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Abstract—The edge-cloud system has the potential to com-
bine the advantages of heterogeneous devices and truly realize
ubiquitous computing. However, for service providers to guar-
antee the Service-Level-Agreement (SLA) priorities, the complex
networked environment brings inherent challenges such as multi-
resource heterogeneity, resource competition, and networked sys-
tem dynamics. In this paper, we design a framework for the edge-
cloud system, namely EdgeMatrix, to maximize the throughput
while guaranteeing various SLA priorities. First, EdgeMatrix in-
troduces Networked Multi-agent Actor-Critic (NMAC) algorithm
to redefine physical resources as logically isolated resource combi-
nations, i.e., resource cells. Then, we use a clustering algorithm to
group the cells with similar characteristics into various sets, i.e.,
resource channels, for different channels can offer different SLA
guarantees. Besides, we design a multi-task mechanism to solve
the problem of joint service orchestration and request dispatch
(JSORD) among edge-cloud clusters, significantly reducing the
runtime than traditional methods. To ensure stability, EdgeMatrix
adopts a two-time-scale framework, i.e., coordinating resources
and services at the large time scale and dispatching requests at the
small time scale. The real trace-based experimental results verify
that EdgeMatrix can improve system throughput in complex
networked environments, reduce SLA violations, and significantly
reduce the runtime than traditional methods.

I. INTRODUCTION

A. Background and Problem Statement

With the explosion of networked devices, centralized mobile
network architecture is facing many challenges. According to
the GSMA’s The Mobile Economy 2020 report, IoT connec-
tions will reach almost 25 billion globally by 2025, up from 12
billion in 2019 [1]. As a result, the traditional cloud computing
paradigm is hard to cope with:(i) a large number of computing
tasks generated by the massive networked devices are deliv-
ered to the cloud center, which brings a severe challenge to
cloud computing capability; (ii) the long transmission distance
between the networked devices and the cloud center, which is
difficult to meet the requirements of low latency services, e.g.,
automated driving.

To address the above issues, the emergence of edge com-
puting [2] has the potential to guide the development of
next-generation network architecture. Compared with cloud
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Fig. 1. Architechture of EdgeMatrix.

computing, the advantages of edge computing are mainly
shown in two aspects: (i) widely distributed edge computing
nodes can handle a large number of computing tasks, relieving
the pressure on the backbone network; (ii) most services are
processed near the edge, reducing the data transmission delay,
and only services that cannot be processed at the edge will be
uploaded to the cloud center.

Therefore, edge computing can effectively solve many
problems such as low real-time and work inefficiency in
traditional cloud computing. Simultaneously, cloud computing
can provide great computing power and massive storage for
distributed edge computing nodes. The complementary char-
acteristics of edge computing and cloud computing accelerate
the deep collaboration between each other and gradually
evolve into edge-cloud system [3]. Unlike the one-fits-all cloud
computing paradigm, the widely distributed edge nodes and
mutually heterogeneous edge clusters in the edge-cloud system
bring significant opportunities and also challenges to provide
users reliable service [4].

B. Motivation and Challenges

In the cloud computing paradigm, service providers can
provide reliable services to users based on Service-Level-
Agreement (SLA) [5]. In this paper, we propose EdgeMatrix
that can provide strong SLA assurance for various user ser-
vices in the complex networked environment of the edge-cloud
system based on the idea of SLA in cloud computing.
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Although providing reliable service for users based on
SLAs in edge-cloud systems can significantly improve system
efficiency, three inherent challenges still need to be faced
in the specific implementation process. (i) Multi-resource
heterogeneity: Geographically distributed edge nodes have
different computing capabilities, communication capabilities
and system architectures; (ii) Resource competition: Different
types of services have various resource requirements, which
causes resource competition among different services and thus
affects the service efficiency of requests; (iii) Networked
system dynamics: Due to the random fluctuations in user
demand and networked devices, the request load and available
resources of the networked system are in a constant dynamic
change. Therefore, there is an urgent need for the resource-
redefined architecture to satisfy the SLAs of users under the
inherent challenges orient to edge-cloud systems.

C. Technical Challenges and Solutions
In this paper, to better cope with the three inherent chal-

lenges in the edge-cloud system, our work focuses on resource
customization, service orchestration, and request dispatch.

Resource customization. The multi-resource heterogeneity
of the networked system poses a severe problem for pro-
viding users reliable service in edge-cloud systems because
heterogeneous edge nodes increase the uncertainty of service
orchestration and request dispatch. It is challenging to design
traditional methods to consider the massive heterogeneous
nodes in the system, i.e., a large number of constraints may
cause algorithms complicated and even unsolvable [6]. There-
fore, we introduce multi-agent deep reinforcement learning
(MADRL) algorithms to provide customized isolated resources
for various user services in the edge-cloud system. Specially,
we customize the resources of edge-edge nodes (Horizontal)
and edge-cloud nodes (Vertical) to form logically isolated
resource combinations called resource cells in edge-cloud
systems. Biologically, cells at different locations have different
functions, and each cell has an isolated space. We further
call the set of cells with similar characteristics (resources,
latency, etc.) a resource channel, which means that each
resource channel has its corresponding SLA priority.
Macroscopically, resource channels can also be divided into
two categories, i.e., horizontal or vertical. As shown in Fig. 1,
we call this framework EdgeMatrix.

Service orchestration. Resource competition among ser-
vices can lead to a decrease in the number of requests that
are successfully served in the system without violating SLA
priority, i.e., a reduction in throughput [7]. Imagine a scenario
where one service takes up most of the memory resources
on a node, under which orchestration of other services is
severely adversely affected, even if they require merely a
few memory resources. Therefore, we should orchestrate the
services reasonably by EdgeMatrix to reduce the negative
impact of resource competition.

Request dispatch. The dynamic of networked systems poses
a significant challenge for the adaptability of dispatch al-
gorithms [8]. Request dispatch is the last link to determine
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Fig. 2. Resource customization with joint service orchestration and request
dispatch in EdgeMatrix.

whether requests can be successfully served. The design of
the request dispatch algorithm plays a crucial role in sys-
tem robustness in the face of networked system dynamics.
Specifically, to ensure the system’s stability, we adopt a two-
time-scale framework, which performs resource customization
and service orchestration sequentially at the large time scale
(frame) and requests dispatch at the small time scale (slot).

D. Main Contributions

• We design EdgeMatrix to redefine heterogeneous physical
resources as isolated resources (i.e., resource customization)
and solve the problem of joint service orchestration and
request dispatch (JSORD).

• We propose a Networked Multi-agent Actor-Critic (NMAC)
algorithm for resource customization with limited neighbor
nodes, which provides lightweight models and improves the
system’s stability through offline centralized training and
online distributed execution.

• We solve the JSORD with multiple types of resources in
EdgeMatrix based on mixed-integer linear programming
(MILP), and significantly reduces the runtime of the solution
by running a multi-task mechanism in parallel.

• We design a two-time-scale framework for EdgeMatrix to
coordinate each component, performing resource customiza-
tion and service orchestration in each frame and request
dispatch in each slot as shown in Fig. 2, which outperforms
other schemes by real trace-based evaluation.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. Edge-cloud System
As shown in Fig. 1, the edge-cloud system is composed of

the network edge and the cloud center. At the edge of the
network, there exist massive heterogeneous edge computing
nodes, and adjacent nodes in certain regions D = {1, ..., D}
together form edge clusters to provide closer resources for
users. The cloud center has sufficient resources, but the cen-
tralized deployment approach results in being geographically
far from the users. In addition, the edge clusters in each
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region connect to the cloud center through Wide Area Network
(WAN). To be more concise, we (i) only focus on one region
d ∈ D at the edge of the network, it also applies to other
regions d′ ∈ D, (ii) each edge node can only be connected to
a limited number of other nodes, and (iii) assume that each
node in the edge cluster has decision-making ability.

Network edge. Geographically dispersed users generate
diverse arriving requests over time that have different SLA
priorities P = {1, ..., P}, and each SLA p ∈ P has a service
set Lp = {1, ..., Lp}. All services with different SLA priority
are denoted by L = L1 ∪ L2 ∪ ... ∪ LP . For service l ∈ Lp,
we denote the request packet size of each service l as hp,l,
memory required to load the service l as rp,l, the required
computing capacity of service l as wp,l, the maximum response
time of services with p (the lifecycle of service) as tp,l, and
the execution time of services with p as op,l. We denote the
network topology of the edge cluster in region d as a graph
Gd(V, E), where each i ∈ V is the edge node, and eij ∈ E
is the link directly connected between node i and node j.
Ni = {j | j ∈ V, eij ∈ E} represents the neighborhood where
the node i is located, that is, the set of i and its adjacent
nodes. The number of edge nodes in cluster Gd is denoted as
N . Each edge node i has resource capability, we denote the
computing capacity as Wi, the total memory as Ri, the total
bandwidth as Bi.

Cloud center. The cloud center has sufficient computing
and memory resources, but the centralized deployment ap-
proach results in a long geographic distance from most users.
Therefore, the cloud center is better at handling requests that
require a large amount of computing or memory resources but
are not latency-sensitive, such as model training. We denote
the computing capacity owned by the cloud center as Wcloud,
the memory as Rcloud.

Resource cells and channels. EdgeMatrix fully collaborates
with the advantages of the computing resources between the
cloud center and the network edge, customizes a series of
resource cells in the edge-cloud system across edge-edge
nodes (Horizontal) and edge-cloud nodes (Vertical). Resource
cells have a mapping relationship with physical resources
in the edge-cloud system, and resource cells are logically
isolated with no mutual interference. In addition, we as-
sign corresponding services to the resource cell according
to its characteristics (e.g., location, resources). Furthermore,
we group resource cells with similar characteristics into one
resource channel. The customized services for users with
different SLA priorities are exhibited in the resource channels,
which means a channel provides users with a corresponding
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Fig. 4. The workflow of resource customizer at the large time scale.

SLA priority, as shown in Fig. 3. Therefore, we can treat the
channels and SLA of services as equivalent to P = {1, ..., P}.
On each channel p ∈ P , we deploy customized resource cells
Mp = {1, ...,mp} for users according to the SLA of services
arriving in the edge cluster. For cell m ∈ Mp, we denote its
computing capacity as Wp,m, and memory size as Rp,m.
B. Problem Statement

The objective of EdgeMatrix is to maximize the overall
throughput while reducing SLA violations for various services.
To ensure the robustness of EdgeMatrix, we adopt a two-time-
scale framework in the edge-cloud system to realize resource
customization, service orchestration and request dispatch.

At the large time scale, frame τ , EdgeMatrix performs two
steps to guarantee the SLA priorities of different user services:
(i) resource customization, which customizes the resources in
the edge-cloud system into resource cells according to the
states of the system based on MADRL algorithm, and groups
cells with similar characteristics into one resource channel
using a clustering algorithm; (ii) service orchestration, which
allocates the cell resources to service replicas and then binds
the service replicas with allocated physical resources.

At the small time scale, slot t, EdgeMatrix performs request
dispatch to adapt the networked system dynamics. In EdgeMa-
trix, we implement these three steps by resource customizer,
service orchestrator and request dispatcher.

Resource customizer. The workflow of resource customizer
is as shown in Fig. 4. We deploy a resource customizer
agent for every node i in the edge cluster. At frame τ ,
all of the agents need to calculate new resource cell’s re-
source requirements through the observed local state and
learned resource customized policy πi,τ , denote by Mτ =
{m1,τ , ...,mi,τ , ...,mN,τ}. For mi,τ ∈ Mτ , we denote the
memory requirement as Rmi,τ and the computing requirement
as Wmi,τ . Note that, M is different fromM temporarily, each
mi,τ ∈ Mτ only represents predicted resource requirements
at this moment. The resource customizer first obtains the
available resources from the neighborhoodNi of the edge node
i where the agent is located according to the requirements of
the resources required by mi,τ . When the available resources
in the neighborhood can meet the requirements of mi,τ , we
call it a horizontal resource cell. Resource Customizer will
obtain the rest resources if needed from the cloud center,
namely the vertical resource cell.

After resource customizer finishes customizing the physical
resources in the edge-cloud system into resource cells based



on the MADRL algorithm, it has to cluster the resource
cells to corresponding resource channels. First, the resource
customizer abstracts the characteristics from each cell, and
then it uses a clustering algorithm to group the resource
cells with similar characteristics to one resource channel.
Finally, SLA priorities are defined for each channel to pro-
vide services to users with a corresponding service level.
Horizontal resource cells have lower transmission latency but
limited resources, while vertical resource cells have sufficient
resources but higher transmission latency. We then group the
cells with similar characteristics into the same channel, and
the characteristics of resource cells in EdgeMatrix is denoted
by Φτ = {ϕ1,τ , ..., ϕi,τ , ...}. Specifically, the characteristic of
each resource cell mi,τ is defined by ϕi,τ = (wi,τ , ri,τ , ε ·
ui,τ ), where wi,τ and ri,τ are normalized CPU and memory
resources, and ui,τ is the edge resources proportion. This arti-
cle mainly focuses on the two resources of CPU and memory
because the datasets [9] we are using are computationally
intensive services. Note that the larger value of ui,τ means the
lower latency of mi,τ , and the latency is one of the essential
factors affecting SLA priority, so we add the consideration
of the weighting factor ε to ui,τ . The larger the value of
each item in ϕi,τ , the better the performance of corresponding
item will be in the resource cell mi,τ . We group the cells
mi,τ ∈ Mτ based on Φτ into resource channels p ∈ P with
corresponding SLA priority using clustering algorithm, i.e.,
Mτ ⇒ MP . The SLA priority of each channel is denoted
by δp =

√
w2
mp

+ r2mp + (ε · ump)2, where mp is the central
point of channel p, and SLA priority is proportional to the
performance of the resource cell.

Service orchestrator. To make full use of the resources
customized by resource customizer, the service orchestrator
needs to appropriately orchestrate service replicas at resource
cells on each resource channel. On resource channel p ∈ P ,
orchestrating a service replica lp to the cell mp, can be denoted
as (l,m). We can define all orchestration sets as S ⊆ Lp×Mp,
and describe each single service orchestration as selecting
an element from the set. So we can transform the service
orchestration problem into set optimization. Note that service
orchestration significantly influences request dispatch, and we
will explain the relationship between them in the following.

Request dispatcher. After the resource customization and
service orchestration is completed, request dispatcher will
dispatch the requests that reach the nodes to the resource cells
with matching service replicas at the small time scale, slot t,
as shown in Fig. 5. The number of requests from users for
service l ∈ Lp arrived at node i at slot t is λtp,l,i, and the
average number of requests for a frame τ is denoted by λτp,l,i.

To achieve the objective of EdgeMatrix, we have made
the following efforts: (i) the policy learned by the resource
customizer reduces SLA violations for various user services
(detailed in Sec. III-A); (ii) moreover, we jointly consider
service orchestration and request dispatch to maximize the
overall throughput of the system (i.e., JSORD); and model
them together as a mathematical problem because of their
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strong correlation (a brief introduction in the following, and
more details in the Sec. III-B).

Since each channel in P is similar in terms of handling
JSORD, for clarity, one channel p ∈ P is used to introduce
EdgeMatrix in the following discussion. We first set up two
decision variables x and y, where x is the service orchestration
variable and y is the request dispatch variable. More specifi-
cally, xτp,l,m ∈ {0, 1} is 1 if service l is orchestrated on cell
m in frame τ and 0 otherwise, ytp,l,i,m ∈ [0, 1] represents the
probability that a request of service l arrived at edge node i
is dispatched to cell m at slot t. For frame τ , we define y as
yτp,l,i,m ∈ [0, 1].

We formulate the JSROD as Eq. (1): The object of (1a)
is to maximize the number of each channel served requests,
Ψp =

∑
l∈Lp

∑
i∈V λp,l,i

∑
m∈Mp

yp,l,i,m, which equivalent
to the system overall throughput because the joint optimization
among channels is mutually independent. Constraint (1b) guar-
antees the request dispatch variable is available. Constraints
(1c) and (1d) ensure that each cell’s memory and computing
capacity can offer the resources required by orchestrated
service replicas. Constraint (1e) ensures that y is valid if and
only when the service l is orchestrated and won’t trigger
the SLA, where Itc,l−oc,l−ti,m>0 is the indicator function,
indicates the SLA priority for the requests, and ti,m is the
transmission latency between node i and cell m. Constraint
(1f) is the available range of values.

max Ψp, (1a)

s.t.
∑

m∈Mp

yp,l,i,m ≤ 1, (1b)

∑
l∈Lp

xp,l,mrp,l ≤ Rp,m, (1c)

∑
l∈Lp

ωp,l
∑
i∈V

λp,l,iyp,l,i,m ≤Wp,m, (1d)

yp,l,i,m ≤ min{xp,l,m, Itp,l−op,l−ti,m>0}, (1e)
x ∈ {0, 1}, y ≥ 0,∀p ∈ P, l ∈ Lp, i ∈ V, m ∈Mp. (1f)

III. ALGORITHM DESIGN

A. MADRL for Resource Customization
The resource customizer agent deployed on each node can

calculate new resource cells’ resource requirements for Edge-
Matrix based on local state and learned policy. Its objective
is to provide customized resource cells for user services with



different SLA priority under (i) multi-resource heterogeneous
edge nodes and (ii) dynamically changing service requests,
which reduces SLA violations for various user services.

With the development of artificial intelligence, especially
reinforcement learning (RL) [10] represented by DQN [11],
DDPG [12] and A3C [13], game control and robot control
are well performed by RL. Due to the large number of
computational nodes distributed in the edge-cloud system, the
direct implementation of these algorithms will cause a high-
dimensional action space or non-stationary environment [14],
[15]. Therefore, we introduce the MADRL algorithm to enable
each decision-capable edge node in the system to customize
the resources in its network neighborhood into resource cells
based on the changing system state. To learn practical resource
customization policies in complex networked environments,
we must consider (i) the impact of algorithm training on the
robustness of the networked system, (ii) the unsuitability for
edge nodes with limited computational power to deploy large
models, and (iii) the high-dimensional action space in the
decision making of the networked system. Therefore, we adopt
an algorithmic framework of offline centralized training and
online distributed execution with a continuous action space.

1) Markov Game Formulation: Since the edge cluster of
each region d ∈ D in EdgeMatrix is a graph Gd, a multi-
agent Markov Decision Process (MDP) can be formed as
ρ = (Gd, {Ŝi, Âi}i∈V , P̂, {R̂i}i∈V). We denote the resource
customizer agent on each edge node as i ∈ V . More details
are introduced according to ρ in the following.

State space Ŝ . At frame τ , the local state space observed
by the agent on edge node i is ŝi,τ , which contains: (i)
the number and kinds of requests (λτ1,1,i, ..., λ

τ
p,l,i)p∈P,l∈Lp ;

(ii) the resource requirements and delay demand of requests
arrived at node i; (iii) the CPU, memory and edge resources
proportion of the existing cells created by agent i in the
system; (iv) the available resources of edge nodes where agent
i is located, Ni. We simply consider the global observation for
the training critic as the ensembles of all agents’ state, ŝτ .

Action space Â. We define the action space of all
agents in the edge cluster as a joint action space Â =
{Â1, ..., Âi, ..., ÂN}i∈V , where Âi ∈ Â represents the action
space of agent i. At frame τ , agent i predict the action âi,τ
according to the observed local state space ŝi,τ and policy
πi,τ . Specifically, âi,τ indicates the size of the resource that
the agent i predicts allocate to cell mi,τ , i.e., (Wmi,τ , Rmi,τ ),
where both of them are continuous variables with a value range
of [0, 1]. The actual resource size is (α · Wmi,τ , β · Rmi,τ ),
where α and β are the upper limits of the cell’s resources.

Reward function R̂. Agent i inputs the observed local
state space ŝi,τ and selected action âi,τ at frame τ into
the reward function R̂ to get an immediate reward r̂i,τ . To
learn how to improve the overall throughput of the system
while reducing SLA violations for various user services, we
comprehensively consider service throughput and SLA priority
to help the agent learn this ability in an environment where
multi-agents coordinate with each other. The reward function
can be formulated as r̂i,τ =

∑
p∈P δp

∑
l∈Lp Ψ′l,i,τ , where
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Ψ′l,i,τ = Ψl,i,τ/λ
τ
p,l,i is the throughput rate of service l arrived

at node i at τ . δp indicates the weight of the services with
SLA priority p, and we verified the necessity of this setting
by adjusting ε in Sec. V-A.

State transition function P̂ . Note that we use a determin-
istic policy, and the state transition function is denoted as
P̂(Ŝ ′ | Ŝ, Â1, ...ÂN ) : Ŝ × Â1 × . . .× ÂN 7→ Ŝ ′.

2) Networked Multi-agent Actor-Critic: In the networked
environment of the edge-cloud system, the main problems in
designing the MADRL algorithm are: (i) we need to minimize
the requirements of resources for agents’ decision-making
because the computing nodes at the edge of the network only
have limited resources; (ii) reducing SLA violations is the aim
of our work, so the training or execution process should not
affect the stability and security of the networked system.

To better deal with the above problems, we proposed the
Networked Multi-agent Actor-Critic (NMAC) algorithm in the
multi-agent coordinate environment of edge-cloud system, as
shown in Fig. 6, (i) centralized critic, which can guide each ac-
tor to learn an effective policy according to global observation
with extra information during training; (ii) distributed actor,
each actor’s input during training and execution is local state,
so the actor can seamlessly switch between the two phases.
• Centralized critic. During the training process, we equip

each agent with a critic to train the actor. For agent i,
the critic is implemented based on the centralized action-
value function Q̂ (ŝτ , âτ | θπi), which represents the ex-
pected discounted cumulated reward of frame τ starting
from state-action pairs (ŝτ , âτ ) according to the policy
πi, âτ = (..., âi,τ , ...). The action-value function can be
represent as Q̂ (ŝτ , âτ | θπi) = Eπi [Ri,τ ], where Ri,τ =

r̂i,τ +
∑T
τ ′=τ+1 γ

(τ ′−τ)r̂i,τ+1. Thus, the centralized action-
value function can be obtained from the Bellman Equation:

Q̂ (ŝτ , âτ | θπi) = r̂i,τ +γmax
âτ+1

Q̂ (ŝτ+1, âτ+1 | θπi) , (2)

where θπi is the parameter of policy πi ∈ Π, Π =
{π1, ..., πN}, and the optimization function can be derived
as a loss function between actual critic network Q̂i,τ and
target critic network Ĝi,τ ,

L (θπi) = E
[(
Q̂ (ŝτ , âτ | θπi)− Ĝi,τ

)2]
,

where Ĝi,τ = Q̂′
(
ŝτ , âτ | θπ

′
i

)
.

(3)

• Distributed actor. For each agent, the actor network learns a
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deterministic policy µi to maximize the cumulative reward,
i.e., J = Eµi [Ri,τ ]. We update the parameters θµi through
optimizing policy gradient:

∇θµiJ (µi) =

E
[
∇θµi logµi (âi,τ | ŝi,τ )∇aiQ̂ (ŝi,τ , âi,τ | θµi)

]
. (4)

Especially, NMAC implements an offline training and online
execution framework: (i) offline-training, can avoid that the
training process may have a negative impact on the networked
system stability; (ii) online-execution, only requires the actor-
network to predict the action and the learned policy only uses
local state, which significantly reduces the resources consumed
by the agent compared to the training phase.

B. Joint Service Orchestration and Request Dispacth
Since service orchestration significantly impacts request

dispatch, we together consider them as a joint optimization
problem, i.e., JSORD. Specifically, (i) at the large time scale,
JSORD has to orchestrate the appropriate services for each cell
in EdgeMatrix based on the system state, and (ii) at the small
time scale, JSORD has to dispatch the requests arriving at each
node of the system to resource cells. Considering the system
with multiple types of constraints, (e.g., computation, memory,
communication, and latency requirements), we solve JSORD
based on MILP. However, the widely distributed edge nodes
and the variety of services in the system make the runtime of
the solution unacceptable for users.

In EdgeMatrix, each channel serves a specific class of
services with the same SLA priority. The resources used during
service orchestration and request dispatch are the cells of
the channel, so the channels are independent of each other.
Therefore, we execute JSORD independently in parallel on
each channel, which significantly reduces the runtime.

We model the joint optimization problem of service orches-
tration and request dispatch as Eq. (1) at the end of section II.
More specifically, (i) at the beginning of frame τ , we calculate
the optimal service orchestration xτp,l based on Eq. (1) by
the predicted request dispatching probability yτp,l,i,m and the
request demand λτp,l,i; (ii) then at the beginning of slot t,
we calculate the request dispatch variable ytp,l,i,m with the
current request demand λtp,l,i and the orchestrated service xτp,l
to solve Eq. (1). At the large time scale, note that although the
dispatch variable yτp,l,i,m is predicted according to the demand

λτp,l,i, y
τ
p,l,i,m is used to evaluate Eq. (1a) under the given

orchestrated services xτp,l rather than request dispatch.
1) Solvability Analysis: We first analyze the solvability of

the joint optimization Eq. (1) and then consider the special
case of Eq. (1), where the resource cell and the service are
homogeneous, with constraints (1d) ignored:

max Ψp, (5a)
s.t. (1b), (1e), (1f), (5b)∑

l∈Lp

xp,l,m ≤ Rp,m. (5c)

The joint optimization Eq. (1) can be simplified to the 2-
Disjointed Set Cover Problem, i.e., Eq. (5), which is proved
to be NP-complete [16]. The special case of the joint op-
timization, Eq. (1) is NP-hard, which means that the joint
optimization problem of service orchestration and request
dispatch is also NP-Hard in the general case.

To describe the solution process of Eq. (1) more clearly, we
discuss the deformations of Eq. (1) and the solution processes
at the two-time-scale framework in the following, i.e., service
orchestration and request dispatch, as shown in Fig. 7.

2) Requst Dispatch: At slot t, the service orchestrator has
already orchestrated the services on each resource cell, which
means we solve the request dispatch problem under the situ-
ation that service orchestration variable xτp,l is known. Thus,
the joint Eq. (1) can be simplified to linear programming, i.e.,
Eq. (6), which means we can get the probability ytp,l,i,m when
dispatching a request of service l arriving at the edge node i
to cell m. (If the request is successfully dispatched with our
constraints (6b)-(6d), we can serve it.)

max Ψp, (6a)
s.t.(1b), (1d), (1e), (1f), (6b)

yp,l,i,m ≤ I(l,m)∈S , (6c)
yp,l,i,m ∈ [0, 1]. (6d)

3) Approximation Algorithm for Service Orchestration:
Service orchestration problem can be transformed to a set
optimization problem in the Sec. II-B. On resource channel
p ∈ P , orchestrating a service replica lp to the cell mp can
be denoted as (l,m). We can define all orchestration sets as
S ⊆ Lp ×Mp, and each single service orchestration can be
described as selecting an element from the set. Let Ω (S)
denote the optimal objective value of Eq. (1) under a fixed
set S of orchestrated services and a fixed dispatch variable x,
(l,m) ∈ S if and only if xl,m = 1. This can be calculated by
solving the request dispatch problem (see Eq. (6)), and then
we can rewrite the problem as:

max Ω(S), (7a)

s.t.
∑

l:(l,m)∈S

rp,l ≤ Rp,m, (7b)

S ⊆ Lp ×Mp. (7c)

In summary, the overall training and scheduling process of
EdgeMatrix is given in Algorithm 2.



Algorithm 1: Solve JSORD Based on Submodular
Function Maximization

Input: Input parameters of Eq. (1);
Output: Service orchestration variable xτp,l and requests

dispatch variable yτp,l,i,m;
1 Initialize frame = τ, channel = p, S = ∅,

T = {e|e ∈ (Lp ×Mp) \ S, S ∪ {e} satisfies constraints
of (7a)} ;

2 while T 6= ∅ do
3 e∗ = the element e in T that get the maximum value of

Ω(S ∪ {e};
4 S = S ∪ {e∗};
5 T = {e|e ∈ (Lp ×Mp) \ S, S ∪ {e} satisfies

constraints of (7a)};
6 Convert S to its vector representation xτp,l;
7 Compute yτp,l,i,m = {..., ytp,l,i,m, ...} using Eq. (6a) based on

orchestrated services xτp,l;
8 for slot t = 0, 1, 2, ..., do
9 Execution request dispatch with dispatching variable

ytp,l,i,m at the small time scale.

IV. IMPLEMENTATION

A. Edge-cloud System Setup
Edge cluster and cloud center. In the simulation ex-

periment, we set up 10 edge nodes and 6 SLA Alloca-
tion/Retention Priority (ARP) services [17] in the edge cluster
of a region from the perspective of the service providers.
Each property of the edge node i ∈ V is set to Wi = [2, 4]
vCPUs, Ri = [100, 200] GB and Bi = {125, 12.5} Mbps.
We assume that the computing capacity Wcloud and memory
capacity Rcloud of cloud center are always sufficient, and the
connection between the cloud center and the edge cluster is
reliable, so the transmission delay from the edge node to the
cloud center is set to a constant Lcloudedge = 10ms.

Resource cells and channels. By default, at each frame τ ,
the number of resource cells that each agent can maintain is∑
p∈P mp,i ≥ 1. The requirements of each resource cell are

predicted by the continuous action âi,τ = {Wmi,τ , Rmi,τ }.
These two numbers are floats between [0, 1], and their true
resource requirements are multiplied by the scalar in the
system, i.e., (2 vCPUs, 500 MB). These resource cells are
classified to the corresponding resource channels according to
the cell characteristics Φ. There are [2, 4] kinds of service on
each channel, and the number of resource channels is 6.

Service and request. Our system’s data value range and
request distribution are based on the Alibaba Cluster Trace
[9] to ensure EdgeMatrix has effective performance in the real
environment. However, since the dataset does not reflect the
delay characteristics, we refer to ETSI’s white paper [17] to
determine the delay data range of requests.
B. Training Settings

We implemented Algorithm 2 based on python 3.6 with the
following detailed setup. Each NMAC agent consists of a critic
network and an actor policy network, training the network with
the fixed learning rate of η = 0.01 and the reward discount
factor of γ = 0.95. The critic network is a three-layer fully-
connected neural network (FCNN) with 64 neurons per layer,

Algorithm 2: The Overall Algorithm of EdgeMatrix
1 Initialize the system environment and training parameters;
2 Get the system observation ŝ0;
3 for frame τ = 0, 1, 2, ..., do
4 Get the actions of each agent âτ = (â1,τ , ..., âi,τ , ...);
5 Resource Customizer execution actions;
6 for channel p = 0, 1, 2, ..., do
7 Solve JSORD based on Algorithm1 in parallel on

each channel p ∈ P ;
8 Get reward r̂τ and next observation ŝτ+1;
9 Store [ŝτ , âτ , r̂τ , ŝτ+1] for updating neural network;

10 if frame % update rate == 0 then
11 Update the parameters of actor (θµ) and critic(θπ)

using Eq. (3) and Eq. (4);
12 Save models.

in which the activation function in the first two hidden layers
is relu, and there is no activation function in the output layer.
The actor policy network is also a three-layer FCNN with 64
neurons per layer, in which the activation function is relu in
the first two layers, and the output layer is sigmoid to ensure
that the output is in the valid range. The linear program solver
in JSORD uses linprog function of the SciPy library.

V. PERFORMANCE EVALUATION

Under the objective of maximizing the overall through-
put while reducing SLA violations for various services, we
have verified the effectiveness of EdgeMatrix on the three
challenges of multi-resource heterogeneity, resource compe-
tition, and networked system dynamics. More specifically, we
consider three metrics: (i) the reward used to evaluate the
comprehensive performance of EdgeMatrix when training the
algorithm; (ii) to avoid system throughput Ψ → ∞, we use
the overall throughput rate to verify the system performance;
(iii) percentage of requests served by each channel to total
requests in EdgeMatrix used to reflect EdgeMatrix’s assurance
of SLA priority. In our experiments, the baselines include (i)
MADDPG, a general MADRL algorithm; (ii) MA2C, a state-
of-art MADRL algorithm applied in the networked system.

A. Setting of Key Parameters

We gradually determine several essential parameters during
training, as shown in Fig. 8. The frequency of service orches-
tration has a significant impact on the training performance of
EdgeMatrix, i.e., frequent or occasional service orchestration
cannot get better performance. (i) For frequent orchestration,
the cell must reload replicas of the service at each service
orchestration, making some requests time out during the
waiting process; (ii) for occasional orchestration, the requests
of the networked system are dynamically changing, and the
services orchestrated in the system need to be appropriately
adjusted. Therefore, we set 100 slots at each frame. The
system performance will perform better as the number of
cells maintained by each node increases. However, the node
maintains cells requires additional resource costs, so we set
the number of cells maintained by each node to 6. As one
of the essential characters of SLA priority, the edge resources
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proportion determines the delay guarantee of cells. The large
weight of the edge resources proportion causes the impact of
core network resources negligible, so we set it as ε = 1.5.

B. Learning Ability of EdgeMatrix

To verify the learning performance of EdgeMatrix, we first
compare the training performance of the other two baselines,
proving that EdgeMatrix has the feasibility of convergence
and has effective learning capabilities. Then we compare
the performance of the algorithm EdgeMatrix, independent
DQN [11], and independent PPO [18] to demonstrate the
effectiveness of EdgeMatrix among 10 edge nodes.

As shown in Fig. 9(a), the three algorithms at the first
100 training episodes are in the exploration stage with ran-
dom policy, i.e., they do not learn policies and only collect
training data, and their rewards are at the same level. The
rewards of EdgeMatrix and MADDPG begin to rise sharply
after the 100th episode and maintain a flattened period. It
is because the algorithm has learned some effects from the
data collected in the first 100 episodes. However, the learning
performance is flattening along with the state of the dynamic
networked system. After the 1000th episode, both EdgeMatrix
and MADDPG tend to converge. In particular, the performance
of EdgeMatrix is improved by about 60%, but MADDPG
captures almost no knowledge among the data. Moreover,
there is no significant impact on the performance of MA2C,
which also implies that the algorithm gains little benefit from
training based on sample data. Fig. 9(b) demonstrates that a
simple implementation of independent agent in the multi-agent
environment is not excellent due to the non-stationary problem.

C. Practicability of EdgeMatrix

Fig. 10 proves two sub-objectives of EdgeMatrix: (i) max-
imizing overall throughput; (ii) focusing on reducing SLA
violations for various user services. We compare the overall
throughput rates of different algorithms in Fig. 10(b) under
the same request distribution (as shown in Fig. 10(a)) within
a period and shows the proportion of service requests served
by each channel to all service requests in Fig. 10(c).
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Specifically, the performance of EdgeMatrix under the same
dynamic request distribution is 36.7% better than the closest
baseline. In all six channels (1-6), the smaller the value of
Channel Id, the higher the SLA priority that the channel can
guarantee. Among them, the cells distributed on the channel
with channel id (1-3) are all horizontal, which means that
the orchestrated service has a high SLA priority and almost
negligible transmission delay, and the channel with channel
id is (4-6) have the vertical cells. Furthermore, under the
weight of edge resources proportion set during our training
process (i.e., ε = 1.5), the number of requests served by the
horizontal channel accounted for 73.7% of the total number
of requests. The number of requests served by the vertical
channel is accounted for 26.3%. Note that the throughput rate
of the different services can be adjusted by ε.

D. Performance in Complex Environment

To test the adaptability of EdgeMatrix in the edge-cloud
system, we evaluated the performance of EdgeMatrix under
the three inherent challenges: multi-resource heterogeneity,
resource competition, and networked system dynamics.

EdgeMatrix under multi-resource heterogeneity. Fig. 11(a)
shows the performance of EdgeMatrix under heterogeneous
core network (i.e., compute and memory) resources owned by
edge nodes. While keeping the total amount of each resource
unchanged, we change the resource variance between edge
nodes and divide the resource heterogeneity into five levels
according to the variance, where the larger the value means
the higher heterogeneity. We found that EdgeMatrix performs
the best when the heterogeneous level of computing resources
and memory resources are the same under the existing request
distribution. There is a certain correspondence between re-
quests for computing resources and memory resources. Even
though the performance of EdgeMatrix will decrease as the
heterogeneity of one resource increases, the performance of
EdgeMatrix only drops 3.9% when the edge node resource
heterogeneity is the strongest compared to the weakest case.

EdgeMatrix under resource competition. Resource demand
has a significant impact on the throughput rate. The higher
the load level of computing resources and memory resources,
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the more intense the competition for this type of resource.
Fig. 11(b) shows that EdgeMatrix can adjust adaptively to the
dynamic change of resource competition degree, and its ability
to adjust the competition of memory resources is better than
that of computing resources. EdgeMatrix benefits from the
isolation ability of channels and the online learning ability
of NMAC, which can sensitively perceive the load changes
of various resources in the environment and adjust the policy,
thus maintain efficient resource customization ability.

EdgeMatrix under networked system dynamics. The band-
width resource can affect the stability of the networked system.
The heterogeneity level of bandwidth is the same as the previ-
ous. The larger the average network bandwidth (1-5), includes
larger the average bandwidth. Fig. 11(c) shows that the larger
the total bandwidth, the higher the service throughput rate.
The system throughput will decrease as the heterogeneity
of bandwidth resources between nodes increases. The larger
the average bandwidth resource, the smaller the impact of
heterogeneity changes. EdgeMatrix’s resource customization
has played a positive role, which means whether the resources
of edge nodes are large or small, EdgeMatrix can cover them.

E. Runtime Cost Reduction

One of the most important contributions of EdgeMatrix is
to significantly reduce the runtime of service orchestration
and request dispatch. As shown in Fig. 12, we compare the
decision time cost by EdgeMatrix and pure-JSORD to perform
service orchestration and request dispatch for each frame under
different numbers of nodes and service types when the number
of channels is 6. We found that the time cost required by
EdgeMatrix and pure-JSORD will increase with the increase
in the number of nodes and service types, but the magnitude of
the time cost required by EdgeMatrix is much lower than that
of pure-JSORD. We observe that the runtime of pure-JSORD
is 13 to 71 times higher than EdgeMatrix for a small range
of parameter values. The reason is that the traditional method
considers all services and requests within the global nodes,
unlike EdgeMatrix which (i) divides the SLA priority levels
of user services, orchestrates services with corresponding SLA
priority on each channel; (ii) dispatches requests orient to the
cells on each channel rather than the global edge nodes, and
only dispatch requests with one corresponding SLA priority.
These characteristics lead EdgeMatrix to perform service
orchestration and request dispatch in parallel between channels
and significantly reduce the magnitude of parameters in the
algorithm.
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Fig. 12. Runtime comparison between EdgeMatrix and pure-JSORD.

VI. RELATED WORK

Resource Customization. The design concept of network
slicing in 5G inspires our work [19], i.e., using SDN and NFV
technologies to map resources in physical infrastructure to
dedicated virtual resources required by users. Further provide
customized services and resource isolation to efficiently utilize
limited resources in networked systems, such as RANs [20]–
[25] and Core Network [26], [27]. However, some existing
research considered a separate MEC host [7], [28] or Service
Chain Functions (SCFs) [21], [29] in the edge node as a slice
for the edge-cloud system. However, they do not fully consider
the multi-resource heterogeneity in edge environments.

Joint Service Orchestration and Request Disapatch.We
also need to make rational and efficient use of virtual re-
sources in EdgeMatrix through service orchestration [30],
[31] and request dispatch [32]. In [30], the authors designed
service orchestration algorithms based on the greedy idea
to deploy appropriate services in edge clusters. In [31], the
authors proposed a service orchestration algorithm using a
game-theoretic approximation with energy consumption and
communication costs as optimization goals and enhance the
algorithm’s robustness by avoiding the need for a centralized
auctioneer. However, [30], [31] have no particular concern on
(i) the impact of service orchestration and deletion on request
dispatch and (ii) the competition for resources among different
services. The authors in [32] designed the request dispatch
algorithm aiming to reduce global energy consumption. How-
ever, the work in [32] does not fit the edge-cloud system,
which is the collaboration between the network edge and the
cloud center.

VII. CONCLUSION
In this paper, we propose EdgeMatrix that can guarantee

the SLA priority for users in the edge-cloud system under
three inherent challenges. EdgeMatrix introduces the NMAC
to redefine the physical resources in the edge-cloud system
as isolated customized resources, which effectively maximize
the system throughput and improves the throughput rate of
services with high SLA priority under real trace. We also
perform JSORD in parallel on each independent channel,
significantly reducing runtime and making EdgeMatrix equally
applicable to large-scale networked systems.
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