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Abstract—Maximizing quality of experience (QoE) for inter-
active video streaming has been a long-standing challenge, as its
delay-sensitive nature makes it more vulnerable to bandwidth
fluctuations. While reinforcement learning (RL) has demon-
strated great potential, existing works are either limited by
fixed models or require enormous data/time for online adap-
tation, which struggle to fit time-varying and diverse network
states. Driven by these practical concerns, we perform large-
scale measurements on WeChat for Business’s interactive video
service to study real-world network fluctuations. Surprisingly,
our analysis shows that, compared to time-varying network met-
rics, network sequences exhibit noticeable short-term continuity,
sufficient for few-shot learning requirement. We thus propose
Fiammetta, the first meta-RL-based bitrate adaptation algorithm
for interactive video streaming. Building on the short-term
continuity, Fiammetta accumulates learning experiences through
offline meta-training and enables fast online adaptation to chang-
ing network states through few gradient updates. Moreover,
Fiammetta innovatively incorporates a probing mechanism for
real-time monitoring of network states, and proposes an adaptive
meta-testing mechanism for seamless adaptation. We implement
Fiammetta on a testbed whose end-to-end network follows the
real-world WeChat for Business traces. The results show that
Fiammetta outperforms prior algorithms significantly, improving
video bitrate by 3.6%-16.2% without increasing stalling rate.

Index Terms—Interactive video streaming, bitrate adaptation,
meta-reinforcement learning

I. INTRODUCTION

Recent years have witnessed the evolution of video stream-
ing from traditional video on demand (VoD), live TV to ultra-
low-latency interactive video applications, such as WeChat,
Skype, Zoom, Facetime, etc. Especially with the outbreak
of COVID-19 that bounds people with social distancing, the
demand for digital classrooms [1], video conferences [2], e-
commerce [3], etc. has increased substantially. Polaris Market
reports that the global interactive video market is expected to
reach a staggering $10.23 billion by 2028 [4].

Despite the fast-paced development, the quality of expe-
rience (QoE) of interactive video streaming remains unsat-
isfactory, such as annoying ultra-blurry images and frequent
stalling. The intrinsic reason is that interactive video streaming
is highly susceptible to bandwidth fluctuations, due to (i)
the strictest latency requirement (e.g., 200 ms) that limits
the buffer and resilience to bandwidth fluctuations; (ii) the

∗The corresponding author is Wei Wang (weiwangw@hust.edu.cn).
‡Both authors have equal contribution.

RTP/UDP protocol that hardly achieves reliable transmission;
(iii) the instant capture and encoding that are more likely to
waste bandwidth, compared to VoD like bulk data transfer.

To improve the interactive video QoE, extensive research ef-
fort has been devoted along bitrate adaptation algorithms. Yet,
whether rule-based [5]–[7] or learning-based algorithms [8]–
[16] have their own limitations. (i) Rule-based algorithms [5]–
[7] commonly adopt universal pre-programmed rules. Much
recent literature has shown that these fixed rules can hardly fit
diverse and time-varying network states caused by heteroge-
neous networks (e.g., WiFi, 4G, 5G), complex conditions (e.g.,
mobility, indoor/outdoor, density), etc. For example, Google
Congestion Control (GCC) [5], implemented in WebRTC,
encounters overly conservative policies and a lack of agility,
which lead to severe bandwidth wastage. (ii) Existing offline-
learned neural networks (NNs) [8]–[11] are also constrained
by their fixed parameters, which fall into the same dilemma
as rule-based algorithms. (iii) Existing online learning-based
bitrate adaptation algorithms [12]–[16] (mainly transfer learn-
ing), however, require a large amount of data/time in the
face of changing network states, making it difficult to achieve
fast adaptation. Moreover, the real-time updates of NNs may
converge to local optimum and the trial and error further
degrades performance.

Driven by these practical concerns, we seek to answer a
key question: Can interactive video achieve fast adaptation
to diverse and time-varying network states, pushing QoE to
the limit? To this end, we first conduct large-scale mea-
surements of real-world network fluctuations on WeChat for
Business interactive video service. The analysis shows that
despite dramatic fluctuations in network metrics, there exists
noticeable short-term continuity in network sequences defined
by {meanµ, std devσ, fluctuationω, ranges∆}, which is
sufficient for few-shot learning requirement.

Inspired by the short-term continuity, we propose Fi-
ammetta, the first meta-reinforcement learning (RL)-based
bitrate adaptation algorithm for interactive video systems,
aiming at maximizing QoE. Fiammetta builds on the merit
of “learning to learn” by retaining past learning experiences
(i.e., offline meta-training), so as to adapt quickly online with
a handful of gradient updates (i.e., meta-testing) to changing
network states. Meta-learning is a typical framework for few-
sample settings, but Fiammetta is not merely a straightforward
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Fig. 1: Interactive video system architecture of
WeChat for Business.
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Fig. 2: Built-in bitrate control module of
interactive video system.

Features Descriptions

Time span 2022.1.13-15,
2022.5.15-17

Video time 1402382 s
Video sessions 14428

Network types Wired, WiFi, LTE
(4G, 5G)

Countries Over 200 countries
Volume 7 Gb

TABLE I: Dataset descriptions.

environment shift. Instead, it entails three unique challenges.
(i) How to define “tasks” in interactive video stream-

ing? Meta-learning exploits learning experience from previous
“tasks” to accelerate online learning. As a matter of course, we
consider the adaptation to different “network states” as “tasks”.
The problem evolves to how to define “network states” for
objectivity of “tasks”, since a mess of network metrics such
as loss, RTT, throughput, etc. are deeply affected by bitrate
adaptation policies. Once theses metrics are used, the “task”
cannot keep constant during policy learning. For this reason,
we specifically adopt bandwidth and propagation delay, which
characterize environment, traffic flow density, motion state,
link length, etc., but marginally affected by bitrate selection.
On top of that, we define {µ, σ, ω} of the bandwidth sequence
and set ranges ∆ for a “task” to enhance its continuity.

(ii) How to realize the real-time estimation of “network
state” to determine if it is a new “task”? Accurately estimating
bandwidth poses challenges, since it cannot be directly mea-
sured like RTT, throughput, loss, etc. Rule-based algorithms
exploit stable bandwidth probing mechanisms that increase
bitrates additively/multiplicatively. Existing RL methods lever-
age the risky trial and error to probe bandwidth. Meta-RL,
however, is more likely to underestimate bandwidth when it
increases, as sub-NN is more specialized to one/last “task”,
leading to fewer trial-and-error actions. To tackle this problem,
we innovatively integrate probing into meta-RL by proposing
a bandwidth estimation and filtering mechanism. Specifically,
the loss and RTT are used to filter the throughput sequence,
which provides hints on network utilization. During the under-
use stage, the bandwidth is estimated to be the throughput
plus a probing value. This design enables a quick estimation
of “network state” and uses the ranges to mitigate the effects
of bias.

(iii) How to guarantee seamless adaptation? The time spent
on meta-testing might cause a lag in adapting to the changing
“network states”, which in turn leads to performance degrada-
tion. To handle this issue, we propose an adaptive meta-testing
mechanism that sets an activation threshold to ∆

2 of current
“network state”, instead of waiting for the detected attributes
completely out of ranges ∆. Moreover, we configure proper ∆
to guarantee seamless adaptation according to measurements
on WeChat for Business interactive video system.

Results. We implement Fiammetta on a testbed whose
end-to-end network follows real-world WeChat for Business
traces. We also deploy 3 state-of-the-art solutions: rule-based
GCC [5], learning-based OnRL [12], and hybrid Loki [13],
using 389 hours of video sessions for a half-month evaluation.
Compared with baselines, Fiammetta improves video bitrate
by 3.6%-16.2% and cuts stalling rate by 6.3%-21.9%.

Contributions. (i) Through large-scale measurements, we
dive into real-world network fluctuations and short-term con-
tinuity of network sequences. (ii) We propose Fiammetta,
which to our knowledge is the first to deploy meta-RL for
fast adaptation to changing network states and maximize QoE.
(iii) We implement Fiammetta on a testbed whose end-to-end
network follows the real-world WeChat for Business traces,
and validate its superiority over state-of-the-art solutions.

The remainder of this paper is organized as follows. §II
introduces the measurement study and short-term continuity
of network sequences. §III elaborates on the system design.
Implementation and evaluation are detailed in §IV and §V.
§VI gives a literature review, followed by conclusion in §VII.

II. MEASUREMENTS AND FINDINGS

In this section, we conduct a measurement study on WeChat
for Business interactive video platform, to investigate the
fluctuation characteristics of real-world network states.

A. Measurement Platform

We log fine-grained end-to-end network metrics and video
metrics on WeChat for Business’s interactive video service
worldwide. Fig. 1 and Fig. 2 depict the system architecture and
the built-in bitrate control module. Integrating transport and
application layers, this system applies target bitrates estimated
by the bitrate control module to both sending and codec
bitrate adaptation. We establish logging points at the CDN
and user sides. Therein, only users hold the video encoding
and playback functions to execute both sending and codec
bitrate adaptation, while the CDN is merely responsible for
forwarding and sending bitrate adaptation in the transport
layer. Therefore, we log both transport-layer metrics (i.e.,
throughput, RTT, RTT jitter, packet loss) and application-layer
metrics (i.e., FPS, quantization parameter (QP), stalling rate
and codec bitrate) at the user side, while only transport-layer
metrics of the CDN are recorded.



(a) B̂ value before and after ∆t. (b) µ value before and after ∆t. (c) σ value before and after ∆t. (d) ω value before and after ∆t.

Fig. 3: Real-world network fluctuations.

B. Dataset Descriptions

Table I summarizes the detailed information of our measure-
ment dataset. Based on WeChat for Business APP, we collect
network metrics corresponding to video sessions worldwide
during two time spans of Jan 13-15 and May 15-17 with
1 s granularity. The entire dataset consists of 14428 video
sessions, with an overall duration of over 1.4 million seconds
and a total volume of 7 Gb. These video sessions are built
on different heterogeneous networks (e.g., 4G, 5G, WiFi,
wired), diverse user devices (e.g., cell phones, tablets, laptops,
desktops and even smart watches), covering users in more than
200 countries worldwide. This dataset faithfully logs the real-
network network fluctuations worldwide, under the influence
of competing traffic, user movements, communication envi-
ronments, network service providers and frequencies, and has
broad coverage in both time and space.

C. Short-Term Continuity of Network States

Based on the dataset, we qualitatively analyze and quantita-
tively test the fluctuating characteristics of the network traces.

As mentioned above, the dataset consists of throughput, loss
and RTT. However, all these metrics are deeply affected by
subjective factors (e.g., bitrate selections), which cannot un-
ambiguously represent background network fluctuations (e.g.,
competing traffic, user movements). The best is available
bandwidth, but it’s hard to measure in real time at fine grain.
To handle this issue, we propose a novel bandwidth filtering
and estimation mechanism that exploits measurable metrics
to estimate bandwidth B̂, detailed in §III-B, where we have
verified its effectiveness. In what follows, we uses the B̂ to
investigate the network fluctuating characteristics.

Time-varying characteristic. For a better visualization of
network fluctuations, we group all estimated bandwidth pairs,
with each pair consisting of estimated B̂ before and after
a time interval ∆t within the same video session. Fig. 3(a)
plots these pairs with ∆t of 1 s and 4 s in the form of
scatter plots and further depicts their distributions. Specifically,
we can notice the high diversity in the back-and-forth B̂
fluctuations even at ∆t = 1 s. The B̂ value exhibits time-
varying characteristics that even become more significant as
∆t increases. When ∆t reaches 4 s, the fluctuation tends
to be more irregular and unpredictable, as the scatter points
near the diagonal become less concentrated. In this case, the

meta-testing (online adaptation) cannot catch up with the time-
varying network fluctuations, when simply using bandwidth
value as the definition of the “network state”.

Short-term continuity. We turn to test whether the band-
width sequence has predictable and regular fluctuating char-
acteristics. Similarly, we depict in Fig. 3(b)-3(d) the mean µ,
standard deviation σ, and fluctuation ω of the B̂ sequences
obtained from a sliding window Wr before and after a time
interval ∆t = 4 s (related to the meta-testing time detailed
in §III-D). Therein, ω is the sum of absolute adjacent value
differences within Wr. It is obvious that these sequence
properties exhibit more continuity. Even ∆t reaches 4 s, all the
scatter points corresponding to the change in µ, σ, ω converge
at the diagonal. Furthermore, we find that 90% of the points
can be covered by extra adding a small range to µ, σ, ω. That
is to say, if we define the “network state” of a learning task
i as a cluster of B̂ sequence properties centered at {µi, σi,
ωi} with covering ranges ∆i, the “network state” presents a
short-term continuity characteristics.

Since even few-shot learning (i.e., meta-testing process)
takes a short period of time, the crux becomes how to define
“network state” to gain more continuity and achieve seamless
adaptation. A basic rule needs to be satisfied: for most time, the
network fluctuations fall within the covering range of “network
state” defined for the last “task”. To alleviate the impact of
meta-testing lag, the meta-testing process needs to be basically
completed before the network changes beyond the range of the
last “task”. In short, the meta-testing needs to be faster than
the “network state” changes. In this section, we observe the
short-term continuity in network sequences, making it a reality
to develop meta-RL-based video adaptation algorithm.

III. SYSTEM DESIGN

A. Overview

Fig. 4 shows the high-level overview of Fiammetta’s design
which contains three stages: pre-processing (§III-B), offline
meta-training (§III-C) and online meta-testing (§III-D).

(i) Pre-processing is the basis for subsequent meta-training
and meta-testing due to its key steps of trace collection,
bandwidth estimation and filtering, and the design and
definition of “network state”.
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Fig. 4: System overview.

(ii) Meta-training is implemented offline. The end goal is
to obtain an initial NN model that can achieve fast
adaptation and maximize QoE during meta-testing.

(iii) Meta-testing is performed online to seamless adapt to the
changing “network state” based on real-time detection
and meta-testing activation mechanism.

B. Pre-Processing Stage

As shown in Fig. 4, the pre-processing stage prepares for
the subsequent meta-training and meta-testing. We focus on
the design of bandwidth estimation and filtering mechanism,
and the definition of “network state” in this subsection.

Bandwidth estimation and filtering. The definition of
“task” for meta-learning tends to be objective, preventing
arbitrary “task” changes due to the subjective bitrate selec-
tion and policy updates during the training of a given task.
The most objective network metrics are available bandwidth
and propagation delay, which however cannot be directly
measured. Thus, we propose a bandwidth estimation and
filtering mechanism based on measurable network metrics.
Such mechanism may not be very accurate, but can quickly
estimate the trend of “network state” changes and use the
defined range to mitigate the impact of bias.

A basic principle of the bandwidth estimation is that when
there exists packet loss or queuing delay caused by congestion,
it is at the stage of full pipe and the throughput ηt can be
regarded as bandwidth [6]. The full pipe is identified (refer to
[6]) by the following conditions:

Ft = (lt > 5%) || (dt > dprop,t + σ(dprop)), (1)
dprop,t = min(dt′ ,max(dprop))), (2)

t′ ∈ [max(t−Wd, 0), t],

where lt denotes the packet loss ratio at time t, dt the packet
delay, dprop,t the propagation delay, and Ft = 1 indicates the
full pipe. Therein, the threshold of 5% (refer to [5], [17]) takes
into account the presence of non-congestion packet loss such
as lossy wireless links, port flaps on routers, etc., which are
not caused by transport-layer bitrate adaptation. The packet
delay d is the sum of queuing delay, propagation delay dprop
and other smaller values. As path changes on time scales »
dprop, the dprop,t can be estimated as a running min over
a long time window Wd [6]. Once dt exceeds dprop,t, we
generally assume that there exists queuing delay, i.e., in a full
pipe condition. Here, dprop is statistic collected through all

Wd windows on the dataset (§II-C), and σ(dprop) is used
to tolerate some irregular delay jitters that are not caused
by congestion. Furthermore, the max(dprop) is configured to
avoid dprop,t overestimation at the beginning of video sessions.
Then, we propose to estimate bandwidth B̂t(Mbps) as follows

B̂t =

{
ηt, Ft = 1,

max(ηt + pb2t , pb
1
t ), Ft = 0.

(3)

In unfilled conditions, we estimate by a probing mechanism
involving both additive and multiplicative increase, based on
ηt. Here, pb2t is set to ∆µ, and pb1t is calculated by

pb1t =

{
ηt × (e−ηt−1.3 + 1), Ft−1 = 1, Ft = 0,

pb1t−1 × (e−pb
1
t−1−1.3 + 1), Ft−1 = Ft = 0.

(4)
Here, pb2t is a constant probing value that does not increase
with time to compensate for general phenomenon of η < B.
In contrast, pb1t probes with continual multiplicative increase
to fit the bandwidth increment. Besides, when this bandwidth
estimation and filtering algorithm is used offline, e.g., in a
dataset, we can obtain in advance the later B̂later in full pipe
and exploit it to adjust B̂t in unfilled conditions, which is

t′ = arg max pb1t′ , pb
1
t′ < B̂later. (5)

B̂t =

{
max(pb1t′ − ηt′ , pb2t ) + ηt t > t′

B̂t, else.
(6)

Fig. 5 and Fig. 6 demonstrate the effectiveness of our es-
timation, whether the bitrate is controlled by Fiammetta or
GCC [5]. Exploiting our measurement testbed (detailed in
§IV), we can control the bandwidth trace. Our estimation
algorithm is able to significantly reduce the estimation error,
compared to the original throughput-to-bandwidth gap. In
addition, the impact of these errors can be further mitigated
by the range ∆, where the deviation rate of “network state”
estimation is reduced from 0.5 to approximate 0.1.

“Network state” definition. We define the “task” as the
adaptation to the “network state”, both denoted as Γi, i ∈ N+.
Each Γi represents network sequences with similar charac-
teristics, i.e., within a specific property cluster of {µi, σi,
ωi, dprop,i,∆i}, where µi, σi, ωi, dprop,i are the center and
∆i the ranges. All these properties are evaluated within the
window Wr (set as 8 s), with 1 s as the unit time. Wherein,
the design of ∆ is critical, as the smaller the ∆, the larger
improvement in task-specific updates, but the more likely to
be affected by meta-testing lags. We therefore set minimum
thresholds ∆′ = {∆′µ = 0.2,∆′σ = 0.2,∆′ω = 2} (Mbps)
according to §II-C and set ∆′dprop = 3 ms in the same way.
These ∆′, on the one hand, cover 90% samples (∆t = 4 s), as
shown in Fig. 7, to ensure seamlAess adaptation during meta-
testing, and on the other hand, simplify the complexity of Γ
space to reduce the difficulty of meta-learning.

C. Offline Meta-Training
The meta-training is implemented offline. The key steps and

the architecture are depicted in Fig. 4 and Fig. 8, respectively.
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“Network state” distribution. Among a series of meta-
learning algorithms, we choose model-agnostic meta-learning
(MAML) [18]. MAML essentially trains initial NN param-
eters with high sensitivity on a given “task” distribution,
allowing for extremely efficient adaptation to “tasks” in
few gradient steps. For this reason, we need to obtain the
“network state” distribution. Specifically, we first apply the
bandwidth estimation algorithm (§III-B) to the dataset col-
lected in §II-C. Then, we utilize the sliding window Wr

to collect {µt, σt, ωt, dprop,t,∆t} of all network sequences,
where ∆t = {|µt − µt−∆t| , · · · , |dprop,t − dprop,t−∆t|}. We
treat each network sequence as the “network state” of Γi :
{µi = µt, σi = σt, · · · ,∆i = max(∆t,∆

′)}, without the
need for additional categories. It is noteworthy that ∆t = 4 s
is consistent with that in §III-B and §II-C to maintain the
short-continuity of “network states”. Finally, based on the
multidimensional “network states”, we calculate their joint
probability densities on the basis of fine-grained partitioning,
and then combine interpolation to obtain the probability den-
sity function p(Γ) = p(µ, σ, ω,∆)× p(dprop).

“Network state” sampling. Based on p(Γ), we sample
“network state” Γi, i ∈ N+ to provide tasks for meta-training
process, depicted in Fig. 8. Theoretically, the more tasks sam-
pled during meta-training process, the smaller the difference
between the distribution of the sampled tasks and p(Γ), and
the more robust the performance is over p(Γ).

Generation of network trajectories. For each task, suffi-
cient network trajectories are necessary as training samples.
However, some “network states” Γ with small probabilities
often encounter the problem of insufficient collected network
trajectories during meta-training. Besides, there is also not
enough time to obtain network trajectories of new “network
states” during meta-testing. Therefore, we explore a second
approach which involved generating synthetic network trajec-
tories, in addition to collecting real trajectories.

Given a Γi, we first sample µ, σ, dprop in their respective
ranges, following Gaussian distribution to guarantee that the
sampling probability at the center is slightly larger. Similarly,
we sample dprop in the same way. The purpose of this is
to provide optimization preference for each Γi. Then, we
generate bandwidth samples through two distributions. One is
the Gaussian distribution, commonly used in studies [8], [19]
for synthetic trajectory generation, and the other is the beta
distribution that is built on a range [0,max] and can easily
achieve asymmetric sampling. Here, max is the maximum B̂
in the dataset. For any given µ and σ, if [µ− 3σ, µ+ 3σ] ⊆
[0,max] (3σ rule [20]), we assume a Gaussian distribution for
bandwidth samples, otherwise, the beta distribution is adopted
as an alternative. Finally, we repeat the first two steps to
obtain enough bandwidth samples, and then arrange them into
trajectories in different orders, among which the trajectories
that do not satisfy ∆µi ,∆σi ,∆ωi are filtered out.

Meta-training for initial NN model. Fig. 8 depicts the
Fiammetta meta-training architecture. We proceed to describe
the customized designs and key algorithms involved.

(i) State and Action. At any time t, the RL agent takes the
state st as input, the neural network as a function πθt , and
outputs a target bitrate at to interact with the interactive video
system. The end goal is to find the optimal bitrate adaptation
policy, i.e., π∗θ : st → at to maximize QoE. Specifically, st is
denoted as {ηt, bt−∆t′ , lt,dt, jt}, representing sequences of
throughput, target bitrate, packet loss ratio, delay, and delay
jitter over past 3 s with ∆t′ = 0.1 s as the unite time. All
these metrics can be obtained at the sender via periodic RTCP
feedback. After observing st, the RL agent outputs at, chosen
from 21 discrete actions set {−2,−1.8, · · · , 1.8, 2}. Here, at
represents the scaling factor between two consecutive target
bitrate selection, i.e., bt = bt−∆t′ × eat , like Libra [21].

(ii) Reward. Upon determining at, Fiammetta interacts with
the interactive video system by adjusting both codec bitrate
and sending rate, and then gets a reward rt to update πθ. We
exploit QoE as the criterion for designing rt, which is

rt = w1 × ηt −w2 × lt −w3 × dt −w4 × |bt − bt−∆t′ | . (7)

Therein, all these metrics are averaged over one unit time,
i.e., from t−∆t′ to t. |bt − bt−∆t′ | enforces the codec bitrate
smoothness to prevent large frame delay jitter and quality jitter.
Referring to recent studies [12], [13], we empirically set these
four weights to 50, 50, 200 and 20, respectively.

(iii) NN structure. For a start, state sequences are flattened
before being fed into networks. The actor network consists



of three fully connected layers with 128, 64 and 32 neurons
respectively, followed by an activation function. The baseline
function bπθ (s) simply implements a linear fit as an average
expected reward of s under πθ.

(iv) Training algorithm. The entire meta-training consists
of two parts: inner loop and outer loop. The inner loop is
responsible for task-specific optimization, and the outer loop
is to obtain an efficient initial NN model, which enables fast
adaptation in the inner loop.

During the inner loop, each Γi contains an initial state dis-
tribution pi(st) and a transition distribution pi(st+∆t′ |st, at).
Γi is therefore a Markov decision process (MDP). During
each gradient update, the RL agent is allowed to query K
trajectories ξk = {s∆t′ , a∆t′ , r∆t′ , · · · , sN , aN , rN} (k =
1, · · · ,K), which are sampled through rollouts by πθi (ini-
tially set as θ0) on network trajectories (detailed above) and
simulators (§IV). Then, the cumulative reward Rπθi (st, at) =∑ t+3

∆t′

t′= t
∆t′

γ(t′− t
∆t′ )rt′×∆t′ is used to update θi as follows

LΓi(θi) = Eξk∼(πθi ,pi)

[
ξk∑
t

Âπθi (st, at)

]
, (8)

θi ← θi + α∆θiLΓi(θi), (9)

where L is the loss function, α the learning rate, bπθi (st)
the average expected reward at st under πθi , Â

πθi (st, at) =
Rπθi (st, at) − bπθi (st) the advantage function, representing
the extra benefit from a certain at. Besides, “3 s” is the
empirically configured time that Fiammetta considers for the
future. When adapting to Γi, the NN parameters evolve from
θ0 to θi according to Eq. (9) through only 3 gradient updates
that are sufficient for convergence.

The outer loop further improves the performance of πθi
by updating initial θ0 following PPO algorithm [22]. During
each round of outer loop, Fiammetta samples M tasks from
p(Γ), updates to corresponding {θi}Mi=1 in the inner loop, and
evaluates by resampling K trajectories {ξk,i}Kk=1 on each task
using πθi . Then, Fiammetta obtains the loss function L and
updates θ0 by

Lθ
′
0(θ0) =Ei∼p(Γ)

ξk,i∼(πθi ,pi)

[ ξk,i∑
t

min
(
δθ
′
0(θ0)Âπθi (st, at),

clip(δθ
′
0(θ0), 1− ε, 1 + ε)Âπθi (st, at)

)]
, (10)

θ0 ←θ0 + β∆θ0Lθ
′
0(θ0), (11)

where θ′0 is the old initial parameters before each round of
outer-loop update, and δθ

′
0(θ0) =

πθ0 (st,at)

πθold,0 (st,at)
represents the

ratio of a new policy and its old one. The basic idea is to make
the update of θ0 smoother and avoid gradient oscillations by
clipping δθ

′
0(θ0) values that are out of [1− ε, 1 + ε].

D. Online Meta-Testing

Based on the initial NN model, Fiammetta achieves seam-
less adaptation to time-varying “network states” through online
meta-testing, the steps of which are shown in Fig. 4 and Fig. 9.

𝑊𝑟

Initial model No Meta-testingMeta-testing 𝝁, 𝝈,𝝎

∆

THR: Τ∆ 𝟐

Fig. 9: Fiammetta meta-testing design.

“Network state” monitoring. Fiammetta monitors the real-
time “network state” by computing µt, σt, ωt and dprop,t of the
network sequence within a sliding window Wr over past 8 s.
It is noteworthy that the bandwidth B̂ and dprop are estimated
following the steps in §III-B, and the sliding window is moved
at a granularity of 1 s for real-time assurance.

Meta-testing activation. The target of meta-testing acti-
vation is to achieve a seamless adaptation between “network
state” changes. Therefore, it cannot wait until the detected
attributes, such as µt, σt, ωt, dprop,t are out of the ranges ∆last

of last “task”. As an alternative, we set the activation threshold
to ∆last

2 according to Fig. 7, i.e., each of |µt − µlast| >
∆µ,last

2 , |γt − γlast| > ∆γ,last

2 , · · · will activate meta-testing.
Then, the seamless adaptation is ensured by alleviating the
effect of meta-testing lag, shown in Fig. 9. Note that ∆ is also
required to be compliant with this lag. As meta-testing (i.e.,
inner loop with 3 gradient updates) takes roughly 2 s according
to our statistics, ∆ needs to cover at least 4 s of network
variations, which is the reason for configuring ∆t = 4 s
(§II-C) and obtaining ∆′ (§III-C) based on this.

Meta-testing. Consistent with the inner loop, meta-testing
is responsible for adapting to varying "network states" de-
tected in real time. Upon activation, the new “network state”
Γi : {µi = µt, σi = σt, ωi = ωt,∆i = max(∆t,∆

′)} is gen-
erated, where ∆t = {|µt − µlast| , |σt − σlast| , |ωt − ωlast|}.
Then, we follow the workflow of inner loop by first sampling
K trajectories of Γi, again obtained through K rollouts on
synthetic network trajectories (§III-C) and simulators (§IV).
Then, the specialized NN parameters θi for Γi can be obtained
through 3 gradient updates based on Eq. (8)-(9).

IV. IMPLEMENTATION

Testbed implementation. We build an end-to-end mea-
surement testbed and exploit the real-world network traces
(detailed in §II) sponsored by WeChat for Business APP to
test the performance of Fiammetta and baseline algorithms.
As shown in Fig. 10, the testbed mainly consists of two PCs
running WebRTC as a video traffic transceiver pair and one
PC controlling network link through the TC (traffic control)
tool [23]. Besides, we implement Fiammetta and learning-
based baseline algorithms on a remote RL server, and the
video transceiver pair is connected to the RL server via an
additional router to query the target bitrate. The RL server is
a desktop equipped with Intel Core i7-9700K CPU, Geforce
RTX 1080Ti GPU, 32-GB memory and Ubuntu 18.04. We
implement Fiammetta with PyTorch version 1.10.2. Fig. 11
further shows the detailed system implementation of Fi-
ammetta, which works by replacing the bitrate control module
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Fig. 10: Testbed setup.

in interactive video system. At run time, the sender offloads
network metrics (obtained from RTCP feedback) to the RL
server in real-time and adopt the bitrate decision at selected by
the RL model πθi . Moreover, we detach meta-testing from the
front-end query service to ensure responsiveness. Specifically,
we set up a back-end process to receive the transition tuples
from the front-end and conduct meta-testing without disturbing
it. Once meta-testing is completed, the old NN parameters θold
in the front-end will be replaced by the new parameters θnew.
To further reduce computation overhead, we dynamically store
partial specialized NN parameters θi on the server according
to the access frequency, in addition to initial NN parameters.

Simulator. Our simulator consists of two modules: (i) A
video compression module that compresses real video to
different bitrates of {0.1, 0.2, · · · , 2.5} Mbps, and records
each frame size to faithfully simulate frame size jitters. At
run time, this module continuously outputs frame sizes of
the video that has the closest bitrate to the target. (ii) A
transport module that packages frame-sized random data into
RTP packets and faithfully simulates the pacer mechanism to
send packets into a simulated network path. The bandwidth
and propagation delay are configured according to the WeChat
for Business traces for Fiammetta training.

V. EVALUATION

A. Methodology

Trace-driven testbed experiments. We train and test Fi-
ammetta & baseline algorithms on the same datast (detailed
in §II) with 75% the training set and 25% the test set.
As the network bandwidth is hard to accurately measure at
fine grain, we use throughput as bandwidth for experiments.
This certainly simplifies the experiment by getting a precise
“network states” distribution p(Γ). However, we want to make
it clear that our design can handle real-world deployments
without explicit bandwidth information.

Baseline algorithms are listed in the following
(i) GCC [5], as an official congestion control algorithm,

is widely used in mainstream interactive video systems,
such as WeChat, Google Hangouts, etc. The core idea is
to adopt a combination of loss-based and delay-gradient-
based methods to avoid congestion and adjust bitrates.

(ii) OnRL [12] is the first online-RL-based adaptation algo-
rithm for interactive video systems. We train it with the

video traffic
Peer-A

Back-end process

Peer-B

Meta-testing 

activation (§III-D)

Meta-testing from 

𝜃0 to 𝜃𝑖/𝑗 (§III-D)
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Bandwidth estimation 
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Fig. 11: System implementation of Fiammetta.

same training set directly on our testbed, spending about
12 days with 291 hours, and implement online adaptation
during the 4-day-long test period of 100 hours.

(iii) Loki [13] proposes to fuse the rule-based GCC with the
RL-based algorithm at the feature level to improve the
long-tail performance. Following Loki, we “blackboxify”
GCC, integrate it with OnRL, and then retrain the new
NN on our testbed with the same training set. The online
adaptation is also performed during testing process.

B. Comparison with Baseline Algorithms

The comparison results are summarized in Table II.
Application-layer metrics. Fiammetta significantly outper-

forms all three competing algorithm: (i) Compared to GCC,
Fiammetta improves PSNR by 1.34 dB and decreases stalling
rate by 9.6%. More importantly, Fiammetta is also comparable
to the conservative GCC in terms of FPS, frame delay and
jitters. (ii) In comparison to learning-based OnRL and Loki,
Fiammetta cuts stalling rate by 21.9% and 6.3%, respectively,
and is also better in frame quality, with a little improvements
in both PSNR and FPS. Also, the frame delay and delay jitter
of Fiammetta exhibit better performance than Loki, OnRL.

Transport-layer metrics. Similarly, Fiammetta achieves re-
markable gains in most transport-layer metrics: (i) Consistent
with application-layer metrics, Fiammetta effectively improves
throughput by 3.6%, 10.3%, 16.2% over OnRL, Loki and
GCC, respectively. (ii) Meanwhile, the RTT of Fiammetta
significantly drops by 1.1%, 7.4%, synchronized with loss
rate reduction of 12.3%, 17.5%, compared to Loki and OnRL.
These metrics are at the same level as the conservative GCC.
(iii) While the bitrate jitter of Fiammetta is slight worse than
OnRL, it performs comparable to GCC and better than Loki.

QoE/Reward. Table II further demonstrates the QoE/reward
to provide an overall evaluation. For fairness comparison, all
RL-based algorithms are trained using the same QoE/Reward
setting defined in §III-C. We can notice that Fiammetta outper-
forms OnRL by 11.1% in QoE, and the gap gradually increases
to 17.0% and 26.7% when compared to Loki and GCC,
respectively. These results validate the overall superiority of
Fiammetta, by achieving a better dynamic balance between
conflicting metrics such as delay, packet loss, smoothness and
throughput to maximize interactive video QoE.



TABLE II: Overall performance regarding application and transport-layer metrics (Mean± StdDev)

Algorithms

Application-layer metrics Transport-layer metrics
QoE/

Reward
FPS PSNR

(dB)
Stalling rate

(FPS <12, %)
Frame delay

(ms)
Frame delay
jitter (ms)

RTT
(ms)

Loss rate
(%)

Throughput
(Mbps)

Bitrate jitter
(Mbps/10min)

GCC [5] 29.41±
4.41

33.17±
7.98

0.83± 5.27
160.23±
45.42

5.25±
10.35

68.93±
110.27

1.68±
1.01

0.74±
0.23

1.09± 2.04 22.85

OnRL [12] 29.02±
4.29

34.12±
7.32

0.96± 3.55
170.68±

36.32
5.53±
10.82

73.95±
119.01

2.00±
1.33

0.83±
0.25

0.92±
5.20

26.05

Loki [13] 29.04±
4.36

33.82±
6.55

0.80± 2.32
165.21±

38.34
5.343±
10.92

69.29±
97.86

1.88±
1.25

0.78±
0.22

1.20± 1.81 24.74

Fiammetta 29.51±
3.41

34.51±
7.27

0.75±
2.31

162.53±
30.24

5.27±
9.63

68.51±
63.86

1.65±
1.25

0.86±
0.24

1.09± 2.16 28.94
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Fig. 12: A microscopic showcase of a 600-second session.

A microscopic showcase. We find that Fiammetta’s gains
stem from its ability to quickly generate and switch to strate-
gies that fit the current “network state”. Fig. 12 exhibits a
representative 600-second session. (i) When the bandwidth
is relatively stable, Fiammetta follows closely, maximizing
bandwidth utilization with minimum magnitude of probing.
The reason is that Fiammetta can always have rough priori
assumptions about “network states”. At run time, when the
“network state” is roughly detected, Fiammetta can quickly
generate strategies that fit the range of “network state”, elim-
inating many substantial trial-and-error behaviors. In compar-
ison, GCC suffers from periodic bitrate degradation due to
its AIMD-based probing mechanism, while OnRL exhibits
frequent overshoots. Affected by the integration with GCC,
Loki also encounters unnecessary bitrate drops, when GCC
bitrate goes down and occupies much larger impacting factor,
resulting in a loss of bandwidth utilization. (ii) When the
bandwidth fluctuates dramatically (280-370 s), Fiammetta can
also benefit from the priori assumptions and generate relatively
conservative strategies compared to OnRL, yielding an RTT
comparable to GCC and with higher throughput.

C. Comparison across Different “Network States”

We further evaluate Fiammetta across large/small sta-
ble/dynamic bandwidth, with results depicted in Fig. 13.

Large stable bandwidth. We first evaluate Fiammetta in
the highest-quality “network state” with large stable bandwidth
(µ ∈ [1, 3] and σ ∈ [0, 0.1]). Fiammetta achieves noticeable
video clarity improvements, boosting throughput by 9.5%-
21.4%, and PSNR by 0.2 dB-2.6 dB across three baseline
algorithms. Meanwhile, Fiammetta also achieves better perfor-
mance in RTT and stalling rates. This results further validate

that priori rough assumptions about “network states” help
Fiammetta to achieve better performance.

Large dynamic bandwidth. For the “network state” with
large but dynamic bandwidth (µ ∈ [1, 3] and σ ∈ [0.3, 0.5]),
Fiammetta still achieves throughput gains by 2.2%-10.3%, and
PSNR gains by 0.2 dB-1.9 dB. Meanwhile, both RTT and
stalling rate exhibit noticeable reductions compared to baseline
algorithms This shows that Fiammetta can quickly switch to
a relatively conservative strategy when bandwidth fluctuates,
to avoid much latency increase.

Small stable bandwidth. When adapting to “network state”
with small stable bandwidth (µ ∈ [0.5, 1] and σ ∈ [0, 0.1]),
Fiammetta achieves stalling rate comparable to GCC and sig-
nificantly better than Loki and OnRL. Moreover, Fiammetta’s
PSNR and throughput are in between OnRL and Loki, achiev-
ing global optimum in QoE. Such results suggest Fiammetta
has essentially developed strategies for small stable bandwidth,
instead of blindly probing, causing frequent overshoots.

Small dynamic bandwidth. The small dynamic bandwidth
(µ ∈ [0.5, 1] and σ ∈ [0.3, 0.5]) is considered by us as the
worst “network state”, but Fiammetta still achieves promising
results in this case. Instead of blindly seeking to fit the band-
width fluctuation curve, Fiammetta adopts a relatively conser-
vative strategy. It achieves 7.5%-19.8% throughput gains, and
hence 0.4 dB-2.8 dB PSNR gains, with reductions in stalling
rate of 8.3%-20.6% over three baseline algorithms.

D. Comparison of Fiammetta w/ and w/o Meta-Testing

In this subsection, we proceed to investigate whether the
gains of Fiammetta are due to the fast adaptation of online
meta-testing to changing “network states” or to the superiority
of the initial NN itself. We conduct experiments to compare the
performance of Fiammetta w/ and w/o meta-testing. Through
the results in Fig. 14, we note that Fiammetta w/ meta-
testing achieves performance gains across all application- and
transport-layer metrics: (i) For the application-layer metrics,
the most significant improvements come from the 7.5% in-
crease in PSNR and the 19.5% reduction in stalling rate. (ii)
For the transport-layer metrics, the throughput is improved by
9.7%, with reductions in RTT and bitrate jitter of 7.8% and
60.8%, respectively, compared to Fiammetta w/o meta-testing.
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Fig. 13: Fiammetta’s adaptability to different “network states”, compared to baseline algorithms.
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Fig. 14: Comparison of Fiammetta w/ and w/o meta-testing.

VI. RELATED WORK

Interactive video adaptation. Much effort has gone into
developing bitrate adaptation algorithms for interactive video
streaming, which falls into two categories: (i) rule-based
algorithms [5]–[7], and (ii) learning-based algorithms [11]–
[15]. Rule-based algorithms [5]–[7] typically follow AIMD-
like approaches for bitrate adaptation, based on loss, delay
and delay jitter, etc. However, such pre-programmed universal
rules can hardly fit diverse and heterogeneous modern net-
works. The learning-based algorithms consist of offline [11]
and online learning approaches [12]–[15]. For instance, Con-
certo [11] adopts imitation learning offline. OnRL [12] is
the first to achieve fully online learning in interactive video
applications via federated learning. Loki [13] proposes tight
coupling between RL and GCC. Notwithstanding, the offline-
trained model still suffers from fixed parameters. These online-
learning algorithms [12]–[15], however, rely on a large amount
of data/time, which hinders fast adaptation to changing “net-
work states”. Besides, Salsify [24] designs customized codec
to address the mismatch between the actual codec bitrate and
transport/target bitrate. In addition, many parallel studies [8]–
[10], [16], [19] target bitrate adaptation in VoD streaming,
which also provide much inspiration for Fiammetta.

Meta-reinforcement learning. Meta-learning [25] is a typ-
ical framework for addressing challenging few-shot learning
setting by providing reasonable assumptions : (i) a task distri-

bution p(Γ) exists, (ii) the target new task obeys p(Γ); (iii)
a meta-training set sampled from p(Γ) can be obtained to
train the model, and (iv) another meta-testing set sampled from
p(Γ) can be used to evaluate the expected performance [25].
Fiammetta basically follows these assumptions. The research
on meta-RL includes meta-learning initial NN parameters [18],
[26], loss functions [27], adaptation process [28], which are
all key components of RL. Among them, MAML [18] is
a landmark work that adjusts simply initial NN parameters,
which is sample efficient, lightweight and extremely suitable
for few-shot learning settings. In addition, Fiammetta is highly
compatible with MAML constraints such as fixed NN structure
(e.g., input/output sizes) and strong correlation among tasks.

VII. CONCLUSION

Fiammetta represents the first meta-RL-based bitrate adap-
tation algorithm for interactive video system. It marks a new
optimization modality that fast adaptation to changing network
states becomes a reality by few-shot learning. This system
is inspired by an observation that network sequences exhibit
noticeable short-term continuity sufficient for few-shot learn-
ing, drawn from a real-world measurement study on WeChat
for Business interactive video system. We evaluate Fiammetta
on a local testbed with network links following WeChat for
Business traces. Experimental results confirm the superiority
of Fiammetta compared to state-of-the-art algorithms.
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