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Abstract—Intent-Based Networking mandates that high-level
human-understandable intents are automatically interpreted and
implemented by network management entities. As a key part
in this process, it is required that network orchestrators acti-
vate the correct automated decision model to meet the intent
objective. In anticipatory networking tasks, this requirement
maps to identifying and deploying a tailored prediction model
that can produce a forecast aligned with the specific –and
typically complex– network management goal expressed by the
original intent. Current forecasting models for network demands
or network management optimize generic, non-flexible, and
manually designed objectives, hence do not fulfil the needs
of anticipatory Intent-Based Networking. To close this gap,
we propose LossLeaP, a novel forecasting model that can
autonomously learn the relationship between the prediction and
the target management objective, steering the former to minimize
the latter. To this end, LossLeaP adopts an original deep
learning architecture that advances current efforts in automated
machine learning, towards a spontaneous design of loss func-
tions for regression tasks. Extensive experiments in controlled
environments and in practical application case studies prove that
LossLeaP outperforms a wide range of benchmarks, including
state-of-the-art solutions for network capacity forecasting.

I. INTRODUCTION

Mobile networks are becoming more complex from a variety
of facets, including the size and increasingly distributed nature
of the infrastructure, the heterogeneity of the technologies and
service requirements, or the emergence of new paradigms. As
a result, network management is a more challenging task than
ever, requiring rapid or anticipatory actions in response to the
dynamics of a tangled environment. This is fostering zero-
touch approaches that automate the management of network
resources, by progressively limiting human intervention [1].

Intent-Based Networking. The ultimate vision for network
management automation is Intent-Based Networking (IBN).
In IBN, human controllers only dictate intent policies that
define (e.g., in natural language) what the network should do
in terms of high-level objectives, without specifying how to
achieve them [2], [3]. As illustrated in Figure 1, intents go
through a translation stage, where they are rendered (e.g., via
natural language processing) into a form that is consumable
by the network management entities. Those entities are then
responsible for the activation stage, where suitable manage-
ment decisions are taken to meet the target requirements.
A final assurance stage includes monitoring of the system,
verification that specifications are met, and triggering of po-
tential adjustments. Ultimately, as intents are transparent to the
underlying hardware and portable across technologies, IBN
pushes humans out of the loop as much as possible, and
limit their role to that of providers of conceptual operation
guidelines –which the system is then expected to interpret and
achieve in a fully automated manner.
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Fig. 1: High-level workflow of Intent-Based Networking.

IBN is today in its infancy, with standardization efforts
that are still in progress [4]–[7]. While IBN platforms are
being advertised [8], commercial solutions touting support for
the paradigm are mainly network visibility tools that allow
operators to retrieve monitoring information by means of
intent-based declarations; they are quite far from the promises
of autonomous remediation or intent-based orchestration.

Forecasting for IBN. While the attention is usually drawn
to the IBN translation stage, and to its enticing prospects of
controlling the network via human-understandable commands,
we argue that, from a networking viewpoint, the core of the
paradigm and its main technical challenges lie in the activation
stage. Indeed, it is during activation that network orchestrators
and controllers have to automatically design and deploy the
correct decision model to achieve the management objective.
Automatized model design is an exacting task per se. In
IBN, the challenge is even harder, as objectives are machine-
translated from an intent policy, hence may easily take forms
that are inherently difficult to handle (e.g., combining a large
number of Key Performance Indicators), or do not satisfy
desirable properties (e.g., convexity or differentiability). These
aspects set IBN activation apart from traditional human-in-the-
loop policing, where the management problem is manually
formalized in a way that is tractable and an appropriate
decision-making model is then carefully designed to solve it.

In management contexts where decisions must be taken in
advance, implementing the IBN activation stage maps to auto-
matically tailoring and solving a suitable prediction problem
for the target management objective. As a toy example, let us
consider the following and deliberately simple intent policy:
“ensure high reliability to all Twitch traffic streaming from
the Fusion Arena in Philadelphia in the next hour”. The intent
would be machine-translated into a set of objectives warranting
that enough transport and compute resources are proactively
allocated to the Twitch network slice in the end-to-end path be-
tween the Remote Units (RUs) covering the Fusion Arena and
the mobile network gateway. For instance, one such objective
would target the virtualized Radio Access Network (vRAN)
Far-Edge Site (ES) serving the RUs above, and require that



CPU capacity is reserved in Distributed Units (DUs) of the ES
to run radio functions (e.g., demodulation, decoding, forward
error correction) for the entirety of the expected slice demand.
Here, IBN activation consists in producing a forecast of the
CPU resources needed to serve the Twitch demand in the next
hour, and isolate them in the ES for exclusive use by that slice.

Assuming that a blueprint is readily available for a predic-
tion model that solves the exact task above is not realistic:
this is just one of the infinite anticipatory network manage-
ment problems that may occur in practice, and building (and
maintaining) a comprehensive catalog of fine-tuned models
that tackle each and all of them is not possible in practical
contexts. Sticking with our toy example, the original intent
could change to, e.g., maximizing the revenue of the operator
from the Twitch slice, or allocating the minimum capacity that
keeps Twitch users satisfied; these variants completely reorient
the decision process, altering the notion of the correct amount
CPU resources, and requiring a different logic to predict it.

Instead, what is ideally needed to effectively address antici-
patory IBN activation problems is the ability to automatically
design a forecasting model on-demand, by aligning its oper-
ation and output to any specific management objective it is
presented with. This capacity ensures preparedness to cope
with the requisites of any intent, even if not known a-priori.

Contribution. The visionary ability set out above is obvi-
ously extremely difficult to realize in practice. As we thor-
oughly discuss in Section II, the vast literature on forecasting
models for networking only includes inflexible predictors that
target a single fixed (and typically simple) objective and fail to
meet the new requirement. As a step towards closing this gap,
we propose LossLeaP, an automated approach that learns to
predict in a way to flexibly optimize complex objectives. We
discuss in Section III how the original design of LossLeaP

allows discovering and modelling the relationship between the
objective and the network system parameters, and then using
it to train a dedicated predictor –hence effectively solving the
problem of forecasting for IBN outlined above.

Experiments with real-world traffic in both controlled set-
tings and practical application case studies are presented in
Sections IV and V, and demonstrate the advantages and ductil-
ity of our proposed approach. As expounded in the concluding
remarks in Section VI, LossLeaP lays the foundations to auto-
matic tailoring of forecasting for specific complex objectives,
and is a step forward towards practical IBN systems.

II. BACKGROUND AND RELATED WORK

Mobile traffic prediction. Predictors for mobile network
traffic have traditionally relied on statistical models, mainly
based on autoregression [9]–[13]. Approaches based on tools
from Markovian [14] or information [15] theory have also been
proposed. More recently, deep learning has gained momentum
in the design of data-driven network automation solutions [16].
Forecasting is no exception, and many recent works have em-
ployed a variety of Deep Neural Network (DNN) architectures
to anticipate future mobile network loads [17]–[21], showing
improved performance over previous methods.
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Fig. 2: Anticipatory IBN activation with traditional mobile
network traffic prediction. The predictor is trained to output
a pure traffic forecast that minimises the distance from the
future traffic demand, measured via a legacy loss function such
as MAE or MSE. A separate and subsequent decision block
must then encode the actual network management objective,
and post-process the prediction to produce the action.
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Fig. 3: Anticipatory IBN activation with capacity forecasting.
The network management objective is manually encoded into
a tailored loss function by human (networking and machine
learning) experts. Once trained with the dedicated loss func-
tion, the predictor directly outputs the anticipatory IBN action.

All these predictors aim at producing a forecast that deviates
as little as possible from the future traffic demand, by minimiz-
ing legacy error metrics such as Mean Absolute Error (MAE)
or Mean Squared Error (MSE). In DNN models, as exempli-
fied in Figure 2, this is achieved by using MAE or MSE as the
loss function, i.e., the expression that the neural network learns
to minimize during training. The output provided by these
predictors is completely agnostic to the (manually defined or
intent-based) network management objective. Therefore, the
prediction does not offer a solution to IBN activation, rather
is a mere input to the actual decision-making process.

For instance, in the toy example of Section I, a traffic
forecasting model approximates the future demand with some
level of accuracy, incurring in both positive and negative
errors. As negative errors cause underprovisioning and fail
to meet the intent of reliability, the forecast cannot be used
as is; instead, an overprovisioning policy must be devised
downstream of the prediction, so as to take a CPU resource
reservation decision that actually avoids underprovisioning.

Capacity forecasting. While the classical traffic predictors
above factually decouple the problems of forecasting and acti-
vation, recent works on deep learning for network management
have proved that jointly solving the two problems is a much
more effective approach. So-called capacity forecasting does
not predict future traffic demands, but directly anticipates the
amount of resources needed to serve them [22]. As illustrated
in Figure 3, a capacity forecast is achieved by training a
DNN model with a loss function that encodes a specific
resource management objective. In cases where meeting the
IBN objective only needs allocating resources, the forecasting



model addresses the activation stage as a whole, as it directly
outputs the decision needed to meet the management intent.

However, state-of-the-art models for capacity forecasting
employ loss functions that are designed manually, based on
expert knowledge [23]. This strategy has several limitations
that make it unsuitable for IBN: (A) it requires human in-
tervention, hence is not aligned with the vision of a full-
fledged IBN activation stage where the whole decision process
is automated; (B) it assumes that an effective loss function
can be devised by hand, which is not the case when the
relationship between the actionable network parameters and
the management objective is, e.g., not known a priori, or
especially tangled1; (C) it must abide by the requisite that loss
functions be differentiable, so that popular optimizers based
on gradient descent can be used for training [24] – whereas
machine-translated objectives may not be differentiable.

Current definitions of tailored loss functions for capacity
forecasting aim at avoiding all underprovisioning by assigning
a very high cost to predicting values below the demand, while
penalizing additional overprovisioning [22], [23]. In fact, this
suits perfectly the IBN activation toy example set out in
Section I: the capacity prediction avoids underprovisioning of
CPU resources, hence meets the intent objective. Yet, this is
achieved via human-defined loss functions, and the approach
suffers from problem (A) above. Problems (B) and (C) do not
apply to our toy example, as the objective is fairly simple;
however, they can easily emerge in more complicated settings.

Reinforcement learning. The general problem of auto-
mated decision-making during IBN activation naturally lends
itself to be solved via Reinforcement Learning (RL). In-
deed, RL does not require defining a loss function, and is
the standard approach to deal with abstract but measurable
objectives. However, RL is not well suited for the specific,
forecasting type of task we are tackling: it operates on a
limited set of well-defined discrete actions, which in our
context unnecessarily restricts decisions to quantized levels.
As a matter of fact, previous works where RL is employed
for prediction are set in the stock market ecosystem, where
the aim is anticipating price fluctuations to take simple buy or
sell decisions [25], [26]. Different from stock markets, network
management benefits from predictions on a continuous space,
which ensures that, e.g., the exact required amount of resources
are allocated in concert with fluctuations in the demand. In
fact, as later discussed in Section III, our proposal can be
interpreted as a way to reconcile RL with the continuous-value
forecasting task that is needed for IBN activation.

Loss-metric mismatch. Our work relates to the problem
of loss-metric mismatch in machine learning, which stems
from the observation that the loss function used to train a
DNN is not always aligned with the actual metric, i.e., the
machine-translated management objective in our case. In a
sense, the mobile traffic predictors mentioned before do not
answer the loss-metric mismatch, and they produce an output

1For instance, loss functions proposed for capacity forecasting present a pie-
cewise linear design, and cannot capture non-linear or multivariate objectives.

that is not directly compatible with the objective. Instead,
capacity forecasting models address the loss-metric mismatch
in the context of network resource allocation, by using a loss
function that is consistent with the actual cost of prediction
errors from the operator’s viewpoint.

Adaptative Loss Alignment (ALA) is a state-of-the-art ma-
chine learning approach to automatically solve the loss-metric
mismatch [27]. ALA employs a linear combination of loss
functions, whose weights are trained via RL so as to optimize
the target metric. The resulting blend of loss functions can
then be used to train a DNN model so that it responds
to the precise needs of the system. However, ALA requires
identifying a set of predefined loss functions that are relevant
to the problem at hand. This is not an issue in the original
work introducing ALA, which tackles generic classification,
for which well-known loss functions are available. Yet, in
network management settings, the approach hits the same
hurdles (A)–(C) listed earlier for capacity forecasting models.

Automated machine learning. Recent works in mobile
network management have started exploring Automated Ma-
chine Learning (AutoML) tools. AutoML aims at automatizing
complex (and typically manual) tasks in the configuration
of a deep learning model, such as input formatting and
selection, hyperparameter optimization, or analysis of result
so that they are understandable to non-experts in machine
learning [28]. In particular, AutoML approaches based on
Bayesian optimization using Gaussian Processes have been
used to optimize the configuration of the network so as to best
support particular types of services. While it indeed automates
the network management process, that specific solution does
not yet fulfil the requirements of forecasting for IBN: on the
one hand, it does not target anticipatory configuration based on
a prediction, rather optimizes the system parameters reactively;
on the other hand, it imposes strong conditions on the shape of
the target metric, like bounded norms and Lipschitz continuity,
not easily met in generic machine-translated objectives.

Yet, the AutoML vision is well aligned with the needs
of IBN activation. As explained next, our work indeed con-
tributes to advancing AutoML methods towards automatizing
the training of DNN-based forecasting models so that they fit
the requisites of complex network management objectives.

III. LOSS-LEARNING PREDICTOR

In order to close the gap between the requirements of
forecasting for IBN set out in Section I and the literature
on traffic and capacity prediction presented in Section II, we
propose LossLeaP, a Loss-Learning Predictor. The concept,
architectural implementation, and training process of our origi-
nal machine learning approach to forecasting are detailed next.

A. Concept

The basic idea underpinning the design of LossLeaP is
simple: instead of imposing a predefined expression of the loss
function used to train a DNN predictor, we let the forecasting
model free to learn the loss function that best suits the network
management objective at hand. In practice, this is realized
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Fig. 4: Anticipatory IBN activation with LossLeaP. The
network management objective is learnt and encoded into a
loss-learning block. This block then serves as the loss function
to train the predictor, so that it directly outputs the anticipatory
IBN action. The whole process is automated.

by combining a loss-learning block with the actual predictor,
as shown in Figure 4. This block is responsible for learning
the loss function, or, equivalently, capturing the relationship
between the forecast produced by the predictor and the target
management objective. Once ready, the loss-learning block can
operate as a tailored loss function: it receives the output of
the DNN predictor and determines its quality for the precise
management task. Therefore, it can be employed to train the
DNN predictor so as to steer the optimization of its parameters
towards minimizing the actual IBN objective.

Our choice for the implementation of the loss-learning block
is a second DNN, in cascade to the first one that performs the
prediction. The loss-learning DNN can be trained as a regular
neural network, by minimizing the MSE between its output
and the objective. It is worth noting that such a loss training
can use performance measurements collected in the target
system as a direct representation of the objective, without any
need to formalize it as a mathematical function. In this sense,
LossLeaP can be seen as an RL-like approach in spirit, as
it learns by observing the outcome of its decisions; however,
unlike RL methods, it solves a regression problem and outputs
a continuous-valued action. This design allows removing at
once all the limitations of previous forecasting approaches.
• The loss-learning DNN can learn the relationships be-

tween the prediction and the objective from measurement
data, without need for human intervention, solving (A).

• Without any need for prior knowledge of the system,
the loss-learning DNN can model tangled non-linear and
multivariate objectives that may result from the transla-
tion of IBN intents, which addresses problem (B).

• The only prerequisite on the objective is that its values
should be minimum to attain the best performance, which
is very supple: if not implicit, the requirement can be met
with naive transformations of the performance measure-
ment data during training; this removes problem (C).

For instance, when applied to the toy example in Section I,
LossLeaP would learn a loss function that is very similar to
that manually defined by experts for capacity forecasting [22],
[23], but it would do so in a fully automated way.

Overall, LossLeaP contributes to advancing AutoML meth-
ods towards automating the design of loss functions –a direc-
tion still largely unexplored in the machine learning domain.

Fig. 5: Architecture of LossLeaP.

B. Detailed implementation

While the conceptual design of LossLeaP is plain enough,
its effective implementation includes several gimmicks that
are summarized in the detailed architecture of the model,
portrayed in Figure 5. As already mentioned, the model is
composed of two DNNs in cascade, which are respectively
responsible for predicting the network management action, and
learning the correct loss function to train such a prediction.

Co-training of predictor and loss-learning block. A first
important observation is that, in the actual implementation of
LossLeaP, the two DNNs are placed in series, with the output
of the predictor fed directly to the loss-learning block. From
a practical viewpoint, this allows optimizing the two DNNs
jointly, by using a single backpropagation process; in other
words, during training, the model in Figure 5 can update the
loss function, and then use it to tune the predictor’s weights
within the same gradient descent iteration.

Formally, let wpt and w`t be the weights of the predictor
and loss-learning DNNs at training time t, respectively. These
weights are optimized as follows. During the forward pass,
N (normalized) past observations s̄t = {st−N , . . . , st} of the
system state2 are input to the predictor, which generates the
anticipatory network management decision dt to be enacted
during the following time step. The performance of the de-
cision taken at time t, denoted by Mt+1 = fM(dt, v̄t+1),
is measured3 at time t + 1; at the same time, the set of
current observations v̄t+1 = {v1t+1, . . . , v

k
t+1} of the system

variables that may affectMt+1 is also collected. The forward
pass can then be completed, by feeding dt and v̄t+1 to the
loss-learning block, and generating a performance estimate
M̃t+1; let Lw`

t
be the (loss) function implemented by the

loss-learning DNN with optimized weights at time t, hence
M̃t+1 = Lw`

t
(dt + ε, v̄t+1). The error between the actual

and estimated objectives Mt+1 and M̃t+1 is computed via
a legacy loss function such as MAE or MSE, and is then
backpropagated: first in the loss-learning block, updating w`t+1

so that they better capture how Mt+1 relates to dt and v̄t+1;
then through the predictor, updating wpt+1 to better model the
anticipatory decision dt that minimizes the objective Mt+1.

2Our definition of system status is generic, and s̄t can map to, e.g., data
traffic volumes, KPI values, or previous decisions, depending on the IBN task.

3Recall that, as explained in Sections I and II, in practical IBN systems the
expression fM of the objective is not known a priori, or is too complex to
be modelled manually, but the associated performance can be measured.



As an illustrative example, let us consider again the toy use
case of Section I. There, s̄t is the traffic volume generated by
the Twitch slice until time t, which is used by the predictor to
generate dt, i.e., the amount of CPU resources allocated during
time slot t + 1. The loss-learning block can just observe the
actual Twitch traffic volume at time t+1, i.e., v̄t+1 = st+1, and
the performance Mt+1. Through the training iterations, the
loss-learning block will learn thatMt+1 is a specific function
of the difference between the allocated and needed resources
at time t+ 1, i.e., it has an expression fM(dt − kCPU · st+1),
where kCPU is the CPU needed to serve one unit of data traffic;
specifically fM will be very high in case of underprovisioning,
i.e., if dt < kCPU · st+1. By further descending the gradient
to the predictor, the latter will progressively learn to output a
minimum safe value of capacity dt such that dt ≥ kCPU ·st+1 is
always verified, even in presence of typical forecasting errors.

The advantage of the co-training described above is twofold:
(i) the loss-learning block can discover the actual relationship
between the imperfect prediction and the IBN objective,
hence it learns a loss function that implicitly compensates
for forecasting errors; and, (ii) the loss-learning DNN ap-
proximates non-differentiable objectives with a differentiable
version, which can then be used to train the predictor.

Noisy exploration during training. A second key trait
of the architecture in Figure 5 is that the decision value
input to the loss-learning block at time t is actually dt + ε,
rather than the plain dt output by the predictor. Here, ε is
a normally distributed random variable that is added to the
anticipatory action issued by the predictor; note that this is
only adopted during training, and ε = 0 when LossLeaP is
used for inference. The purpose of ε is to explore how the
system performanceM reacts to prediction values that would
otherwise never be seen during training: thanks to the added
noise, the loss-learning block can learn more reliably the shape
of the loss function over a wider domain.

Formally, under the noisy exploration provoked by ε, the
gradient descent updates weights in the predictor and loss-
learing DNNs as follows:

wpt+1 ← wpt − αp∇Lw`
t
(dt + ε, v̄t+1), (1)

w`t+1 ← w`t − α`∇L2(Lw`
t
(dt + ε, v̄t+1),

fM(dt + ε, v̄t+1)), (2)

where L2 is the MSE loss used to compare the estimated and
actual performance, and αp and α` are the learning rates of
the predictor and loss-learning DNNs, respectively.

However, ε factually introduces an inconsistency between
the output of the predictor and the input of the loss-learning
block; this would confound the training of the former, which
would generate decision dt that try to compensate for ε. To
rectify the learning process, the same value of ε that is summed
to dt is also provided as a further input to the predictor along
s̄t. In this way, during training, the predictor can aptly learn the
impact of the added noise to its output; and, during inference,
setting ε = 0 is sufficient to instruct the predictor to generate
an unbiased decision that is not compensating for any noise.

Cyclic Learning Rate. In practical cases, the multi-variate
high-degree polynomial representation of Lw`

t
learned by the

loss-learning DNN does not have real flat parts or saddle
points. This allows using a Cyclic Learning Rate (CLR)
method [29] to dynamically adapt the learning rate used to
explore the gradient of Lw`

t
while optimizing the weights wpt

of the predictor DNN. By letting the learning rate oscillate
between two bounds whose values are updated at each batch,
CLR prevents Stochastic Gradient Descent (SGD) from getting
stuck in local minima, and makes the model less sensitive to
the initial learning rate value. We employ the simple triangular
version of CLR, with 5 cycles across the full training phase.

Ultimately, CLR allows for faster automatic convergence,
under any shape of the actual objective function fM. It is
also well aligned with the AutoML principles embraced by
LossLeaP, as it automates further the machine learning model
configuration: indeed, by autonomously adapting the learning
rate, CLR reduces the importance of the initial setting, and
avoids that a careless choice (e.g., a default learning rate
value, or one casually picked by a human operator) causes
the learning process to become stuck at local minima.

Architectures of the DNNs. The LossLeaP implementa-
tion is general, i.e., can accommodate any type of DNN to
realize the predictor and loss-learning block. For our experi-
ments, we make a specific choice of DNN architectures, which,
despite its simplicity, proves very effective in all controlled
experiments and practical use cases we studied.

The predictor DNN is implemented as a Recurrent Neural
Network (RNN) with one Long Short-Term Memory (LSTM)
layer formed by 50 neurons with standard Rectifier Linear Unit
(ReLU) activation functions. The rationale for the choice of
an LSTM predictor is that the estimation of the future value
of dt from past state observations s̄t is essentially a prediction
over time, and LSTM is known to perform well in time series
forecasting tasks. As thoroughly explained before, the RNN
is trained using the loss values produced by the loss-learning
DNN, which we implement as a simple 3-layer MultiLayer
Perceptron (MLP) composed of 15 neurons in each layer,
with ReLU activation function. The MSE loss is used to train
the MLP. This baseline architecture can already model fairly
complex non-linear loss functions, and we argue that it can
meet the needs of a wide range of IBN activation tasks.

In our experiments, a small value of ε = 0.01, equal to 1%
of the maximum normalized input, proved sufficient to explore
the loss function domain. The popular Adam optimizer is used
to perform the SGD during training.

In all cases, we recall that the DNN realizations above can
be made more complex if needed. In fact, recent AutoML
methods may be also adopted to identify and configure the
correct DNN architectures for prediction and loss learning,
pushing LossLeaP closer to a full-fledged anticipatory IBN.
However, these refinements are out of the scope of this paper,
whose contribution and focus is the loss-learning prediction;
instead, they represent interesting directions for follow-up
research towards production-ready IBN systems.



IV. COMPARATIVE EVALUATION

In order to demonstrate the advantages of LossLeaP, we
next carry out a comprehensive comparative evaluation, jux-
taposing our proposed model by a number of benchmarks.

A. Controlled environment use cases

As here the focus is on the relative performance of the
different models, we perform tests in a controlled environment
that favors the interpretability of the results. Specifically, we
assume a setting where the objective of IBN activation, i.e.,
fM in the notation of Section III, is known and simple
enough to be expressed in a closed form. This allows manually
designing a loss function tailored to the objective, and use it
in a baseline benchmark. To test generalization, we consider
four different use cases with diverse forms of fM, as follows.

Traffic forecasting under absolute error. The objective is a
traditional traffic forecasting, i.e., predicting a dt that matches
the future data traffic volume st+1, with an error cost that
is linearly proportional to the absolute discrepancy. Formally,
Mt+1 = |dt − st+1|, which is optimized by a MAE loss.

Traffic forecasting under squared error. Same, but larger
errors tend to have an increasingly higher cost for the operator,
with a quadratic growth. Formally, Mt+1 = (dt − st+1)

2,
which is minimized by a legacy MSE loss function.

Resource allocation with probabilistic guarantees. The
IBN objective is providing a probabilistic guarantee on the
anticipatory allocation of resources, so as to accommodate the
future traffic demand st+1 a fraction τ of the time. Formally,
Mt+1 = τ · R (st+1 − dt) + (1 − τ) · R (dt − st+1), where
R(x) = x · 1x≥0, and 1C is an indicator function that takes
value 1 if condition C is verified and 0 otherwise. This is a
quantile forecast that can be optimized via a pinball loss [30].

Capacity forecasting. The goal of the operator is antic-
ipating the capacity needed to (i) avoid an expensive mon-
etary fee α incurred for non-serviced future traffic st+1,
and (ii) limit unnecessary overdimensioning beyond st+1.
Formally, Mt+1 = α ·1dt<st+1

+ (dt − st+1) ·1dt≥st+1
. This

IBN objective maps in fact to the capacity forecasting problem
addressed by previous works in the literature, for which the
expert-designed α-OMC loss function is available [22].

All experiments are run on real-world traffic generated by
Facebook Live, and transiting in a core network datacenter of
an operational 4G mobile network; see Section V for more
details on the data and its collection. We employ 9 weeks of
data for training, 1 week for validation, and 1 week for testing.

B. Benchmarks

We compare LossLeaP with a wide range of benchmarks
that include baselines, state-of-the-art models for loss learning,
and variants of our proposed scheme.

1) Baseline approaches: Two different solutions are used
as a basis for our comparative performance evaluation.
• Manual – The LSTM predictor described in Section III-B

is trained with a loss function designed manually to fulfill
the specific target objective. As anticipated, MAE, MSE,
pinball and α-OMC losses are used in the four use cases.

dt – st+1

y1

y2
x1 x2

Mt+1

x0

Fig. 6: Parametrizable loss function used by ALA-moldable.

• Disjoint – The prediction and loss-learning functionali-
ties are logically separated: first, the MLP in Section III-B
is trained in isolation, by inputing uniform random noise
and measuring the resulting performance, so as to learn
the correct loss for the objective; then, the LSTM predic-
tor is trained using the loss learned by the MLP.

2) Loss-learning models: As discussed in Section II, Adap-
tive Loss Alignment (ALA) is a state-of-the-art approach for
loss learning in classification tasks [27]. We adapt ALA for
regression by: (i) changing the type of characteristics used for
validation, replacing the (logarithmic) probabilities that the
input pertains to each class with the first- and second-order
statistics of the regression values; and, (ii) swapping the set of
classification-oriented loss functions originally used by ALA
with expressions that are suitable for regression. We test two
ALA models, which differ by the expression used.
• ALA-manual applies ALA on a linear combination of all

manually designed loss functions that are used separately
in the Manual approach above. The rationale is having
ALA automatically select the correct loss function for
each use case, by tuning the linear combination weights.

• ALA-moldable applies ALA on a single loss function
with a highly parametrizable shape. The function, il-
lustrated in Figure 6, can potentially mimic any of the
losses for the controlled environment use cases, and the
experiment aims at testing if ALA can learn the correct
values of the parameters x0, x1, x2, y1 and y2.

3) Variants of LossLeaP: As a form of ablation study, we
test several variants of our proposed model, as follows.
• Fixed-rate operates as LossLeaP, but is trained with a

legacy fixed learning rate, instead of an automated CLR.
• Noiseless uses the same architecture as LossLeaP, but

does not include ε as an input to the predictor, which thus
cannot learn the impact of the noise on its output; note
that if no noise is added to the prediction either, the noisy
exploration is completely skipped during training.

• Iterative adopts an alternating training strategy, in-
stead of LossLeaP co-training. Specifically: the predictor
DNN is trained in isolation during odd iterations, using
the loss currently implemented by the loss-learning block;
then, the loss-learning DNN is trained during even itera-
tions, by adding noise to the output of the predictor.

• Half is a complementary technique that can be adopted
in combination with the Noiseless and Iterative

approaches above. In a first moment, it trains the predictor
and loss-learning DNNs jointly, and as mandated by
either model; then, it freezes the loss-learning block and
only keeps training the predictor for better convergence.



(a) Traffic forecasting, absolute error (b) Traffic forecasting, squared error (c) Resource allocation, τ = 0.75 (d) Capacity forecasting, α = 1.0

Fig. 7: Loss functions Lw`
t

learned by the loss-learning DNN of LossLeaP, under diverse objectives fM.

TABLE I: Comparative evaluation summary. The best and second best performing models are highlighted for each objective.

Model Noise ε
(deviation)

Traffic forecasting, absolute Traffic forecasting, squared Resource allocation, τ = 0.75 Capacity forecasting, α = 1
Train (×10−2) Test (×10−2) Train (×10−4) Test (×10−4) Train (×10−3) Test (×10−3) Train (×10−2) Test (×10−2)

Manual - 1.32 ± 0.12 1.62 ± 0.21 2.64 ± 0.43 4.04 ± 0.24 4.81 ± 0.35 5.99 ± 0.67 3.30 ± 0.53 3.62 ± 0.61
Disjoint 0.1 1.45 ± 0.11 1.80 ± 0.14 4.28 ± 0.85 6.50 ± 1.50 6.54 ± 0.42 8.26 ± 0.83 9.50 ± 1.10 14.80 ± 2.40

ALA-manual - 2.28 ± 0.33 2.35 ± 0.36 6.80 ± 1.20 7.90 ± 1.70 11.20 ± 1.70 14.20 ± 2.04 8.91 ± 2.43 13.35 ± 3.17
ALA-moldable - 1.17 ± 0.04 1.46 ± 0.04 2.71 ± 0.22 3.87 ± 0.23 5.03 ± 0.42 6.41 ± 0.55 40.04 ± 30.21 40.32 ± 30.78

Noiseless
0 1.71 ± 0.59 2.01 ± 0.58 5.12 ± 1.96 5.83 ± 2.29 6.13 ± 0.37 7.60 ± 1.13 6.21 ± 1.58 8.62 ± 3.55
0.01 1.21 ± 0.13 1.39 ± 0.14 3.17 ± 0.90 5.30 ± 1.19 5.28 ± 0.41 6.43 ± 0.95 6.10 ± 1.27 8.88 ± 3.01
0.1 1.19 ± 0.10 1.49 ± 0.15 3.32 ± 0.85 5.20 ± 1.20 18.04 ± 5.66 19.03 ± 6.87 17.16 ± 1.06 17.31 ± 1.30

Iterative
plain 0.01 1.49 ± 0.18 1.99 ± 0.21 4.10 ± 1.11 4.90 ± 1.33 6.29 ± 0.96 8.40 ± 1.90 6.67 ± 0.70 9.32 ± 1.66

0.1 1.48 ± 0.15 2.01 ± 0.18 4.02 ± 1.02 5.82 ± 1.15 5.69 ± 0.69 7.34 ± 1.37 7.02 ± 0.63 8.12 ± 0.44

Half 0.01 1.53 ± 0.11 2.01 ± 0.15 5.21 ± 1.31 15.96 ± 6.14 6.95 ± 1.98 9.09 ± 3.47 6.63 ± 1.02 7.96 ± 1.21
0.1 1.54 ± 0.08 2.08 ± 0.16 4.85 ± 1.14 7.22 ± 2.47 6.10 ± 0.99 7.90 ± 1.65 7.65 ± 1.40 8.41 ± 1.59

Fixed-rate
plain 0.01 1.21 ± 0.09 1.54 ± 0.10 3.17 ± 0.75 5.80 ± 1.12 5.06 ± 0.22 6.31 ± 0.39 5.99 ± 0.80 7.94 ± 1.61

0.1 1.31 ± 0.11 1.57 ± 0.10 4.28 ± 0.12 5.90 ± 1.01 5.25 ± 0.17 6.50 ± 0.26 6.28 ± 1.09 8.04 ± 1.33

Half 0.01 1.24 ± 0.03 1.51 ± 0.02 3.72 ± 0.85 5.10 ± 0.85 5.33 ± 0.47 6.81 ± 0.61 6.05 ± 1.35 7.53 ± 1.21
0.1 1.26 ± 0.03 1.55 ± 0.05 6.32 ± 2.18 7.79 ± 3.36 6.01 ± 0.52 6.42 ± 0.60 5.71 ± 1.04 7.94 ± 2.17

LossLeaP 0.01 1.15 ± 0.01 1.44 ± 0.01 2.77 ± 0.27 4.03 ± 0.22 4.54 ± 0.05 5.63 ± 0.06 4.65 ± 0.13 5.54 ± 0.27

C. Results

We first illustrate the capability of LossLeaP to learn a
suitable loss function in the different use cases outlined in
Section IV-A. Figure 7 portrays the four loss functions Lw`

t

learned by our model from the training data, which map
the error dt − st+1 into the target system performance. The
corresponding shape of the objective fM is superposed to the
learned loss so as to ease the interpretability of the result. In all
cases, the match is good, as the two shapes are well aligned.

It is worth remarking that the only significant difference
emerges in the case of capacity forecasting is due to the
fact that the original objective is not differentiable or even
continuous, hence cannot be directly used as a loss function:
as mentioned in Section III-B, and as a desirable by-product of
co-training, LossLeaP learns a differentiable version of fM,
so that the latter can be used to train the predictor DNN.

Complete results from the controlled environment use cases
are summarized in Table I. Across all settings, LossLeaP

stands out as the best peforming model, or a close second;
more precisely, when not yielding the best result, our solution
is typically within the variance of the method ranking first. A
closer inspection of the exact figures reveals several important
observations, as follows.
• The models that perform close to LossLeaP are those

that involve human intervention, which is needed to de-
fine a tailored (and possibly parametrizable) loss function
for the specific goal, such as Manual or ALA-moldable;
instead, the training of LossLeaP is fully automated.

• The models performing best for some use cases tend
to have highly fluctuating performance under other ob-
jectives, where they generate poor predictions; instead,
LossLeaP performs consistently well across all target use
cases, which demonstrates its flexibility and generality.

• Compared to the benchmarks, LossLeaP produces results
with sensibly lower standard deviation, which elicits a
more consistent quality of the anticipatory decision.

• Juxtaposing LossLeaP with its variants proves that
all design elements in Section III-B contribute to the
performance of the model, and removing co-training
(Iterative), noisy exploration (Noiseless), or learn-
ing rate adaptiveness (Fixed-rate) deteriorates results.

Overall, the results obtained in the controlled environments
clearly showcase the gain of LossLeaP over other methods, in
terms of sheer performance and flexibility. Importantly, this is
attained while also reducing the need for human intervention.

V. APPLICATION CASE STUDIES

In order to assess the performance of LossLeaP in more
taxing contexts that are closer to real-world IBN activation
tasks, we consider two practical case studies, detailed next.

In both analyses, we employ real-world traffic measure-
ments to ensure credibility of the results. The data describes
the demands generated in a large metropolitan area, during
several consecutive months. The collection was carried out
in a production 4G network, using passive measurement
probes. Individual IP sessions were mapped to specific ser-



vices using Deep Packet Inspection (DPI) and commercial
traffic classifiers deployed by the operator. The data was
processed in secure premises by the operator, in compliance
with international regulations, and under the supervision of
the relevant data protection officers. For our study, we had
access to de-personalized aggregates of traffic time series at
core network and Edge datacenters, for four video streaming
services: Facebook Live, Netflix, Twitch, and Youtube.

A. Reserving Virtual Machines at a core network datacenter

In a first case study, we consider a core network datacenter
setting, where we assume that each video streaming service is
assigned a dedicated Network Slice Subnet Instance (NSSI).
The machine-translated intent involves that the Virtual Infras-
tructure Manager (VIM) responsible for controlling the data-
center resources must predict the number of Virtual Machines
(VMs) that need to be allocated in advance to each NSSI,
so as to run the Virtual Network Functions (VNFs) required
to serve the demand generated by the corresponding mobile
service. Clearly, every VM has an operating cost (e.g., due
to power consumption) so it is desirable that only the strictly
necessary set of VMs is reserved for each NSSI.

Clearly, we do not have access to information about the
actual operating costs of the datacenter, or about the local VM
management strategies. This forces us to emulate that part of
the system behavior to perform our experiments. To that end,
we proceed as follows: (i) we define a credible expression
fM for the target management objective; (ii) we use fM
to generate observations Mt+1 in response to predictions
dt; and, (iii) we use observations Mt+1 as ground-truth
measurements to train and test LossLeaP and benchmark
models. A very important remark is that fM is only an artifice
we adopt to generate measurement-like data, and it is unknown
to LossLeaP, which has only access to the observations.

Formally, let all VMs have equivalent performance, so that
each has operating cost κ, and can serve a maximum volume
of traffic Cσ that may depend on the slice σ. Also, η � κ is a
high penalty triggered in case insufficient VMs are allocated
in advance. The observations are computed as:

Mt+1 = fM(dt, st+1) = η · R
(
st+1 − Cσ ·

∣∣∣bdtc∣∣∣)+

κ · R
(
Cσ ·

∣∣∣bdtc∣∣∣− st+1

)
. (3)

This expression basically forces a high handicap if insufficient
VMs are allocated, and a milder one for VM overprovisioning.

The VM orchestration takes place at every 5 minutes,
which is thus the forecast horizon of the predictor. We feed
LossLeaP with past traffic information s̄t = {st−N , . . . , st},
with N = 6, and let it learn to produce a forecast dt that
minimizes (3), from observations Mt+1. We remark that
the objective is not linear nor differentiable over the whole
domain, as it includes floor and absolute value operators.

We consider two benchmarks for comparative analysis.
• An Oracle predictor, which has perfect knowledge of

the future, and always allocates the optimal minimum
number of VMs to serve the upcoming demand.

(a) VMs reserved (b) Underprovisioning time (%)

Fig. 8: VM reservation for diverse slices. (a) Reserved VMs.
(b) Fraction of time when the slice demand cannot be served.

Fig. 9: Example of VM reservation for the Facebook slice.

• A Legacy traffic forecasting model, implemented as the
predictor part of LossLeaP, and trained to minimize an
MSE loss. As discussed in Section II, this model requires
an additional downstream block in charge of taking the
management decision. In this use case, we manually
design a VM allocation algorithm that (i) applies an
overprovisioning factor to the predicted traffic so as to
avoid expensive underdimensioning, and (ii) uses Cσ to
compute the number of VMs to serve the inflated demand.
Upon extensive tests, we set the overprovisioning factor
to 1.6, which enforeces 60% safety margin.

Figure 8 summarizes the performance, when the Cσ and κ
are set to 10% and 1% of η. Even when fine-tuned, a decision
making policy based on a Legacy prediction is substantially
less efficient than LossLeaP. Our model allocates around
the same VMs as Legacy, but with an extremely limited
underprovisioning that is one or two orders of magnitude
lower than that of Legacy. The reason is illustrated in Fig-
ure 9, for one sample slice: LossLeaP anticipates a constant
overdimensioning at all times; instead, the solution based on
the Legacy predictor tends to allocate excess VMs during
the high-traffic daylight hours, and does not leave a wide
enough safety margin overnight, when it allocates less VMs
than Oracle, hence not servicing part of the demand. Instead,
LossLeaP learns that a static overprovisioning factor is not a
good strategy to cope with the inherent forecast inaccuracy,
and automatically identifies a better loss to minimize the
(unknown) expression in (3). By doing so, our model performs
in fact fairly close to the Oracle.

B. Minimizing video streaming OPEX at the Edge

We now move to a mobile Edge environment, where a set
of computational facilities, each serving between 70 and 130
base stations, are located close to the radio access. We assume



Fig. 10: Emulation pipeline for the monetary OPEX.

again that each of the four video streaming services has a
dedicated NSSI at the Edge facilities. Here, the management
intent aims at minimizing the monetary operating expenses
(OPEX) associated to running the video streaming slices at the
network Edge. This maps to an IBN objective of periodically
and preemptively rescaling the compute resources assigned to
each NSSI in a facility, to smoothly run the needed VNFs.

As for the previous use case, we have to emulate the ground-
truth OPEX, by developing a sensible model that relates OPEX
to the system variables. Here, we go a step further in terms
of complexity, and, rather than defining a single expression
for fM as in (3), we employ a whole pipeline to mimic the
objective. Figure 10 offers a high-level view of the pipeline.
First, the slice-level allocated computing capacity dt and the
future traffic to be served v̄t+1 are split across users according
to a probability distribution that describes the imbalance of
traffic generated by different users. The per-user maximum
requested (M, from v̄t+1) and available (A, from dt) compute
powers are fed to an empirical non-linear model that maps
such metrics into a user-level video streaming Quality of
Experience (QoE) [31]. The QoE value is then discretized in
line with real-world QoE metrics, and passed to a module that
converts the QoE into a Mean Opinion Score (MOS). Based
on the MOSs of the users, the slice tenant can communicate to
the operator if the Service Level Agreement (SLA) has been
violated, which entails a monetary fee β per violation. This
cost is summed to that generated by the need to reserve the
compute resources dt to accommodate the slice traffic, derived
in the bottom block, at a price α per capacity unit.

Interestingly, not only the expression of fM is now much
more involved than before, but it is also not observable by
the operator in practical cases. Indeed, the VNF Manager
(VNFM) that must take the anticipatory decision only has
data about the current allocated resources and slice traffic
demand from the VIM. In the best case, it may consume QoE
information provided by the Network Data Analytics Function
(NWDAF) [32] that interfaces with Application Functions
(AF), but the MOS part of the pipeline remains unknown.
Ultimately, this use case sets forth a scenario where a network
manager would not have the necessary system knowledge to
manually design a solution to the problem.

We let LossLeaP learn the whole pipeline above in a setting
where the compute capacity reconfiguration occurs at every 5
minutes. We compare it against two benchmarks, as follows.
• An Oracle predictor that knows the future demand and

the full fM pipeline, and returns an optimal allocation.

(a) Overall performance (b) Learned loss

Fig. 11: OPEX performance in the Facebook Live slice case.
(a) Overall cost. (b) Loss function learned by LossLeaP.

• DeepCog, a state-of-the-art capacity predictor [22] that
we configure to cope with the problem in the best way
possible, by setting its loss function parameter to β/α.

Due to space limitations, we only show results for the
Facebook Live slice, in Figure 11a, however performances are
homogeneous across services. All costs are relative to that of
the minimum static capacity allocation that always services the
full demand, and are shown for different β/α ratios. Despite
the fact that we feed it with information about the true α
and β values, DeepCog is still constrained by its unflexible
loss function. Instead, LossLeaP can autonomously learn a
much better loss, which results in a reduced cost closer to the
Oracle one. Figure 11b offers a glance at the faily complex
loss function captured by the loss-learning DNN of LossLeaP:
even if full knowledge of the pipeline in Figure 10 were
available, designing manually devise this shape would be an
exacting task. Our approach effectively automates such design,
which lays an important stone in the path to full-fledged IBN.

VI. CONCLUSIONS

We proposed LossLeaP, a first-of-its-kind model that au-
tomates the design of loss functions for regression tasks, and,
more precisely, prediction problems. Extensive tests in realistic
settings and against a wide range of benchmarks demonstrate
the viability of our concept, as well as the potential perfor-
mance gains it can unlock. Our work contributes to advancing
the state of the art in automated network management, setting
forth an important contribution towards practical IBN systems.
It also makes a step forward in the AutoML domain, providing
a first solution to an open problem in machine learning.

The authors have provided public access to their code and/or
data at https://github.com/alcoimdea/LossLeaP.
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