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Abstract—Decentralized bilevel optimization has received in-
creasing attention recently due to its foundational role in
many emerging multi-agent learning paradigms (e.g., multi-
agent meta-learning and multi-agent reinforcement learning)
over peer-to-peer edge networks. However, to work with the
limited computation and communication capabilities of edge
networks, a major challenge in developing decentralized bilevel
optimization techniques is to lower sample and communica-
tion complexities. This motivates us to develop a new decen-
tralized bilevel optimization called DIAMOND (decentralized
single-timescale stochastic approximation with momentum and
gradient-tracking). The contributions of this paper are as fol-
lows: i) our DIAMOND algorithm adopts a single-loop struc-
ture rather than following the natural double-loop structure of
bilevel optimization, which offers low computation and imple-
mentation complexity; ii) compared to existing approaches, the
DIAMOND algorithm does not require any full gradient evalu-
ations, which further reduces both sample and computational
complexities; iii) through a careful integration of momentum
information and gradient tracking techniques, we show that the
DIAMOND algorithm enjoys O(ε−3/2) in sample and communi-
cation complexities for achieving an ε-stationary solution, both
of which are independent of the dataset sizes and significantly
outperform existing works. Extensive experiments also verify our
theoretical findings.

I. INTRODUCTION

In recent years, the problem of performing decentralized
bilevel optimization over networks has attracted increasing at-
tention. For a peer-to-peer communication network represented
by a graph G = (N ,L), where N and L denote the sets
of agents and edges with |N | = m, a decentralized bilevel
optimization problem can be generally written as follows:

min
x∈Rdup

l (x) =
1

m

m∑
i=1

{
li (x) , Eξi [fi (x,y∗i (x) ; ξi)]

}
,

s.t. y∗i (x) = argmin
yi∈Rdlow

{
gi (x,yi) , Eζi [gi (xi,yi; ζi)]

}
, (1)

where li (x) is the local objective function at agent i, x ∈ Rdup
and yi ∈ Rdlow are the global upper-level variables and the
local lower-level variables at agent i ∈ {1, . . . ,m}, and ξi

This work has been supported in part by NSF grants CAREER CNS-
2110259, CNS-2112471, CNS-2102233, CCF-2110252, and AFRL grant
FA8750-20-3-1003. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of the Air Force
Research Laboratory or the U.S. Government. Distribution A. Approved for
public release: Distribution unlimited AFRL-2023-0273 on 18 Jan 2023.

and ζi represent the random samples of the upper-level and
the lower-level subproblems, respectively.

Problem (1) plays a foundational role for various funda-
mental multi-agent learning paradigms over decentralized or
multi-hop wireless edge networks. For instance, in the well-
known actor-critic framework for cooperative multi-agent re-
inforcement learning (MARL, e.g., [1], [2]), the shared global
policy improvement (the actor component) corresponds to the
upper-level subproblem in Problem (1), which depends on the
optimal solution of a policy evaluation subproblem ( the critic
component), which corresponds to the lower-level subproblem
in Problem (1). Another example can be found in multi-agent
meta-learning (also referred to as “learning-to-learn”, see, e.g.,
[3], [4]), where the training of task-specific parameters at each
agent can be represented by the lower-level subproblem in
Problem (1). The task-specific parameter training is coupled
with the shared parameters’ optimization, which corresponds
to the upper-level subproblem in Problem (1).

It is evident from Problem (1) that the most prominent
features of decentralized bilevel optimization are i) “bilevel”
and ii) “decentralization.” Same as the single-agent bilevel
counterpart [5], Problem (1) has a hierarchical structure, where
the upper-level subproblem objective value is determined by
both the upper-level variable x and the optimal variables
{y∗i (x)}mi=1 obtained by solving the lower-level subprob-
lems. Due to this bilevel structure, the solution approach for
Problem (1) is fundamentally different from the traditional
loss minimization in conventional learning problems with a
single-level structure. Thus, new algorithm design and analysis
techniques are necessary for solving Problem (1). Moreover,
instead of only having a single task as in single-agent bilevel
optimization problems, one needs to cope with multiple lower-
level tasks in a decentralized fashion in Problem (1). This key
difference necessitates new algorithm designs. Thus, solving
decentralized bilevel optimization problems over wireless net-
works needs to address the following technical challenges:
• Single-Loop or Double-Loop Architecture? In Problem (1),

it is often impractical to asymptotically solve the lower-level
problem to optimality. Rather, one typically resorts to using
an approximaion of y∗(x), which is obtained by solving
the lower-level problems with finite iterations [1], [6]–[11].
However, due to the coordination complexity among agents
and training accuracy concerns, the algorithmic architecture
choice between “double-loop” [6]–[8] or “single-loop” [1],
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[9]–[11], both of which are widely used in single-agent
bilevel optimization, suddenly becomes critical. On one
hand, the double-loop architecture naturally follows the
bilevel problem structure and executes multiple inner-loop
iterations within each outer iteration, which typically yields
a more accurate estimation of the lower-level minimizer.
However, in a decentralized network setting, this requires
a two-timescale implementation with high coordination
complexity, as well as high computation and sample com-
plexities in the inner loop. On the other hand, the single-
loop architecture iteratively solves the upper- and lower-
level subproblems and updates corresponding parameters
simultaneously, which is much easier to implement in the
decentralized setting. However, it is unclear whether the
less accurate inner subproblem solutions could also result in
high communication and sample complexities in the overall
training process.

• Achieving Low Communication and Sample Complexities:
Since there is no dedicated centralized server in decentral-
ized bilevel optimization over edge networks, it is infea-
sible to aggregate the local datasets at the geographically
dispersed agents. Hence, it is necessary for the agents to
communicate and exchange information with each other to
reach a “consensus solution” [12]–[15]. In such scenarios,
how to design efficient algorithms to reduce the required
rounds of communications (i.e., communication complexity)
to reach consensus is one of the most important questions in
algorithm design. This is particularly true for deploying de-
centralized bilevel optimization over wireless edge networks
that may have low-speed and unreliable links. Also, due to
the fact that the agents (i.e., computing nodes) in many
wireless edge networks are fundamentally constrained by
computation capabilities (e.g., sensors or smart phones with
limited computation speed, energy, and memory), it is im-
portant to design efficient algorithms to reduce the required
number of samples (i.e., sample complexity). However,
achieving low sample and communication complexities are
two fundamentally conflicting goals. On one hand, the
variance of a stochastic gradient highly depends on the
number of samples in each mini-batch. The more samples in
each mini-batch (i.e., potentially higher sample complexity),
the larger the variance, which may imply fewer communi-
cation rounds for convergence (i.e., lower communication
complexity). On the other hand, if one prefers to use fewer
samples per iteration to lower per-iteration sample com-
plexity, the stochastic gradient information is noisier, which
could result in more communication rounds to reach certain
training accuracy (i.e., higher communication complexity).

In addition to the above challenges, the coupled structure
and the inherent non-convexity of the decentralized bilevel op-
timization problems make it challenging to design algorithms
and theoretically analyze their performance. So far, results on
designing decentralized bilevel optimization algorithms with
low sample, communication, and implementation complexities
remains rather limited in the literature (see Section II for more

detailed discussions). The main contribution of this paper is
that we propose a series of new algorithm design techniques,
which overcome the aforementioned challenges and achieve
low sample and communication complexities with a single-
loop structure for decentralized bilevel optimization problems.
The key results of this paper are summarized as follows:
• We propose an algorithm called DIAMOND (decentralized

single-loop stochastic approximation with momentum
and gradient-tracking) for solving decentralized bilevel
optimization problems over networks. Our proposed
DIAMOND algorithm integrates consensus-based updates
with gradient tracking and momentum-based stochastic gra-
dient estimators, which is a carefully designed triple-hybrid
approach. We show that this triple-hyrid approach enables
the use of a single-loop algorithmic architecture, which
significantly reduces the implementation complexity over
peer-to-peer edge networks.

• We show that DIAMOND achieves a sample complexity of
O(ε−3/2) to find an ε-stationary solution for non-convex
upper-level optimization objectives. Interestingly, this result
matches the state-of-the-art sample complexity of stochastic
first-order algorithms for solving single-agent bilevel opti-
mization problems. Meanwhile, the communication com-
plexity of DIAMOND is O(ε−3/2). These results show that
DIAMOND strikes a good balance between sample and
communication complexities.

• We conduct extensive experiments to validate the theoretical
results of the proposed DIAMOND algorithm. Our exper-
imental results show that DIAMOND outperforms other
stochastic first-order baseline algorithms in terms of sample
complexities in various communication network settings.
The rest of the paper is organized as follows. In Sec-

tion II, we review related work to provide the necessary
background on decentralized and bilevel optimization, and
put our work in comparative perspectives. In Section III, we
present the system model and the consensus reformulation of
decentralized bilevel optimization. In Section IV, we propose
the DIAMOND algorithm. We then provide the theoretical
convergence analysis of DIAMOND in Section V. Section VI
provides numerical results to verify our theoretical findings,
and Section VII concludes this paper.

II. RELATED WORK

To facilitate our discussions in subsequent sections, we
organize the related work in three parts. First, we survey
the approaches for solving single-agent bilevel optimization
to provide a contrasting view for decentralized bilevel op-
timization. Then, we review the literature on decentralized
optimization for single-level loss minimization to familiarize
readers with the basics of decentralized optimization over
networks. Lastly, we provide an in-depth comparison with the
most related work on decentralized bilevel optimization.

1) Single-Agent Bilevel Optimization: 1-a) Gradient-
Based Approaches: To our knowledge, single-agent bilevel
optimization was first studied in [16]. Since then, several



solution approaches have been proposed, such as 1) penalizing
the outer function with the optimality conditions of the inner
problem [17], [18]; 2) reformulating the bilevel problem as a
single-level problem by replacing the lower-level problem with
its optimality conditions [19], [20]; and 3) utilizing gradient-
based techniques to iteratively approximate the (stochastic)
gradient of the upper-level problem. Gradient-based algorithms
for bilevel optimization have gained the most attention due
to their ease of analysis. Many gradient-based bilevel opti-
mization algorithms have been proposed, including but not
limited to: i) AID-based [4], [21], [22], ii) ITD-based [6], [23],
[24], and iii) SGD-based [1], [7], [8], [11]. However, these
algorithms were designed for single-agent bilevel optimization
problems and not applicable for the decentralized settings.

1-b) Momentum-Based Approaches: Momentum-based ap-
proaches enhance the gradient-based algorithms for single-
agent bilevel optimization. It has been shown that momen-
tum improves the computation efficiency of stochastic gra-
dient updates both in theory and in practice. Several bilevel
optimization algorithms that exploit momentum have been
proposed, such as STABLE [9], RSVRB [10], MRBO [8],
and SUSTAIN [11]. All of them share a similar single-loop
algorithmic architecture. To reach an ε-stationary point, STA-
BLE requires an order of O

(
ε−2
)

samples, while RSVRB,
MRBO and SUSTAIN require O

(
ε−3/2

)
samples. Compared

to STABLE, which only uses a momentum-based stochastic
gradient estimator for the upper-level subproblems, RSVRB,
MRBO, and SUSTAIN all utilize momentum-based stochas-
tic gradient estimators for both the upper- and lower-level
subproblems. However, all these momentum-based algorithms
are designed for the single-agent bilevel optimization setting.
In comparison, we focus on decentralized multi-agent bilevel
optimization, and propose the DIAMOND algorithm, which
uses momentum-based stochastic gradient estimators in both
upper- and lower-levels. Our theoretical result shows that
DIAMOND has the sample complexity ofO

(
ε−3/2

)
, matching

the state-of-the-art result achieved by RSVRB, MRBO and
SUSTAIN, but for the more challenging decentralized setting.

2) Decentralized Optimization for Single-Level Loss
Minimization over Networks: Decentralized optimization for
single-level loss minimization over networks traces its roots to
the seminal work [25], and has found important applications in
many engineering fields, e.g., network resource allocation [26],
power networks [27], and robotic networks [28]. One of the
most popular methods to solve decentralized optimization
problems is the distributed stochastic gradient descent (DSGD)
[14], which established the well-known O(1/

√
T ) conver-

gence rate with T iterations. Subsequently, [29] showed that
DSGD can outperform the centralized SGD counterpart. Re-
cently, various sample- and communication-efficient variants
of DSGD have been proposed, e.g., leveraging compression
[30], momentum [31], gradient tracking [32], [33], and vari-
ance reduction techniques [12], [34], [35]. However, results
on solving general decentralized bilevel optimization problems
are still limited.

3) Decentralized Bilevel Optimization over Networks: So
far, the research on decentralized bilevel optimization remains
in its infancy. As mentioned earlier, due to the lack of a
centralized server in the decentralized setting, it is natural
for us to consider the network-consensus approach [12]–[15]
as the solution strategy in this paper. To our knowledge, the
most related and the only work that also adopts a consensus-
based approach for solving decentralized bilevel optimization
problems is reported in [13], which contains two algorithmic
variants called INTERACT and SVR-INTERACT. Specifi-
cally, INTERACT is a local-full-gradient-based algorithm with
gradient tracking and achieves

[
O
(
nε−1

)
,O
(
ε−1
)]

sample-
communication complexity, where n is the size of the dataset
at each agent. Recall that the sample and communication
complexities of our DIAMOND are both O

(
ε−3/2

)
, which is

independent of data size. This implies that in the large dataset
regime Θ(ε−1/2), which is not uncommon in the era of “big
data,” INTERACT suffers a higher sample complexity than
that of our DIAMOND algorithm.

To lower the sample complexity of INTERACT, SVR-
INTERACT leverages variance reduction techniques to retain
the same communication complexity as INTERACT, while
achieving a lower but still dataset-dependent sample com-
plexity.Thus, in the large dataset regime Ω(ε−1), the sample
complexity of SVR-INTERACT will be higher than that of
DIAMOND. Also, SVR-INTERACT still requires periodic
full gradients, while DIAMOND only needs stochastic gra-
dient evaluations. Moreover, due to the variance reduction
techniques, SVR-INTERACT has a double-loop algorithmic
architecture. By contrast, DIAMOND is single-loop structure,
which has a lower computational cost and is easier to im-
plement. Apart from these, SVR-INTERACT was designed
to solve deterministic bilevel optimization problems, rather
than stochastic bilevel optimization problems that has wider
applications when the sample size of training data is large (e.g.,
hyperparameter optimization [36]) or the fresh data is sampled
for algorithm iterations (e.g., reinforcement learning [1]).

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we will present the network-consensus-
based problem reformulation that paves the way for our
subsequent algorithm design and analysis. Recall from Prob-
lem (1) that we consider a peer-to-peer communication net-
work represented by a graph. Suppose that each agent i can
communicate with its set of neighbors denoted by Ni ,
{j ∈ N , : (i, j) ∈ L}. To solve Problem (1) in a decentralized
fashion, one can rewrite Problem (1) as follows:

min
xi∈Rdup

l (x) =
1

m

m∑
i=1

{
li (xi) , Eξi [fi (xi,y

∗
i (xi) ; ξi)]

}
,

s.t. y∗i (xi) = arg min
yi∈Rdlow

{
gi (xi,yi) , Eζi [gi (xi,yi; ζi)]

}
,

xi = xj , if (i, j) ∈ L, (2)

where xi ∈ Rdup , ∀i, are the local copies of the global upper-
level variables at agent i ∈ {1, . . . ,m} and gi(xi,yi) is the



local lower-level loss at agent i. For notation simplicity, we
denote fi (xi,y

∗
i (xi)),Eξi [fi (xi,y

∗
i (xi) ; ξi)]. The equality

constraint in Problem (2) ensures that all agents share the
same global x-value to achieve the minimization of the upper-
level function, hence the name “consensus form” [12]–[15].
We assume that fi(xi,y∗i (xi)) is non-convex in xi, ∀i, in
general, and gi(xi,yi) is strongly-convex in yi, ∀i, which
typically holds in meta-learning, hyper-parameter optimization
(see Section VI), and MARL with quadratically-regularized
linear critics. Now, we define the notion of ε-stationarity that
serves as the convergence metric.

Definition 1 (ε-Stationary Point). A stochastic algorithm
reaches an ε-stationary point {xi,yi,∀i ∈ [m]} if

E
[
‖∇l(x̄)‖2︸ ︷︷ ︸
Stationarity

Error

+ ‖y∗ − y‖2︸ ︷︷ ︸
Lower−Level

Error

+
1

m

∑m

i=1
‖xi − x̄‖2︸ ︷︷ ︸

Consensus Error

]
≤ ε,

where x̄ , 1
m

∑m
i=1 xi, y ,

[
y>1 , . . . ,y

>
m

]>
, and y∗ ,[

y∗>1 , . . . ,y∗>m
]>

. The expectation is taken over the random-
ness of the algorithm.

Next, we formally define the sample complexity and com-
munication complexity of a decentralized algorithm, which are
also used in the literature (e.g., [12], [13]).

Definition 2 (Sample Complexity). The sample complexity is
defined as the total number of incremental first-order oracle
(IFO) calls required per node for an algorithm to reach an ε-
stationary point defined in Definition 1, where one IFO call is
defined as the evaluation of the stochastic gradient of upper-
and lower-level problems at agent i ∈ [m].

Definition 3 (Communication Complexity). The communi-
cation complexity is defined as the total rounds of commu-
nications required to find an ε-stationary point defined in
Definition 1, where each node can send and receive local
parameters with its neighbors in one communication round.

IV. THE DIAMOND ALGORITHM

In this section, we present our DIAMOND algorithm for
solving Problem (2). Since the agents can communicate with
their neighbors through the network to send and receive
information (model parameters) and aggregate the received
information, we define the consensus weight matrix M ∈
Rm×m, where [M]ij represents the consensus weight over
edge (i, j) ∈ L. We assume that M satisfies the following:
1) Doubly stochastic:

∑m
i=1 [M]ij =

∑m
j=1 [M]ij = 1,∀i, j;

2) Symmetric: [M]ij = [M]ji ,∀i, j ∈ N ;
3) Network-defined sparsity: [M]ij > 0 if (i, j) ∈ L; other-

wise, [M]ij = 0,∀i, j ∈ N .
The above conditions imply that the eigenvalues of M are real
and thus could be sorted as: −1 < λm (M) ≤ · · · ≤ λ2 (M) <
λ1 (M) = 1. We denote the second largest eigenvalue in
magnitude of M as λ , max {|λ2 (M)| , |λm (M)|}, which
will play an important role in the step-size selection for our
proposed algorithm. Note that the choice of M is not unique.

For example, one possible choice of M that only relies on
local information is the Metropolis weights [37]:

[M]ij = {1 + max [d(i), d(j)]}−1
,∀(i, j) ∈ L,

[M]ii = 1−
∑
j 6=i

[M]ij ,∀i ∈ N ,

where d(i) = |Ni| is the degree of agent i.
Using the implicit function theorem, the hypergradient of

li (xi) for a given xi ∈ Rdup can be evaluated as [6]:

∇li(xi) =∇xfi (xi,y
∗
i (xi))−∇2

xygi (xi,y
∗
i (xi))×[

∇2
yygi (xi,y

∗
i (xi))

]−1∇yfi (xi,y
∗
i (xi)) . (3)

Since obtaining y∗i (xi) in closed-form is difficult, ∇̄fi (xi,yi)
is used as a surrogate of ∇li (xi) at any (xi,yi) ∈ Rdup×dlow ,
which is defined as follows [6]:

∇̄fi (xi,yi) =∇xfi (xi,yi)−∇2
xygi (xi,yi)×[

∇2
yygi (xi,yi)

]−1∇yfi (xi,yi) . (4)

Note that the computation of ∇̄fi (xi,yi) involves exact
Hessian matrix inverse and gradient, which is cumbersome.
To avoid this expensive computation, we adopt the biased
stochastic gradient estimation of ∇̄fi (xi,yi) defined as [11]:

∇̂fi
(
xi,yi; ξ̄i

)
= ∇xfi (xi,yi; ξi)−

K

Lg
∇2

xygi
(
xi,yi; ζ

0
i

)
×
k(K)∏
j=1

I − ∇2
yygi

(
xi,yi; ζ

j
i

)
Lg

∇yfi (xi,yi; ξi) , (5)

where k (K) ∼ U{0, · · · ,K−1} is a uniform random variable
chosen from {0, · · · ,K − 1}. A total of K + 2 independent
samples are collected from the upper- and lower-level distribu-
tions πf and πg , respectively. We denote all random variables
needed in (5) as a (K+3)-tuple: ξ̄i ,

{
ξi, ζ

0
i , · · · , ζKi , k (K)

}
,

where ξi ∼ πf , ζji ∼ πg , j = 0, · · · ,K.
The overall framework of the proposed

DIAMOND algorithm for solving the decentralized bilevel
optimization problem in (2) is summarized in Algorithm 1.
Note that DIAMOND adopts a single-loop structure, which

Algorithm 1 The DIAMOND Algorithm.

1: Input: Step-sizes αt, βt. Momentum coefficients ηt, γt.
2: Initialization: Let {xi,−1,yi,−1}mi=1 = {x−1,y−1}. Let
{pi,−1}mi=1 = 0, and {vi,−1}mi=1 = 0

3: for t = 0 to T − 1 do
4: for each agent i ∈ [m] do
5: Estimate the stochastic gradients pi,t and vi,t
6: using (6) and (7);
7: Track the global gradient ui,t using (8);
8: Update the local model parameters xi,t+1 and
9: yi,t+1 using (9) and (10);

10: end for
11: end for

reduces the computation and implementation complexities



compared with the double-loop structure. Meanwhile,
DIAMOND relies on consensus updates along with gradient
tracking and uses momentum-based stochastic gradient
estimators, so that it matches state-of-the-art convergence
guarantees. Thus, DIAMOND consists of three parts: i) local
stochastic gradient estimation, ii) global gradient tracking,
and iii) consensus update with stochastic gradient descent
(SGD). The details of each part are described as follows:

1) Local Stochastic Gradient Estimation: Each agent
estimates the momentum-based upper- and lower-level update
directions pi,t and vi,t of the upper-level and lower-level
functions, respectively, with its local stochastic gradients:

pi,t =∇̂fi
(
xi,t,yi,t; ξ̄i

)
+ (1− ηt)

(
pi,t−1 − ∇̂fi

(
xi,t−1,yi,t−1; ξ̄i

))
, (6)

vi,t =∇ygi (xi,t,yi,t; ζi)

+ (1− γt) (vi,t−1 −∇ygi (xi,t−1,yi,t−1; ζi)) , (7)

where ηt ∈ [0, 1] and γt ∈ [0, 1] are the momentum coeffi-
cients. Note that the avoidance of the full gradient computa-
tion implies a noisy gradient estimation. DIAMOND utilizes
momentum-based stochastic gradient estimations to improve
the accuracy of the current gradient estimation, which is
similar to [38], [39] for single-level stochastic optimization
and [8], [11] for single-agent bilevel optimization.

2) Global Gradient Tracking: Each agent updates the
global gradient ui,t by averaging all its neighbors’ gradient
estimates uj,t−1, j ∈ Ni, which is defined as:

ui,t =
∑
j∈Ni

[M]ijuj,t−1 + pi,t − pi,t−1. (8)

We do not perform gradient tracking for vi,t since the lower-
level y-variables do not require consensus (cf. Problem (2)).

3) Consensus Update with Decentralized SGD: Each
agent i updates the upper-level parameters by computing a
weighted average of its neighbors’ local copies xj,t, j ∈ Ni
and using the tracked global gradient ui,t computed in 2):

xi,t+1 =
∑
j∈Ni

[M]ijxj,t − αtui,t, (9)

where αt is the upper-level step-size. The lower-level model
parameters yi,t+1 are updated locally by using vi,t:

yi,t+1 = yi,t − βtvi,t, (10)

where βt is the lower-level step-size. Again, note that consen-
sus is only required for the upper-level xi-parameters.

V. THEORETICAL PERFORMANCE ANALYSIS

In this section, we establish the theoretical convergence
guarantees for the DIAMOND algorithm for solving the decen-
tralized bilevel optimization problem in (2). Before describing
the proof details, we first highlight three major challenges in
the convergence analysis in our DIAMOND algorithm:

a) Momentum-Based Stochastic Gradient Estimation Er-
ror of the Lower-Level Subproblem: Although the stochastic

gradient estimation ∇ygi(xi,t,yi,t, ζi) of the lower-level ob-
jective function is unbiased, there exists a bias between vi,t
and the full gradient due to the randomness and the added mo-
mentum, which can be written as egi,t , vi,t−∇ygi (xi,t,yi,t).

b) Momentum-Based Stochastic Gradient Estimation
Error of the Upper-Level Subproblem: The momentum-
based stochastic gradient estimation error of the upper-level
subproblem is caused by: i) the randomness of the gradient
estimation pi,t, ii) the added momentum, and iii) the approxi-
mation yi,t ≈ y∗i,t (xi,t). We denote this error as: efi,t , pi,t−
∇̄fi (xi,t,yi,t)− bi,t. where bi,t , Eξ̄i [∇̂fi

(
xi,t,yi,t; ξ̄i

)
]−

∇̄fi (xi,t,yi,t) is the bias.
c) Consensus Error: DIAMOND utilizes a decentralized

consensus update for the upper-level model parameters as
shown in (8), which inevitably introduces consensus errors.

A. Main Convergence Results

To quantify the convergence rate performance of
DIAMOND, we first define a new convergence metric
specifically for the decentralized bilevel problem in (2):

Mt , ‖∇l (x̄t)‖2 + ‖xt − 1⊗ x̄t‖2 + ‖y∗t − yt‖2 , (11)

where x̄t , 1
m

∑m
i=1 xi,t, xt ,

[
x>1,t, . . . ,x

>
m,t

]>
, yt ,[

y>1,t, . . . ,y
>
m,t

]>
, and y∗t ,

[
y∗>1,t , . . . ,y

∗>
m,t

]>
. The first term

in (11) measures the convergence of the agent-average x̄t to
a stationary point. The second term in (11) quantifies the
consensus error among local copies of the upper-level xt-
parameters. The third term in (11) measures the approximation
error caused by the finite iterations of the lower-level optimiza-
tion across all agents. Clearly, if Mt → 0, we can conclude
that the algorithm achieves three goals simultaneously: 1)
achieving a stationary solution of the decentralized bilevel
optimization problem in (2), 2) reaching consensus of upper-
level model parameters across all agents, and 3) obtaining
optimal solutions to the lower-level subproblem.

Next, we state the following assumptions that are useful for
our convergence performance analysis:

Assumption 1 (Upper-Level Objective). fi (xi,yi) satisfies:
1) For any i ∈ {1, . . . ,m} and (xi,yi) ∈ Rdup × Rdlow ,
∇xfi (xi,yi) and ∇yfi (xi,yi) are Lipschitz continuous
with constants Lfx ≥ 0 and Lfy ≥ 0, respectively.

2) For any i ∈ {1, . . . ,m} and (xi,yi) ∈ Rdup × Rdlow , we
have ‖∇yfi (xi,yi)‖ ≤ Cfy for some constants Cfy ≥ 0.

Assumption 2 (Lower-Level Objective). gi (xi,yi) satisfies:
1) For any xi ∈ Rdup and yi ∈ Rdlow , gi (xi,yi) is twice

continuously differentiable with respect to (xi,yi).
2) For any i ∈ {1, . . . ,m} and (xi,yi) ∈ Rdup × Rdlow ,
∇ygi (xi,yi) is Lipschitz continuous with constant Lg ≥ 0.

3) For any i ∈ {1, . . . ,m} and xi ∈ Rdup , gi (xi, ·) is µg-
strongly convex with respect to yi for some µg > 0.

4) For any i ∈ {1, . . . ,m} and (xi,yi) ∈ Rdup × Rdlow ,
∇2

xygi (xi,yi) and ∇2
yygi (xi,yi) are Lipschitz continuous

with constants Lgxy ≥ 0 and Lgyy ≥ 0, respectively.



5) For any i ∈ {1, . . . ,m} and (xi,yi) ∈ Rdup × Rdlow , we
have

∥∥∇2
xygi (xi,yi)

∥∥2 ≤ Cgxy for some Cgxy > 0.

Assumption 3 (Stochastic Objectives). Assumptions 1 and
2 hold for fi (xi,yi; ξi) and gi (xi,yi; ζi), for all ξi ∈
supp (πf ) and ζi ∈ supp (πg) where supp (π) denotes the
support of distribution π.

Assumption 4 (Stochastic Gradients). For any i∈{1, . . . ,m}
and (xi,yi) ∈ Rdup × Rdlow , the gradient estimators
∇̂fi

(
xi,yi; ξ̄i

)
and ∇ygi (xi,yi; ζi) satisfy:

1) There exists a constant σf ≥ 0 such that
Eξ̄i [‖∇̂fi(xi,yi; ξ̄i) − ∇̄fi(xi,yi) − bi(xi,yi)‖2] ≤ σ2

f ,
where bi(xi,yi) , Eξ̄i [∇̂fi(xi,yi; ξ̄i)] − ∇̄fi(xi,yi) is
the bias in estimating ∇̄fi(xi,yi).

2) There exists a constant σg ≥ 0 such that
Eζi [‖∇ygi(xi,yi; ζi)−∇ygi(xi,yi)‖2] ≤ σ2

g .

We note that all these assumptions are standard in the bilevel
optimization literature (see, e.g., [6], [11], [13]). Next, we
state two lemmas on characterizing the Lipschitz constants
of the hypergradient ∇li(xi) in (3), the approximate gradient
∇̄fi(xi,yi) in (4), the optimal solution y∗i of the lower-level
problem, and the stochastic gradient estimator ∇̂fi

(
xi,yi; ξ̄i

)
in (5). These lemmas will be useful in our main convergence
results.

Lemma 1 (Ref. [6]). Under Assumptions 1 and 2, we have

‖∇̄fi(x,y)−∇li(x)‖ ≤ Lf ‖y∗(x)− y‖ ,
‖y∗i (x1)− y∗i (x2)‖ ≤ Ly ‖x1 − x2‖ ,
‖∇li (x1)−∇li (x2)‖ ≤ Ll ‖x1 − x2‖ ,

for all i ∈ {1, . . . ,m}, x,x1,x2 ∈ Rdup and y ∈ Rdlow , where
the Lipschitz constants above are defined as:

Lf = Lfx +
LfyCgxy
µg

+ Cfy

(
Lgxy
µg

+
LgyyCgxy

µ2
g

)
,

Ll = Lf +
LfCgxy
µg

, and Ly =
Cgxy
µg

.

Lemma 2 (Ref. [11]). Under Assumptions 1, 2 and 3, for any
(x1,y1) , (x2,y2) ∈ Rdup × Rdlow , we have

Eξ̄
∥∥∥∇̂fi (x1,y1; ξ̄

)
− ∇̂fi

(
x2,y2; ξ̄

)∥∥∥
≤ LK(‖x1 − x2‖+ ‖y1 − y2‖),

where LK =

2L2
fx+

6C2
gxyL

2
fy
K

2µgLg − µ2
g

+
6C2

fy
L2
gxyK

2µgLg − µ2
g

+
6C2

gxyC
2
fy
L2
gyyK

3

(Lg − µg)2 (
2µgLg − µ2

g

) ,

and K is the number of samples required to construct the
stochastic gradient estimate in (5).

The following lemma says that the bias of the stochastic
gradient estimator for the upper-level objective defined in (5)
decays exponentially fast with respect to the number of
samples K that is chosen to approximate the Hessian inverse.

Lemma 3 (Ref. [1]). Under Assumptions 1–3, for any i ∈
{1, . . . ,m} and (x,y) ∈ Rdup × Rdlow , the bias of the
stochastic gradient estimator in (5) satisfies:

‖∇̄fi(xi,yi)−E[∇̂fi(xi,yi; ξ̄i)]‖ ≤
CgxyCfy
µg

(
1− µg

Lg

)K
,

where K is the number of samples required to construct the
stochastic gradient estimate in (5).

Now, based on the convergence metric defined in (11), we
state the main convergence result of DIAMOND in Theorem 1:

Theorem 1 (Convergence Rate of DIAMOND). Under As-
sumptions 1–4, choose K = (Lg/µg) log

(
CgxyCfyT/µg

)
.

Define αt , (ω + t)
−1/3 for ω ≥ 2, βt , cβαt, ηt+1 , cηα

2
t ,

and γt+1 , cγα
2
t , where

cβ =
8Lf

mLµg c̄y
, cη =

6Lf c̄η +m

3Lfm (1− 3c̄uc̄η)
,

cγ =
1

3Lf
+ 8L2

gc
2
β + c̄r

(
2cβ c̄y
Lµg

+
8L2

Kc
2
β

c̄η
+ 12L2

K c̄uc
2
β

)
,

and where

c̄y=min

{√
Lf

2L2
ym

,

√
Lf

10L2
ym

2

}
, c̄u=min

{
1

48L2
K

,
1

3c̄η

}
,

c̄η = max

{
32L2

K , 160L2
Km,

24 (µg + Lg)L
2
Kcβ

c̄y

}
,

c̄γ = max

{
32L2

g, 160L2
gm,

24 (µg + Lg)L
2
gcβ

c̄y

}
.

Let Bt , l (x̄t) + c̄y ‖yt − y∗t ‖
2

+ c̄x ‖xt − 1⊗ x̄t‖2 +
c̄u ‖ut − 1⊗ ūt‖2 with c̄x = 6

(1−λ)αt
, ūt , 1

m

∑m
i=1 ui,t

and ut ,
[
u>1,t, . . . ,u

>
m,t

]>
. If αt ≤ min{

√
m

2L2
l
, c̄u(1−λ)2

30 ,

c̄u(1−λ)Lµg cβ
40L2

y c̄y
,
c̄u(1−λ)c̄η

80L2
K

,
c̄u(1−λ)c̄γ

80L2
g

, 1
5Ll

, 1
3Lf

,
√

(1−λ)2

120L2
K
,

1−λ
240c̄uL2

Km
,

c̄y(1−λ)

36(µg+Lg)c̄uL2
Kcβ

, 1 − λ} and βt ≤ 1
µg+Lg

, then
the sequence {xt,yt} generated by Algorithm 1 satisfies:

1

T

T−1∑
t=0

E [Mt] = O
(
B0 − l∗

T 2/3

)
+O

(
log (T )σ2

f

T 2/3

)

+O

(
log (T )σ2

g

T 2/3

)
= Õ

(
1

T 2/3

)
.

Theorem 1 indicates that the decreasing step-sizes {αt, βt}
depend on the Lipschitz constants, the number of agents, and
the network topology. Note also that the choice of step-size
αt is directly affected by λ, the second largest eigenvalue
in magnitude of the weight matrix M. Further, Theorem 1
immediately implies the following sample complexity and
communication complexity of DIAMOND:

Corollary 1 (Sample and Communication Complexities of
DIAMOND). Under the conditions stated in Theorem 1,
DIAMOND requires O(ε−3/2) in sample complexity and com-
munication complexity to reach an ε-stationary point.



B. Proofs of the Main Theoretical Results
Due to space limitation, we provide a proof sketch of

Theorem 1, which is organized into several key steps:
Step 1) Per-iterate descent of the upper-level objective

function: We first bound the per-iterate descent of the upper-
level objective function as follows:

Lemma 4. Under Assumptions 1–2, the following inequality
holds for the consecutive iterates of Algorithm 1:

E [l (x̄t+1) −l (x̄t)] ≤ E

[
−αt

2
‖∇l (x̄t)‖2 +

2αt
m

m∑
i=1

∥∥∥efi,t∥∥∥2

−
(
αt
2
− Llα

2
t

2

)
‖ūt‖2 +

2L2
l αt
m

m∑
i=1

‖x̄t − xi,t‖2

+
2L2

fαt

m

m∑
i=1

∥∥y∗i,t − yi,t
∥∥2

+
2αt
m

m∑
i=1

‖bi,t‖2
]
,

for all t ∈ {0, 1, . . . , T − 1}, where the expectation is taken
over all randomness of the algorithm.

Lemma 4 bounds the expected per-iterate descent of the
upper-level objective value, which depends on i) the consensus
error of the upper-level parameters E[‖x̄t − xi,t‖2], ii) the
momentum-based gradient estimation error of the upper-level
objective function E[‖efi,t‖2] including the bias ‖bi,t‖2, and
iii) the approximation gap of the lower-level optimal parameter
E[‖y∗i,t − yi,t‖2], which will be bounded in Step 2).

Step 2) Error bound on y∗(x): We show that the approxi-
mation error of y∗(x) can be bounded as:

Lemma 5. Under Assumptions 1 and 2, the following approx-
imation gap of y∗(x) holds for Algorithm 1:

E
[∥∥yi,t+1 − y∗i,t+1

∥∥2
]
≤ E

[(
1 +

1

c1

)
L2
y ‖xi,t+1 − xi,t‖2

+ (1 + c1) (1 + c0)

(
1− 2βtµgLg

µg + Lg

)∥∥yi,t − y∗i,t
∥∥2

+ (1 + c1) (1 + c0)

(
β2
t −

2βt
µg + Lg

)
‖∇ygi (xi,t,yi,t)‖2

+ (1 + c1)

(
1 +

1

c0

)
β2
t

∥∥egi,t∥∥2
]
,

for all i ∈ {1, . . . ,m} and t ∈ {0, 1, . . . , T − 1} with some
positive constants c0, c1 > 0, where the expectation is taken
over all randomness of the algorithm.

Lemma 5 indicates that the approximation error y∗(x)
shrinks if (1 + c1)(1 + c0)(1 − 2βtµgLg/(µg + Lg)) < 1,
and is influenced by the momentum-based stochastic gra-
dient estimation error of the lower-level objective function
E[‖egi,t‖2]. Because of the tightly coupled structure of the
bilevel problem, E[‖yi,t+1 − y∗i,t+1‖2] is also affected by the
upper-level parameters E[‖xi,t+1 − xi,t‖2], which is in turn
affected by the consensus error in decentralized optimization.

Step 3) Shrinking rate of efi,t: Next, we bound the stochastic
gradient estimation error efi,t of the upper-level objective
function as follows:

Lemma 6. Under Assumptions 1-4, the stochastic gradient
estimation error of the upper-level objective function efi,t
satisfies the following relationship:

E[‖efi,t+1‖
2] 6E[(1− ηt+1)2‖efi,t‖

2 + 2η2
t+1σ

2
f

+ 4(1− ηt+1)2L2
K‖xi,t+1 − xi,t‖2

+ 8(1− ηt+1)2L2
Kβ

2
t ‖e

g
i,t‖

2

+ 8(1− ηt+1)2L2
Kβ

2
t ‖∇ygi(xi,t,yi,t)‖2],

for all i ∈ {1, . . . ,m} and t ∈ {0, 1, . . . , T − 1}, where the
expectation is taken over all randomness of the algorithm.

Lemma 6 indicates that the momentum-based stochastic gra-
dient estimation error of the upper-level function E[‖efi,t+1‖2]
is affected by the consensus error of the upper-level param-
eters, which is contained in E[‖xi,t+1 − xi,t‖2], the lower-
level momentum-based stochastic gradient estimation error
E[‖egi,t‖2], and the full gradient norm E[‖∇ygi(xi,t,yi,t)‖2].

Step 4) Shrinking rate of egi,t: Next, we bound the stochastic
gradient estimation error egi,t of the lower-level objective
function as follows:

Lemma 7. Under Assumptions 1-4, the stochastic gradient
estimation error of the lower-level function satisfies the fol-
lowing relationship:

E[‖egi,t+1‖
2] ≤ E[(1− γt+1)2(1 + 8L2

gβ
2
t )‖egi,t‖

2

+ 4(1− γt+1)2L2
g‖xi,t+1 − xi,t‖2 + 2r2

t+1σ
2
g

+ 8(1− γt+1)2L2
gβ

2
t ‖∇ygi(xi,t,yi,t)‖2],

for all i ∈ {1, . . . ,m} and t ∈ {0, 1, . . . , T − 1}, where the
expectation is taken over all randomness of the algorithm.

Lemma 7 shows that, since decentralized bilevel opti-
mization is a composition of a lower-level problem and an
upper-level problem, the momentum-based stochastic gradient
estimation error of the lower-level function E[‖egi,t+1‖2] is in-
fluenced by the consensus error of the upper-level parameters,
which is contained in E[‖xi,t+1 − xi,t‖2].

Step 5) Iterate contractions: Next, we establish the follow-
ing iterate contraction results of the DIAMOND algorithm:

Lemma 8. The following contraction properties of the iterates
in Algorithm 1 hold:

‖xt+1 − 1⊗ x̄t+1‖2 ≤ (1 + c2)λ2 ‖xt − 1⊗ x̄t‖2

+

(
1 +

1

c2

)
α2
t ‖ut − 1⊗ ūt‖2 ,

‖ut+1 − 1⊗ ūt+1‖2 ≤ (1 + c3)λ2 ‖ut − 1⊗ ūt‖2

+

(
1 +

1

c3

)
‖pt+1 − pt‖2 ,



where c2, c3 > 0 are constants, and pt ,
[
p>1,t, · · · ,p>m,t

]>
.

In addition, we have

‖xt+1 − xt‖2 6 8 ‖xt − 1⊗ x̄t‖2

+ 4α2
t ‖ut − 1⊗ ūt‖2 + 4α2

tm ‖ūt‖
2
,

E[‖pt+1 − pt‖2] ≤ E

[
3η2
t+1

m∑
i=1

‖efi,t‖
2 + 24L2

Kmα
2
t ‖ūt‖2

+12L2
Kβ

2
t

m∑
i=1

‖∇ygi(xi,t,yi,t)‖2 + 48L2
K‖xt − 1⊗ x̄t‖2+

24L2
Kα

2
t ‖ut−1⊗ ūt‖2+12L2

Kβ
2
t

m∑
i=1

‖egi,t‖
2+3η2

t+1σ
2
fm

]
,

where E[·] is taken over all randomness of the algorithm.

Note that we only attempt to reach consensus in the upper-
level x-variables. Step 5 quantifies the impacts of the consen-
sus error in the iterates of the upper-level x-variables, which
is important to analyze the convergence of DIAMOND. Our
key idea is to first define M̃ = M⊗ Im. Since xt− 1⊗xt is
orthogonal to 1, which is the eigenvector corresponding to the
largest eigenvalue of M̃, and λ = max {|λ2| , |λm|}, we have
‖M̃xt−1⊗ x̄t‖2 = ‖M̃(xt−1⊗ x̄t)‖2 ≤ λ2‖xt−1⊗ x̄t‖2.

Step 6) Decrement of a constructed potential function: Next,
we define a potential function Wt as follows:

Wt = l(x̄t) + c̄y‖yt − y∗t ‖2 + c̄x‖xt − 1⊗ x̄t‖2

+ c̄u‖ut − 1⊗ ūt‖2 +
‖eft ‖2

c̄ηαt−1
+
‖egt ‖2

c̄γαt−1
. (12)

Then, we can show the following decrement results for {Wt}:

Lemma 9. Choose c0 =
βtLµg

1−2βtLµg
, c1 =

βtLµg
2(1−βtLµg ) and

c2 = c3 = 1
λ − 1. Under the same conditions as in Theorem 1

and using the results in Lemmas 4–8, the iterates generated
by Algorithm 1 satisfy:

E [Wt+1 −Wt] ≤ E

[
−αt

2
‖∇l (x̄t)‖2 −

2L2
f

m
αt ‖y∗t − yt‖2

− 1

1− λ
‖xt − 1⊗ x̄t‖2 +

2αt
m

m∑
i=1

‖bi,t‖2

+
2mη2

t+1

c̄ηαt
σ2
f +

2mγ2
t+1

c̄γαt
σ2
g +

3c̄umη
2
t+1

αt
σ2
f

]
.

With the proposed potential function and setting the pa-
rameters properly, we can make the coefficients of E[‖ut −
1 ⊗ ūt‖2], E[‖ūt‖2], E[

∑m
i=1 ‖e

f
,t‖2], E[

∑m
i=1 ‖e

g
,t‖2] and

E[
∑m
i=1 ‖∇ygi(xi,t,yi,t)‖2] to be non-positive in the range

of αt and βt, which leads to the stated result in Lemma 9.

Step 7) Proof of Theorem 1: Note that
∑T−1
t=0 α3

t ≤
log (T + 1) with ω ≥ 1. Telescoping the result in Lemma 9

from 0 to T−1, and multiplying by 2/αT on both sides yields:

1

T

T−1∑
t=0

E [Mt] 6

[
2 (B0 − l∗)

αTT
+

4

mαTT

T−1∑
t=0

αtE

[
m∑
i=1

‖bi,t‖2
]

+
4c2ηmσ

2
f

c̄η

log(T + 1)

αTT
+

4c2γmσ
2
g

c̄γ

log(T + 1)

αTT
+

2σ2
f

c̄ηα−1αTT

+6c̄uc
2
ηmσ

2
f

log(T + 1)

αTT
+

2σ2
g

c̄γα−1αTT

]
/min

{
4L2

f

m
,

2

1− λ

}
.

Using the fact that ‖bi,t‖ = 1/T when K =
(µg/Lg) log

(
CgxyCfyT/µg

)
, we have:

1

T

T−1∑
t=0

E [Mt] = O
(
B0 − l∗

T 2/3

)
+ Õ

(
σ2
f

T 2/3

)
+ Õ

(
σ2

9

T 2/3

)
,

where Bt , l(x̄t) + c̄y‖yt − y∗t ‖2 + c̄x‖xt − 1 ⊗ x̄t‖2 +
c̄u‖ut − 1⊗ ūt‖2. This completes the proof of Theorem 1.

VI. NUMERICAL RESULTS

In this section, we conduct numerical experiments to verify
the theoretical results of the proposed DIAMOND algorithm
using decentralized meta-learning problems and hyper-
parameter optimization problems.

1) Decentralized Meta-Learning: The formulation of the
decentralized meta-learning problem is the same as (1), where
x is the common parameters across all agents and yi is the
task-specific parameters of Ti. The upper-level optimization
objective function fi(x,y∗i (x)) is the loss function related to
task Ti and is non-convex in x. The lower-level optimiza-
tion objective function gi(x,yi) satisfies the strongly convex
requirements in yi by using a strongly convex regularizor
R(yi) = 1

2‖yi‖
2
2. The decentralized meta-learning problem

aims to learn the common parameters that can be adapted to
specific tasks. The classifier is based on a two-hidden-layer
fully connected neural network for the decentralized meta-
learning problem. The network topology is generated based
on Erdös-Rényi random graph by NetworkX [40]. We choose
the consensus matrix as M = I − 2V

3ρmax(V) , where V is the
Laplacian matrix and ρmax is the largest eigenvalue of V.

1-a) Comparison between Decentralized Stochastic Al-
gorithms: We conduct decentralized meta-learning on MNIST
[41] and CIFAR-10 [42] datasets with 9- and 15-agent net-
works. The edge connectivity probability is pc = 0.3. We
compare the proposed DIAMOND algorithm with three de-
centralized stochastic bilevel optimization methods:
• Decentralized Stochastic Gradient Descent (D-SGD)

[14]: Each agent directly updates its local copy of the
upper-level parameters xi,t with the stochastic gradi-
ent of the upper-level objective function, i.e., xi,t =∑
j∈Ni [M]ijxj,t−1 − αt∇̂fi

(
xi,t,yi,t; ξ̄i,t

)
and yi,t =

yi,t−1 − βt∇ygi (xi,t,yi,t; ζi,t).
• Gradient-Tracking Stochastic Gradient Descent

(GT-SGD): In addition to the DSGD update, GT-
SGD performs gradient tracking over xi,t-variables.
Specifically, GT-SGD updates the upper-level variables
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Fig. 1: Convergence performance on the meta-learning prob-
lem with 9-agent network.
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Fig. 2: Convergence performance on the meta-learning prob-
lem with 15-agent network.
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(b) 15-agent network.

Fig. 3: Convergence performance with different edge connec-
tivity probabilities pc on the meta-learning problem.
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Fig. 4: Comparison between D-SGD and DIAMOND on the
hyper-parameter optimization problem.

as: xi,t+1 =
∑
j∈Ni [M]ijxj,t − αtui,t, where

ui,t =
∑
j∈Ni [M]ijuj,t−1 + ∇̂fi(xi,t,yi,t; ξ̄i,t) −

∇̂fi(xi,t−1,yi,t−1; ξ̄i,t−1).
• Momentum Stochastic Gradient Descent (M-SGD):

This algorithm can be viewed as a simplified version
of DIAMOND by neglecting gradient tracking. Specif-
ically, we replace the update step (9) by xi,t+1 =∑
j∈Ni [M]ijxj,t − αtpi,t.

We set the learning rates αt = cα(ω+t)−1/3 and βt = cβαt
following Theorem 1, where cα = 10, ω = 2 and cβ = 10.
The momentum coefficients are chosen as ηt+1 = cηα

2
t

and γt+1 = cγα
2
t for M-SGD and DIAMOND, respectively,

where cη = cγ = 0.1. Figs. 1 and 2 illustrate that the
DIAMOND algorithm outperforms other algorithms for solv-
ing decentralized bilevel optimization problems in terms of the
convergence metric in both 9-agent and 15-agent networks,
which implies lower sample and communication complexity.

1-b) Impact of connectivity probability: We evaluate the
impact of edge connection probability pc on the performance
of DIAMOND with the nine-agent network. We choose pc
from {0.3, 0.5, 0.8}, and the parameters of learning rate and
momentum coefficient are the same as those in the previous
setting. As shown in Fig. 3, there is only a slight increase in
convergence rate with a higher pc-value, which reflects that the
performance of DIAMOND is not sensitive to the edge con-
nection probability, and the proposed DIAMOND algorithm
can adapt to various network settings.

2) Hyper-parameter optimization. Next, we compare
DIAMOND with D-SGD using the logistic regression prob-
lem [7], [43] with the same formulation as in (1),
where fi(x,y

∗
i (x)) = 1

|Dval,i|
∑

(aj ,cj)∈Dval,i
Q(aTj y

∗
i , cj),

gi(x,yi) = 1
|Dtr,i|

∑
(aj ,cj)∈Dtr,i

Q(aTj yi, cj) + 1
qp

∑q
k=1∑p

r=1 exp(xr)y
2
irk. Here, Dtr,i and Dval,i are the training and

validation datasets for agent i, respectively, Q is the cross-
entropy loss, q is the number of classes, and p is the number
of features. We use the a9a dataset [44], where q = 2 and
p= 123, and divide the a9a dataset into training, validation,
and testing sets, which contain 40%, 40%, and 20% samples,
respectively.

We compare the proposed DIAMOND algorithm with D-
SGD in terms of test accuracy and test error, using five-agent
communication networks. For both DIAMOND and D-SGD,
the learning rates are set as αt = cα(ω+t)

−1/3 and βt =
cβαt, where cα = 5, ω = 2, and cβ = 1.5. Moreover, the
momentum related parameters in DIAMOND are chosen as
ηt+1 =cηα

2
t and γt+1 =cγα

2
t , where cη=cγ =0.1. As shown

in Fig. 4, DIAMOND has a faster convergence rate than that of
D-SGD over various networks with different edge connection
probabilities. This validates the superiority of the proposed
DIAMOND algorithm.

VII. CONCLUSION

In this paper, we proposed the DIAMOND algorithm for
decentralized bilevel optimization with non-convex upper-level
subproblems and strongly-convex lower-level subproblems.
DIAMOND utilizes a network-consensus approach and adopts
a single-loop algorithmic architecture along with momentum-
based stochastic gradient estimations and gradient tracking
techniques. This is contrast to existing related works that
use a double-loop architecture, full gradient estimations, or
large-batch gradients. We showed that DIAMOND achieves
O
(
ε−3/2

)
in both sample and communication complexities

to reach an ε-stationary point, outperforming existing works.



We also conducted numerical experiments using meta-learning
and hyper-parameter optimization problems to verify our
theoretical findings. Future directions include i) to consider
Hessian approximation to further reduce computation costs of
the Hessian matrix and ii) to extend the proposed algorithm
to wireless networks with channel noise and fading.
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