2, the
required computing rate at the source to generate the binary
tree would be (2k+1 − 1)R2 number of secure hash operations
per unit time. The tree generation complexity is common for
both CMA and CMMA. Added to this is the generation of
MACs, which requires 2NR2 secure hashing operations (two
per destination, per tree) for CMA and 4R2 secure hashing
operations (two for the MAC of root, one for deriving the
TESLA key and one for the key of MAC from the TESLA key)
for CMMA per unit time. So the total computing load at the
source would be (2N + 2k+1 − 1)R2 for CMA and (3+2k+1)
× R2 for CMMA.

In CMA the destination verifies the root before (Pre-Verify),
and the proof after (Verify) the message is received. The
root verification in the Pre-Verify procedure uses MACs, and
demands a computing rate of 2R1 secure hashing both for
MHT and HHT variants. For a MHT, proof verification in the
Verify procedure costs (k + 1)R1 secure hashing operations.
The verification complexity of the HHT proof depends on
where the received message is located on the tree. The required
computing load is 2R1 for the message at depth 1, and
(D + 1)R1 in general, where D is the depth of the actual
message in the HHT, and D ≤ 2k−1. So, the total computing
load at the destination is between 4R1 and (2 + 2k)R1 for
HHT and (k+3)R1 for MHT variants. In CMMA in addition
to the computations above, the corresponding TESLA key is
verified using the previously disclosed TESLA key, and the
key of the MAC is generated from it, each costing a secure
hashing. Therefore the computing load is 2R1 more than the
CMA variant.

The proof size is (k+1) hash values for MHT, and (D+1)
for HHT, which yields 2 for the most likely (or delay stringent)
message in CMA. Adding the MAC to the proof contributes
one more hash value to the communication overhead. In CMA
the proof is communicated separately to N destinations, hence
bringing the total communication overhead to N(k + 2) and
N(D + 2) for MHT and HHT variants. In CMMA the same
proof and MAC, as well as the corresponding TESLA key, are
shared with all destinations, totaling N(k+3) and N(D+3)
hash values for its MHT and HHT variants.

In C(M)MA a nonce is released when the message cor-
responding to that nonce is sent. Therefore, a nonce should
be refreshed once that happens. If a probabilistic polynomial
time adversary can find any set of values that give the same
root value without knowing the nonces, we can either break
the preimage resistance or the collision resistance of the hash
function employed. For 128-bit security, one should use 256-
bit nonces and a secure hash function, such as SHA-256.

D. Security Proof Sketch

In line with the threat model in Section II-A, we consider an
adversary that forges a signature for any message of his choice,
where the message does not necessarily have any particular
format or meaning, but has never been signed by the legitimate
source. Hence, we consider the existential forgery game under
adaptive chosen-message attack.

There are two steps to consider in the proof of security; one
for the secure transmission of the root (binding the aggregate
prioritization outcome) and one for the authentication of the
true messages. The first is as secure as the employed MAC
(for CMA) or TESLA (for CMMA). For the second, we show
that our scheme is secure if the hash function employed for the
authenticated data structure is collision and preimage resistant.

If a probabilistic polynomial time (PPT) adversary A wins
security game of our scheme with non-negligible probability,
we use it to construct other PPT algorithms B or B′ who break
with non-negligible probability, the collision resistance or the
preimage resistance of the hash function, respectively. B acts
as the adversary in the security game with the hash function
challenger HC. In parallel, B plays the role of the challenger
in our game with A. Consider the following existential forgery
game under adaptive chosen-message attack:
Setup: HC picks a secure hash function (hash) from a hash
function family — we use SHA-256 in our implementation —
and passes the parameters to B. B generates a set of nonce
values of size equivalent to the maximum possible size of the
prioritized message set.
Query: A generates a set of values (messages and relative
probabilities) and passes it to B to be used as the prioritization
outcome. B builds a tree3 on the prioritization outcome. In
particular, B calculates the hash values using hash for every
node of the tree and passes the root hash value (rooti for
the ith query) to A. B’s load is constant in this step, given
that each prioritization outcome is of constant size c and
creating the tree is linear in c (specifically, 2c). A then picks
a message mi among the set of generated messages for the
ith query, and passes it to B. B performs the Prove procedure
using mi as the true message, hence collects the nonce value
from the corresponding leaf and the neighboring values on the
path from the leaf to the root (collectively called proofi for
query i), then passes them to A. A can repeat this query for
polynomially many (p) times. After query i, B refreshes the
consumed nonce, which is revealed to generate proofi.

3Each tree is of size equivalent to the maximum number of prioritized
messages, which is bounded by a constant.



Challenge: A prepares and sends another message m′ where
m′ ̸= mi, ∀i ∈ {1, . . . , p} and a set of values (proof′) that are
required to calculate the hash value of the root rooti, in any
query i ∈ {1, . . . , p} that A picks.

If B verifies the proof′ and m′ with rooti for any i ∈
{1, . . . , p}, using the Verify procedure, then A wins. For this,
A needs to find a nonce value that has not been revealed to it
or needs to come up with a new set of values, which, when
chained together with the given hash function hash, yield any
rooti. For the former, the probability that A finds a nonce that
has not been revealed to it is negligible, since otherwise, we
can define a B′ that breaks the preimage resistance of hash. For
the latter, B uses the new set of values to break the security of
the given hash function (by finding a collision in hash) using
the collision on the chain from the leaf node corresponding to
m′ to the root.

V. IMPLEMENTATION AND EVALUATION

We used BeagleBoard-X15 (BBX15 for short) with a sin-
gle active core for measuring the computation times in the
schemes discussed in this paper. The reason for choosing
BBX15 is its relatively low-cost, and its port selection that
accommodates a Bump-in-the-wire (BITW) deployment, a
desirable feature for legacy compliance. Detailed specifications
of BBX15 can be found in [24]. The HHT generated in the
Tree construction steps of C(M)MA is stored in the RAM. All
data points presented are the average of 500 runs. The security
parameters for each implemented scheme are chosen to meet
128-bit security, in particular, SHA-256 as the digest function,
256-bit nonces, and curve P-256 in ECDSA.

We have measured the average time taken for subtasks of
the baseline designs, CMA and CMMA, as well as the widely
used ECDSA. For ECDSA plots, we assumed the same au-
thenticated tree based approach to bind prioritization outcomes
into a single root value, but used ECDSA to authenticate the
root. In other words, the source signs the tree’s root with
ECDSA, instead of generating a MAC for the root in the Tree
construction procedure as in C(M)MA. Consequently, the Pre-
Verify step of “tree with ECDSA” involves the verification
of ECDSA signature. Since the post-message signing consists
only of memory reads and packet assembly (see the Prove
procedures of CMA and CMMA in Sections IV-A and IV-B),
it is performed virtually instantly, and hence not evaluated.

A. Precomputation Time

The precomputation time does not contribute to the delay
overhead as long as it is shorter than a messaging interval,
yet it determines the maximum messaging throughput. Fig. 5
compares CMA and CMMA with “tree with ECDSA” and
the baseline approach of precompute all, over the number
of destinations, assuming 32 prioritized messages. As can be
seen, the precomputation time increases with the number of
destinations for precompute-all, and CMA schemes. This is
because the source needs to precompute a separate proof for
each destination, using the corresponding pairwise symmetric
keys. Nevertheless, the amount of increase in CMA is much

smaller thanks to the use of authenticated trees rather than
generating a separate proof for each prioritization outcome.
The precomputation times in CMMA and ECDSA do not
depend on the number of destinations due to the time asymme-
try for the former, and key asymmetry for the latter. CMMA
outperforms ECDSA thanks to the use of symmetric keys.

Fig. 5: Precomputation time over the number of subscribers.

In Fig. 6, precomputation time is plotted over the number of
predicted/prioritized messages. All schemes suffer increased
precomputation time due to multiple MAC computations in
precompute-all and due to larger tree size in tree-based
schemes (i.e., CMA, CMMA, and tree with ECDSA). At 32
messages, the precomputation times for CMMA and CMA
are 210-250 µs. If the true message is always in the set of
prioritized messages, C(M)MA, therefore potentially supports
the throughput of 4000 messages per second in IEC 61850 SV.
CMMA’s precomputation time is the shortest, outperforming
tree’d ECDSA with approximately 23 µs margin regardless
of the number of subscribers or messages in Figures 5 and
6. Although the 23 µs difference is not very large, the main
drawback of ECDSA is its verification time, as discussed next.

Fig. 6: Precomputation time over the number of messages.

B. Verification Time

Since the Prove procedure is virtually instant in CMA
and CMMA the post-message verification time is the largest
contributor to the authentication delay.

In Fig. 7 we show the verification time of CMMA and CMA
with the HMAC as a benchmark, since MACs (in straw man
and precompute-all design) have the smallest verification time



(4 µs). HHT based CMMA and CMA constructions have lower
average verification times than those with MHT because the
average depth of the actual message is minimized in HHT
(assuming message likelihood based HHT). The best case
for HHT based construction would be when the most likely
message is the true message.

Fig. 7: Verification time over the number of messages. ECDSA
is 2500 µs, therefore off the scale. Distribution 3 is assumed.

In the plain TESLA protocol, the disclosure delay is added
to the verification time, therefore, it would incur significantly
larger verification delay than C(M)MA. As a rough compar-
ison, even under ideal circumstances, e.g., perfect source-
destination synchronization, zero network delay, the highest
rate of 4000 messages/second in IEC 61850 SV [25], and a
minimal disclosure delay of one interval, TESLA would incur
250 µs compared to several µs of C(M)MA.

In Fig. 8, we illustrate how the probability distribution of
future messages affects the verification time of C(M)MA with
HHT. We only show CMMA on this figure for brevity (CMA
would be 6-8 µs faster). Given that there are 2k possible
messages, the four probability distributions we consider are:

Fig. 8: Verification time under different probability distribu-
tions for prioritized messages.

Distribution 1: We draw samples of 2k i.i.d exponential ran-
dom variables and normalize their sum to 1
Distribution 2: Pr(mi) = 2−i, for i ≤ 2k−1, Pr(m2k ) = 2−2k+1

Distribution 3: Pr(m1) = 0.5, Pr(mi) = 0.5/(2k − 1) for i ≥ 2

Distribution 4: Pr(m1) = 0.9, Pr(mi) = 0.1/(2k − 1) for i ≥ 2

As can be seen from Fig. 8, CMMA with HHT performs
significantly better than CMMA with MHT, when certain
messages have a markedly higher probability than others
(distributions 2 and 4). In particular, distribution 4 yields the
best results, because message 1, with a much lower depth in
the HHT, is the message to be authenticated in 9 out of every
10 messaging intervals. This is also in line with IEC 61850
GOOSE/SV messaging, where the probability of sending a ‘no
state change’ message is much larger than any other.

VI. RELATED WORK

While digital signatures are widely used for multi-
cast/broadcast authentication, they are not suitable for
resource-constrained devices or delay stringent applications.
Numerous schemes have been proposed, e.g., [26]–[29], to
offload some computations of digital signatures to a phase
before the message is given. The first phases of El-Gamal [30],
DSS [31], and precomputation enabled ECDSA [7] do not
require the true message similar to our Tree Construction
procedure. Online/offline signatures, either based on one-time
signature schemes [32] or based on chameleon commitments
[26], [33], [34] can transform any digital signature scheme to
a one with such offloading feature. The idea is to perform
expensive cryptographic operations in the offline phase and
generate a meta-data, so that in the online phase the source
can sign a message only using inexpensive computations.
Although the online signing in online/offline converted sig-
nature schemes can be fast, these schemes still fall short in
meeting stringent latency requirements due to their offline
phase or require a large volume of metadata to be stored
by the source. Among these, Lis [34] is specifically designed
for cyberphysical systems. However, it is optimized for the
publisher, and thus, the verification cost is still high. Several
other schemes that amortize a signature over several packets,
e.g., [35]–[37], are also not satisfactory in avoiding large
computation and communication overhead, not robust against
packet losses, or lack immediate verification. The signature
scheme in [38] exploits the structure of ICS messages to
enable precomputation for a verifier-efficient scheme such as
RSA, but is limited only to certain commands in ICSs.

Another promising domain for lightweight message authen-
tication is one-time signatures (OTS), such as those by Lam-
port [39] and Rabin [40]. While these earlier OTS require large
keys and signatures, Winternitz OTS (WOTS) Scheme [41]
reduced the signature size by trading off setup and verification
time. In the same work, Merkle proposed the conversion of
WOTS into a many-time signature, by constructing a Merkle
Hash Tree (MHT) on multiple WOTS public keys to bind
them into a single root value, which serves as the public
key for multiple WOTS instances. Using MHT in OTS/WOTS
enables fast signing of multiple messages with a single public
key. More efficient variants of OTS such as BiBa [42] and
HORS [27] have also been proposed. Nevertheless, the public
key size in OTS and their BiBa/HORS variants is relatively
large, and each public/private key pair can be used only



once, rendering them impractical for bandwidth or storage
constrained networks/devices.

VII. CONCLUSIONS

We proposed CMA and its multicast variant CMMA as
caching-based message authentication schemes that exploit the
limited entropy of ICS messages to virtually eliminate the pro-
cessing delay after the message is given. C(M)MA is suitable
for ICS protocols such as IEC 61850 where the time-critical
messages consist mostly of predetermined or predictable data.
It relies on symmetric cryptography, therefore computationally
efficient, and does not suffer from the disclosure delay of
delayed key disclosure schemes, despite leveraging their time
asymmetry. We have shown that C(M)MA is a lightweight
alternative for digital signatures for low-entropy messages.
Alternatively, C(M)MA can be opportunistically used in con-
junction with digital signatures to lower the expected overhead
of message authentication in ICSs.
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