
PROPHET: Conflict-Free Sharding Blockchain via
Byzantine-Tolerant Deterministic Ordering

Zicong Hong1, Song Guo1,2, Enyuan Zhou1, Jianting Zhang3,
Wuhui Chen4, Jinwen Liang1, Jie Zhang1, and Albert Zomaya5

1Department of Computing, The Hong Kong Polytechnic University, Hong Kong 2The Hong Kong Polytechnic University
Shenzhen Research Institute, China 3Computer Science Department, Purdue University, USA

4School of Computer Science and Engineering, Sun Yat-sen University, and Pengcheng Laboratory, Shenzhen, China
5School of Computer Science, The University of Sydney, Australia

zicong.hong@connect.polyu.hk, song.guo@polyu.edu.hk, en-yuan.zhou@connect.polyu.hk, zhan4674@purdue.edu
chenwuh@mail.sysu.edu.cn, {jinwen.liang, jie1zhang}@polyu.edu.hk, albert.zomaya@sydney.edu.au

Abstract—Sharding scales throughput by splitting blockchain
nodes into parallel groups. However, different shards’ indepen-
dent and random scheduling for cross-shard transactions results
in numerous conflicts and aborts, since cross-shard transac-
tions from different shards may access the same account. A
deterministic ordering can eliminate conflicts by determining
a global order for transactions before processing, as proved
in the database field. Unfortunately, due to the intertwining
of the Byzantine environment and information isolation among
shards, there is no trusted party able to predetermine such an
order for cross-shard transactions. To tackle this challenge, this
paper proposes PROPHET, a conflict-free sharding blockchain
based on Byzantine-tolerant deterministic ordering. It first depends
on untrusted self-organizing coalitions of nodes from different
shards to pre-execute cross-shard transactions for prerequisite
information about ordering. It then determines a trusted global
order based on stateless ordering and post-verification for pre-
executed results, through shard cooperation. Following the order,
the shards thus orderly execute and commit transactions without
conflicts. PROPHET orchestrates the pre-execution, ordering, and
execution processes in the sharding consensus for minimal over-
head. We rigorously prove the determinism and serializability of
transactions under the Byzantine and sharded environment. An
evaluation of our prototype shows that PROPHET improves the
throughput by 3.11× and achieves nearly no aborts on 1 million
Ethereum transactions compared with state-of-the-art sharding.

I. INTRODUCTION

The prosperity of blockchain facilitates decentralized appli-
cations (dApps), e.g., decentralized exchanges [1] and non-
fungible token [2]. In Ethereum, the number of contract calls
per day has more than tripled to over 3 million from Jun. to
Sep. in 2021 [3]. However, the poor scalability of the existing
blockchains, 7 transaction per seconds (TPS) in Bitcoin [4]
and 15-45 TPS in Ethereum [5], cannot satisfy this growing
demand for dApps. This is because their consensus requires
all nodes to validate and execute every transaction, which
aggravates the scalability problem and restricts smart contracts
from more users and the dApps with more complex logic.

Sharding is one of the most promising technologies for
scalability [6]. It divides nodes into multiple consensus groups

This research was supported by fundings from the Key-Area Re-
search and Development Program of Guangdong Province under grant No.
2021B0101400003, Hong Kong RGC Research Impact Fund (RIF) with the
Project No. R5060-19, General Research Fund (GRF) with the Project No.
152221/19E, 152203/20E, 152244/21E, and 152169/22E, the National Natural
Science Foundation of China 61872310, Shenzhen Science and Technology
Innovation Commission (JCYJ20200109142008673), and the National Key
Research and Development Plan (2021YFB2700302).

1 3 5 7 9 111315
Number of inter-

contract calls

0

5

10

15

20

25

Pe
rc

en
ta

ge
 (%

)
(a)

User X C1 C2

Cross-shard transaction 1

C3User Y

❹❶

❷

Cross-shard transaction 2

❸

Call Return

C1

1 2 3

1 2 3

❶

❷

4

4

❸

❹

1 2 3 4

Conflict

(b)

Fig. 1: (a) Percentage of Ethereum transactions with different
number of inter-contract calls from Oct. 2020 to May. 2021,
(b) Illustration for conflicting cross-shard transactions. Each
concentric circle represents a smart contract. Three contracts
are located in three different shards. Each circled number
represents the round at which a sub-transaction is committed.

called shards and distributes transactions to shards to process
in parallel. The technology has been paid close attention by
the academia [7]–[15]. For the industry, some blockchains are
being or have been upgraded to a sharding architecture, such
as Zilliqa [16] and Eth2 upgrade in Ethereum [17].

While increasing the throughput in proportion to the number
of shards, sharding technology introduces cross-shard transac-
tions, which are transactions involving the smart contracts in
multiple shards. More seriously, similar to the current software
composed of numerous programs, a dApp often requires the
cooperation of several contracts, significantly increasing the
number and complexity of cross-shard transactions. As shown
in Figure 1a, more than 70% of Ethereum [5] transactions for
smart contracts include more than 2 inter-contract calls and
the average number is 8.94. After introducing sharding, the
contracts are located in different shards thus the inter-contract
calls result in massive cross-shard transactions. To guarantee
the atomicity and consistency of cross-shard transactions,
each sharding system needs a cross-shard mechanism. The
mechanism divides each cross-shard transaction into several
sub-transactions, each of which corresponds to a shard, and
commits each sub-transaction to the corresponding shard.

Unfortunately, we observe that the existing cross-shard
mechanisms perform well below expectations in practice. As
evaluated in § VIII, an existing blockchain with 32 shards
performs even worse than a non-sharding one when meeting

ar
X

iv
:2

30
4.

08
59

5v
1

 [
cs

.C
R

]
 1

7
A

pr
 2

02
3

the Ethereum transactions. It upends our usual understanding
on sharding and drives us to reconsider the technology of
sharding. This poor performance results from inherent con-
flicts among cross-shard transactions and the independent and
random scheduling for cross-shard transactions in different
shards. In particular, multiple cross-shard transactions may
access the state of the same smart contract (e.g., Cxn.1 1
and 2 access Contract C1 in Figure 1b). Although Cxn. 1
is issued first, the state of C1 can be modified by Cxn. 2
before Cxn. 1 is committed. The existing sharding systems
mainly adopt two-phase locking (2PL) (e.g., [8], [18], [19])
or optimistic concurrency control (OCC) (e.g., [10], [11])
to avoid conflict and guarantee serializability of transactions.
However, as evaluated in § VIII, more than 50% of transactions
are aborted or rolled back due to race conditions, because real
smart contract workloads contain frequent read-write conflicts.
Therefore, both 2PL and OCC exhibit high abort rates and
strongly limit the performance of blockchain sharding.

To eliminate the high abort rates caused by non-
deterministic race conditions, an intuitive idea is to introduce
a predetermined serial global order for pending transactions
before processing them. The idea is inspired by distributed and
deterministic database with a sequencing layer, which collects
all database transactions for producing a global order before
database execution [20]–[24]. However, the sequencing layer
in distributed databases is designed with a strict assumption
that the layer contains trusted machines for storing the whole
database state, which is far from trivial for the blockchain.
Due to the intertwining of the information isolation among
shards (i.e., each node only stores a proportion of contracts)
and Byzantine environment (i.e., blockchain nodes do not trust
each other), there are no trusted nodes to predetermine such an
order for transactions involving the state of different shards.

Therefore, we propose PROPHET, a conflict-free sharding
blockchain, based on a new idea named Byzantine-tolerant
deterministic ordering. Specifically, to overcome the challenge
of information isolation, the nodes from different shards are
allowed to form self-organizing coalitions to pre-execute pend-
ing transactions, including single-shard and cross-shard ones,
for prerequisite information about ordering. Then, a random
shard is delegated to sequence the pre-executed transactions
for a global order based on prerequisite information. To deal
with Byzantine failures in blockchain, a shard-cooperation
proof sharing is proposed to verify and correct untrusted pre-
execution results without interruption of consensus. With such
an order, transactions in different shards can be executed and
committed orderly without conflicts. The new architecture will
not break any decentralization principle of blockchain.

The contributions of this work are summarized as follows.
• We propose an idea of Byzantine-tolerant deterministic

ordering and develop a conflict-free sharding blockchain
named PROPHET, minimizing the number of transaction
aborts caused by non-deterministic contract contention.

• On top of the shards, PROPHET introduces two new
1In this paper, for simplification, we use Cxn. to denote cross-shard

transaction, Txn. to denote single-shard transaction, and Blk. to denote block.

types of parties, i.e., sequence shard and reconnaissance
coalition, with a little additional overhead and designs a
new cooperative consensus for a global order based on
the cooperation and joint supervision among shards.

• Based on the characteristics of smart contracts, such as
inter-contract calls and contract instructions, we present
the designs of fine-grained ordering, asynchronous cor-
rection, and parallel pre-execution for efficiency.

• We develop a prototype for PROPHET and conduct a com-
prehensive evaluation. PROPHET improves the throughput
by 3.11× (i.e., 1203 TPS) on 1 millions Ethereum trans-
actions compared with state-of-the-art sharding systems.

II. BACKGROUND

Elastico [7] is the first public blockchain for transaction
verification sharding, but it requires nodes to store the entire
ledger. Omniledger [8] and RapidChain [9] achieve state
sharding, which means each shard only needs to store a
proportion of the ledger. Different from the previous works
for UTXO transactions, Monoxide [10] is a blockchain shard-
ing for account-based transactions. Some recent research
efforts include smart contract sharding [19], [25], sharding
blockchain database [26], dynamic sharding [27], and permis-
sioned blockchain sharding [18], [28].

Although sharding improves the scalability of blockchain,
it raises a new challenge to the concurrency control of cross-
shard transactions. Each cross-shard transaction is a transac-
tion involving multiple contracts distributed in different shards.
To commit such a cross-shard transaction, every sharding
system requires a cross-shard mechanism to guarantee its
atomicity and consistency for the related shards. Since the
cross-shard transactions from different shards may access the
state of the same contracts, the cross-shard mechanism needs
to resolve their conflicts. As shown in Table I, the existing
cross-shard mechanisms can be classified into two classes, i.e.,
OCC and 2PL, which are discussed as follows.

For an OCC cross-shard mechanism, cross-shard trans-
actions are committed in an optimistic manner. In detail,
each cross-shard transaction is divided into multiple sub-
transactions, each of which involves the contracts stored
by the same shard. For example, as shown in Figure 2a,
Cxn. 1 in Figure 1b is divided into three sub-transactions.
We emphasize that in the scenario of smart contracts, the
later sub-transaction can be known only after the former sub-
transaction is executed. Thus, the sub-transactions need to
be generated and committed in series. The basic premise
of OCC is that most transactions do not conflict with other
transactions. However, before all sub-transactions of a cross-
shard transaction are committed, if its touched contracts are
updated by other transactions, it needs to be aborted and the
state change of the touched contracts will be withdrawn.

For a 2PL cross-shard mechanism, a cross-shard trans-
action is committed after requesting and releasing the re-
lated contracts’ locks. A 2PL cross-shard mechanism assumes
that clients or reference shards store the latest state of all
contracts, called client-driven and shard-driven, respectively.

call

User
C1

C2

Shard 2

Shard 1
lock

lock
Shard 2

Shard 1

sub-txn2 sub-txn4

Step Txn. Oper. Shard

1 sub-txn1 C1 run Shard 1

2 sub-txn2 C2 run Shard 2

3 sub-txn3 C1 run Shard 1

Step Txn. Oper. Shard

1
sub-txn1 lock C1 Shard 1

sub-txn2 lock C2 Shard 2

2
sub-txn3 unlock C1 Shard 1

sub-txn4 unlock C2 Shard 2

1 2 3

1 2 3

User
C1

C2

Shard 2

Shard 1
unlock

unlock

❶ ❷

❸
Shard 1

C1

❶

C2

Shard 2
call

Shard 2

Shard 1 1 2 3

1 2 3

sub-txn1

sub-txn2

sub-txn3

return

❷
Shard 1

C1return

(a) OCC-based cross-shard mechanism

call

User
C1

C2

Shard 2

Shard 1
lock

lock
Shard 2

Shard 1

sub-txn2 sub-txn4

Step Txn. Oper. Shard

1 sub-txn1 C1 run Shard 1

2 sub-txn2 C2 run Shard 2

3 sub-txn3 C1 run Shard 1

Step Txn. Oper. Shard

1
sub-txn1 lock C1 Shard 1

sub-txn2 lock C2 Shard 2

2
sub-txn3 unlock C1 Shard 1

sub-txn4 unlock C2 Shard 2

1 2 3

1 2 3

User
C1

C2

Shard 2

Shard 1
unlock

unlock

❶ ❷

❸
Shard 1

C1

❶

C2

Shard 2
call

Shard 2

Shard 1 1 2 3

1 2 3

sub-txn1

sub-txn2

sub-txn3

return

❷
Shard 1

C1return

(b) 2PL-based cross-shard mechanism

Fig. 2: Illustration for the existing cross-shard mechanism for smart contracts.

System Type

Elastico [7], CoSplit [12] None
Omniledger [8], ByShard [13]

2PLChainspace [19], Rapidchain [9]
Dang et al. [18]
Monoxide [10], Pyramid [11] OCC

TABLE I: Cross-shard mechanisms of dif-
ferent sharding systems. ([7], [12] do not
have cross-shard mechanisms since they do
not achieve sharding for storage, i.e., there
are no cross-shard transactions.)

Cross-shard transaction profile

Prophet

Shard 1

Shard 2

Global order for transactions

Shard 1

Shard 2

Blk. for Shard 1

Blk. for Shard 2

Cxn. 2

Cxn. 3

Txn. 4

Txn. 1

Cxn. 2

Cxn. 3

Txn. 1

Cxn. 2 Cxn. 3

Txn. 4

Txn.1Txn.1Cxn. 2

• Cross-shard message

e.g. C1 call C2 (function,

parameters, returns)

Txn. 1 Txn. 4 Cxn. 2 Cxn. 3

Fig. 3: An ideal cross-shard mechanism for sharding.

Before committing a cross-shard transaction, the client (or
the reference shard) pre-executes it and knows all its related
contracts. Then, the client requests the locks from the shards
storing the related contracts. Only after the client requests all
locks, can the client be committed in the related shards and
release all locks. The request and release for locks are realized
by sub-transactions. For example, in Figure 2b, the client first
requests the locks from Shard 1 and 2. It then commits the
transaction and releases the locks. To avoid deadlocks, the
2PL cross-shard mechanisms need some deadlock prevention
designs. For example, if a client (or reference shard) requests
a lock of a contract that has been locked by other clients (or
reference shards), it needs to release its acquired locks.

Although the cross-shard mechanisms guarantee that each
cross-shard transaction can be committed in all its related
shards, each shard independently packs and orders its trans-
actions in each round. It results in non-deterministic race
conditions and frequent aborting of cross-shard transactions
since their involved contracts may be modified or locked by
the others before they are committed, i.e., before all of its sub-
transactions are committed. This makes the sharding systems
perform even worse than the non-sharding ones.

III. STRAWMAN: AN IDEAL CROSS-SHARD MECHANISM

We first describe an ideal cross-shard mechanism that
ignores the decentralized and Byzantine environment of
blockchain. It motivates the main design of PROPHET in § IV.
This mechanism guarantees that no transactions are aborted.

As shown in Figure 3, the mechanism introduces a new node
called prophet. Assume that the prophet is fully trusted and
has infinite computing power and storage capacity. For each

consensus round, it first validates and executes transactions
sequentially for a global order of the transactions, such as 1423
in the figure. Next, according to the global order, the prophet
generates a serial order for each shard’s block. Specifically,
for a single-shard transaction, since it only reads or writes
the state of contracts in a shard, its execution only depends
on the latest executed transaction in the shard. For a cross-
shard transaction, it involves the state of multiple shards, thus
its execution depends on several transactions from different
shards. For example, in Figure 3, Cxn. 2 executes following
Txn. 1 and Txn. 4. After validation and execution, the blocks
generated by the prophet correspond to a global order which
shows the data dependency of all transactions in this round.

Moreover, the prophet can record some meta information re-
quired for the execution of each cross-shard transaction in each
shard, called cross-shard transaction profile. The profile in-
cludes all cross-shard inter-contract calls and their parameters
and returns, called cross-shard message. The profile enables
each shard to execute transactions without communicating
with the other shards during execution.

Finally, the prophet sends the serial order and the profile
to the corresponding shard with a signature. The shards only
need to replicate and execute transactions one after the other
based on their received serial orders. All transactions can be
committed without any conflicts according to the global order.

Although the mechanism eliminates transaction aborts and
requires minimal coordination among shards, the assumption
of such a special node is too ideal. In particular, a fully
trusted node violates the decentralized inherence of public
blockchain and it has to locally maintain the whole state for all
shards to pre-execute transactions. Thus, it raises a question
about how to implement such a prophet in the decentralized
and Byzantine environment of blockchain sharding. In the
following, we present PROPHET, which achieves a similar
effect through the cooperation and supervision among shards
in a distributed manner and without any trusted third party.

IV. BYZANTINE-TOLERANT DETERMINISTIC ORDERING
FOR BLOCKCHAIN SHARDING

A. System Model & Threat Model

Similar to the existing blockchain sharding [7]–[9], [11],
PROPHET proceeds in epochs, each of which includes multiple

Txn.1Txn.1

Shard 1

Shard 2

Sequence Shard
(Shard 1)

(b) Sequence

Proof for Shard 1

Proof for Shard 2

(c) Execution

Reconnaissance Coalitions

(a) Pre-execution (d) Correction

Blk. for Shard 1

Cxn. 2

Cxn. 3

Txn. 4

Honest
Malicious

Blk. for Shard 2

Txn. 1

Cxn. 2

Cxn. 3

True

False

True

True

True

True

Blk. for Shard 1

Cxn. 2

Cxn. 3

Txn. 4

Blk. for Shard 2

Txn. 1

Cxn. 2

Cxn. 3
Transaction profile

Cxn.2 • Cross-shard message
e.g., C2 call C3 (function,
parameters, returns)
• Read/Write sets
e.g., R: (C1, C2) W: C3

C1

C2 C3

Shard 1 Shard 2

Fail

Success
MaliciousN1

N2
N3

Fig. 4: The architecture of PROPHET.

rounds. It consists of a set of nodes following the Byzantine
failure model which includes two kinds of nodes, i.e., honest
and malicious. The honest nodes abide by all protocols. The
malicious nodes are controlled by a Byzantine adversary and
may collide with each other and violate the protocols in arbi-
trary manners, e.g., denial of service, tampering, and forgery.
All nodes are randomly divided into multiple shards. The
nodes in each shard store a proportion of contracts and verify
and execute the transactions involving the stored contracts.
Besides, each lightweight client only stores its accounts and
do not store any contracts. Since the world state of current
blockchain is huge (e.g., total size in Ethereum is currently
more than 130 GB and keeps increasing [29]), in PROPHET,
neither a node or a client can store the state of all contracts.

B. Motivation & Overview

We start with the problems that the strawman in § III
highlights and build up our design step by step.

According to § III, the function of the prophet includes two
tasks, i.e., pre-execution and ordering for pending transactions.
Specifically, the pre-execution task requires the storing of the
blockchain state, while the ordering task does not require
it. It is because the pre-execution needs to output the pre-
requisite information about ordering (i.e., read/write sets and
cross-shard messages) by executing transactions based on the
blockchain state. In comparison, the ordering is based on the
prerequisite information provided by the pre-execution and
does not need to execute any transaction or store any contract;
thus, it is stateless.

Based on their characteristics (i.e., requirements and work-
load), we delegate these two tasks to different parties as
follows. First, since any node cannot store the state of all
contracts (as discussed in § IV-A), to pre-execute all possible
transactions, we introduce a new type of parties named re-
connaissance coalitions in which nodes from different shards
cooperate with each other to pre-execute pending transactions
(see § IV-C). Nodes can freely form or dissolve reconnaissance
coalitions, which are off-chain. PROPHET distributes a pro-
portion of transaction fees to reconnaissance coalitions with
successfully committed pre-executed transactions. (A more
detailed analysis of incentives in reconnaissance coalitions will
be left as our future work.) Second, the task of ordering is
stateless and does not need intensive computation; thus, any
node or shard can do it. For security, we let every shard take

on the ordering task in turn, and we call the shard responsible
sequence shard (see § IV-D). The sequence shard will be
updated in each epoch for load balancing. With the help of
these new parties, PROPHET proceeds in four phases, i.e., pre-
execution, sequence, execution, and correction, for each round.

C. Phase 1: Pre-execution

During this phase, each reconnaissance coalition selects
a disjoint set of pending transactions with some specific
range of transaction hash and executes them one by one.
In each reconnaissance coalition, if a node meets an inter-
contract call to a contract located in another shard when pre-
executing a transaction, it turns to the other nodes in the same
reconnaissance coalition. For example, in Figure 4, when pre-
executing Cxn. 2, since Contract C3 belongs to Shard 2, Node
N1 needs to send the function call and parameters to and get
the returns from Node N2. Thus, each reconnaissance coalition
can be regarded as an individual able to execute the single-
shard or cross-shard transactions for its related shards.

In particular, each transaction reads from the current state
of the blockchain, executes its logic, and keeps the writes in
a local write set. Since the change of each transaction is kept
in local write set, the state read by each transaction is always
the same. For each transaction, the reconnaissance coalition
records its read/write set and its cross-shard messages during
execution. To clarify our basic idea, we define the read/write
set of a transaction as the addresses of smart contracts, which
will be extended to a fine-grained one in § V-B. Moreover,
the serial execution will be extended to a more efficient one
in § V-D. The cross-shard message about a cross-shard inter-
contract call includes its function name, parameters and return.

We emphasize that there is no guarantee that all reconnais-
sance coalitions are honest because their formation is free and
cannot guarantee that all nodes in a reconnaissance coalition
are honest. In a Byzantine environment, the read/write sets and
cross-shard messages recorded by a reconnaissance coalition
with malicious nodes will be wrong. For example, in Figure 4,
there is a malicious reconnaissance coalition since there is a
malicious node N3 in the coalition. Since each successful pre-
execution gains transaction fees, we assume that honest nodes
tend to form and stay in reconnaissance coalitions involving
the other honest nodes and leave coalitions involving malicious
nodes (the detection of malicious nodes in a reconnaissance
coalition will be discussed in § IV-F).

D. Phase 2: Sequence

After a reconnaissance coalition pre-executes a transaction,
it passes the transaction and the corresponding transaction
profile to the sequence shard. The sequence phase starts when
the leader of the sequence shard receives enough (i.e., more
than a predefined threshold) transactions.

For each round, in the sequence phase, based on the pre-
execution results passed by the reconnaissance coalitions, the
leader of the sequence shard can determine which transactions
will be included in the global order. To avoid transaction
conflicts, the sequence shard only allows the transactions
involving disjoint read/write sets to be packed into the order.
In such an order, the transactions are processed as the same
as they are in the pre-execution phase since they are not in
conflict. Based on the order, the sequence shard generates
a serial order for the block of every shard and provides a
transaction profile for transactions included in the block. For
example, in Figure 4, the sequence shard proposes two new
blocks to Shard 1 and 2, respectively. Finally, based on the
intra-shard consensus, the nodes in the sequence shard send
the new blocks with a collective signature (such as CoSi [30]
or BLS [31] in the existing sharding [8], [11]) to the shards.

The sequence shard has two characteristics. The first one
is stateless, which means the nodes in the sequence shard
can generate a global order depending on transaction profiles
received from reconnaissance shards and without storing the
state of all contracts and pre-executing transactions. The
second one is trusted, which means each message published
by the sequence shard is via an intra-shard consensus.

E. Phase 3: Execution

As discussed in § IV-C, in the pre-execution phase, the pre-
execution results cannot be guaranteed because the reconnais-
sance coalitions may be malicious. Moreover, in the sequence
phase, because the sequence shard is stateless and only re-
sponsible for ordering the transactions instead of validating,
there can be invalid transactions or conflict events existing in
the order. Therefore, the shards need to execute and validate
the transactions included in the received blocks and compare
them with the read/write sets and transaction profile.

During the execution, each shard runs an intra-shard con-
sensus and executes all transactions based on the transaction
profile. For example, in Figure 4, Shard 2 executes Cxn. 2
based on the function call from Contract C2 to C3 and the
corresponding parameters in the transaction profile. If a shard
finds that the read/write sets or cross-shard messages of a
transaction are different from those provided by the recon-
naissance coalitions, it can mark the transaction as invalid.
However, if the execution results of a transaction exactly
match its transaction profile, the shard can mark it as valid.
For example, Shard 1 marks Cxn. 2 as invalid if the cross-
shard message or read/write set in the transaction profile is
incorrect. The intra-shard consensus can guarantee that the
result published by any shards is trusted.

F. Phase 4: Correction

The confirmation of a cross-shard transaction, i.e., a shard
commits the transaction and updates the state of contracts
based on the transaction, requires the proof generated by all
the related shards of the transaction in the execution phase. At
the end of each round, every shard shares its validation results
(i.e., proof generated in the execution phase) with the other
shards. The proof denotes the validity of each pre-executed
transaction included in the global order. Each cross-shard
transaction can be committed in a shard only when the shard
receives the validity proof from all the other shards related to
the transaction. For example, in Figure 4, Cxn. 2 is related to
Shard 1 and 2, thus it cannot be committed without the proof
of both these two shards. Since the proof of Shard 1 marks
it as invalid, it will not be committed. In addition, the honest
nodes in the reconnaissance coalition responsible for Cxn. 2
can leave the coalitions and mark the nodes responsible for
the invalid part (contracts in Shard 1) as malicious.

G. Discussion

Different from the traditional blockchain sharding that only
has the execution phase, PROPHET has three additional phases
(The overhead will be analyzed in § VI). In each round, a
deterministic global order for all transactions, including single-
shard and cross-shard ones, can be generated and shared by
all shards through these three phases. Following the order, the
shards can orderly execute and commit transactions and update
the blockchain state without conflicts. The cooperation within
reconnaissance coalitions solves the challenge of information
isolation among shards, while the stateless ordering in the
sequence shard and the inter-shard proof sharing in the final
correction phase deal with Byzantine failures. A rigorous
theoretical analysis is provided in § VI.

V. DESIGN REFINEMENT

A. Parallelization of Sequencing and Execution

Problem of additional consensus. PROPHET introduces an
additional sequence phase in each round. This phase requires
an intra-shard consensus in the sequence shard, doubling the
consensus time for each block.

Design. To solve the problem, PROPHET parallelizes the
sequence phase and execution phase. Specifically, the leader of
the sequence shard can send a global order to the shards before
the sequence shard validates the new order through consensus.
Then, in the execution phase, the sequence shard validates the
new global order and pre-execution results. An invalid order
results in an invalid proof generated by the sequence shard.
Thus, an invalid order proposed by a malicious leader of the
sequence shard can be detected in the correction phase.

B. Fine-grained Ordering

Problem of coarse-grained ordering. In the above system,
the reconnaissance coalitions simply define the read/write sets
of transactions as the addresses of smart contracts in the pre-
execution phase. Then, in the sequence phase, the sequence
shard only pack the transactions that are not related to the same

10 100 500 1000 3000
Batch size

0%

25%

50%

75%

100%
Co

nf
lic

t r
at

io

Contract level
State level
R/W dependency
R/W reorder

(a)

Cxn. 1

Cxn. 2

Block i-1 Block iWorker Shard 1

Txn. 3

Block i+1

Transaction {Accessed contracts} – Shard

Cxn. 1 {C1, C2} – Shard 1, {C3} – Shard 2

Cxn. 2 {C2} – Shard 1, {C4} – Shard 3

Txn. 3 {C2} – Shard 1

(b)

Fig. 5: (a) Conflict ratio of transactions in a batch with
varying batch size in the pre-execution phase; (b) Transaction
confirmation rule in asynchronous correction.

contracts. In such a coarse-grained manner, the transactions
accessing the same contract are considered conflict and thus
cannot be packed in a global order. If there are a majority
of conflict transactions in the demand, the throughput of the
sequence phase may become a bottleneck of PROPHET.

Observation. To illustrate the performance of the coarse-
grained ordering in § IV in practice, we collect the history
of transactions from Nov-25-2019, Feb-17-2020, and Apr-19-
2020 in Ethereum. Then, we execute the transactions in the
batch of 10, 100, 500, 1000, 3000 in parallel to simulate the
pre-execution phase in PROPHET and evaluate their conflict
ratio. We denote the approach by contract level. As shown in
Figure 5a, the result shows that the conflict ratio increases with
the batch size and nearly 90% transactions are in conflict when
the reconnaissance coalitions pre-execute 3000 transactions.

Design. Therefore, we propose a fine-grained read/write
ordering approach that is composed of two following steps.

1) First, we design a fine-grained read/write set identifi-
cation. We first redefine the read/write sets of a transaction
as the blockchain storage that it reads or writes. Then, the
transactions related to the same contract can access different
positions of its storage. For example, if two transactions access
the same contract but read or write different variables of
the contract, they are not in conflict. For such a fine-grained
identification, we take a deep dive into smart contracts [5]. All
contract fields and mappings are saved in blockchain storage
and each transaction is a sequence of instructions among which
SSLOAD and SSTORE are the two instructions for blockchain
persistent storage read and write, respectively. Thus, during
the pre-execution, the reconnaissance coalitions record the
instructions SSLOAD and SSTORE and their corresponding
addresses. As shown in Figure 5a, the approach (denoted by
state level) reduces the conflict ratio by about 5.34% compared
with the contract-level approach.

2) Second, we design an ordering rule considering the
read/write dependency for the sequence phase. If the sequence
shard decides an order in which the execution result of
any transaction will not influence the read/write sets of its
following transactions, the execution of transactions in the
execution phase will be the same as those in the pre-execution
phase thus there are no conflicts in the order. To achieve it,
we allow a transaction to have a read-after-read or write-

after-read dependency with its previous transactions in the
order. As shown in Figure 5a, the approach (denoted by
R/W dependency) reduces the conflict ratio by about 21.42%
compared with the state level approach. Besides, we also
evaluate a reorder rule [21]. In detail, for two transactions
with read-after-write dependency, the rule can change their
position if the new order does not violate the before ordering
rule. However, it only reduces the conflict ratio by 0.21%.

C. Asynchronous Correction

Problem of synchronous correction. In the correction
phase, for a shard, the validity of its related transactions
can be proved and the state of its stored contracts can be
updated only when the shard receives all proofs from the
other shards. However, in the practice, for each round, there
is great uncertainty about both the consensus latency in each
shard [32], [33] and the latency of cross-shard communication.
This can result in an barrel effect, which means the round time
of each shard in PROPHET will depend on the slowest shard.

Observation. The consensus latency has high variance
for Proof-of-Work (PoW) protocols adopted by Bitcoin
and Ethereum or Byzantine fault tolerance (BFT) protocols
adopted by Hyperledger Fabric. For example, although Bitcoin
theoretically produces one block every 10 minutes, for 5% of
the time, Bitcoin’s inter-block time is at least 30 minutes [33].
For PBFT, the consensus latency is uncertain because the state
of network environment is often dynamic and elusive [32].

Design. To overcome the problem, PROPHET adopts an
asynchronous correction design. Specifically, in the execution
phase, before receiving the proof from the other shards, a shard
can optimistically assume that all the transactions are valid.
Next, it can update the state of its stored contracts based
on the current block and move to the next round. When a
shard receives an invalid proof for a previous transaction from
another shard, this previous transaction will be invalidated. All
the following transactions related to the contracts involved by
the invalid transaction will be also invalidated. In other words,
PROPHET has the following confirmation rule for transactions.

Rule 1. A transaction T can be confirmed by a shard only
when the shard receives all the related proofs of T and all
the related proofs of the previous transactions related to T .

For example, Figure 5b shows three blocks, i.e., Block i-1,
i, and i+1, of Shard 1. In these three blocks, there are three
transactions, i.e., Cxn. 1, Cxn. 2 and Txn. 3, all of which
access the same contract C2 stored in Shard 1. Based on the
confirmation rule of transactions, the confirmation of Txn. 3
depends on the proof of Shard 2 in Block i-1, the proof of
Shard 3 in Block i, and the proof of Shard 1 in Block i+1.

D. Parallel Pre-Execution

Problem of serial pre-execution. The throughput of
PROPHET also depends on the total pre-executed throughput
of reconnaissance coalitions. The above system considers a
serial pre-execution approach in which the nodes in each
reconnaissance coalition execute transactions one by one.

However, when the communication accounts for a higher
portion than the contract execution as proved below, each node
may spend a lot of time on the communication of cross-shard
inter-contract calls, keeping its CPU idle most of the time and
restricting the pre-executed transaction throughput.

Observation. To find the main bottleneck of pre-executed
throughput, we evaluate the simplest cooperation mode for a
reconnaissance coalition as shown in Figure 6a. Specifically,
the nodes in the reconnaissance coalition executes transaction
one by one. Based on the transactions collected in § V-B,
the communication time accounts for 87.5% of the total time,
since most contracts’ computation is simple.

Design. To minimize the communication overhead, we pro-
pose an overlap cooperation mode that overlaps the computa-
tion process and communication process during pre-execution.
For example, as shown in Figure 6b, after meeting the first
cross-shard contract call in Cxn. 1, Node N1 can transmit a
cross-shard message to Node N2 while simultaneously execut-
ing the computation task of Cxn. 2. Through this way, the com-
puting resource and communication resource could achieve
nearly full utilization. Furthermore, since all transactions are
pre-executed based on the state of the previous block, we
also propose a parallel cooperation mode. In particular, each
node executes different transactions at the same time using
redundant computation resources. For example, as shown in
Figure 6c, Node N1 executes Cxn. 1 and 2 using two threads,
i.e., Thread 1 and 2, respectively. As evaluated in § VIII-B,
the parallel scheme can increase the pre-execution throughput
by 86.9% ∼ 280.0% compared with the sequential scheme.

VI. ANALYSIS

We first show how PROPHET achieves both determinism and
serializability. The former one means that the same result is
always produced in all honest node for each shard. The later
one requires transactions in the system to produce the results
following some serial order. The analysis depends on the intra-
shard consensus of shards in PROPHET thus we define v as the
fault threshold of the adopted intra-shard consensus [34]. For
example, the synchronous protocol in Rapidchain [9] tolerate
up to v = 1/2 Byzantine faults, while the asynchronous
or partially synchronous protocol in Omniledger [8] tolerates
only up to v = 1/3 Byzantine faults.

Theorem 1. PROPHET achieves determinism and serializabil-
ity if there are no more than v fraction of malicious nodes in
each shard.

Proof. When there are no more than v < 1
3 malicious nodes in

each shard, the intra-shard consensus can guarantee safety [9],
[11], [18], i.e., the honest nodes in each shard agree on
the same valid block in each round. Thus, the intra-shard
consensus can guarantee that both the order proposed by the
sequence shard follows the rule in § IV-D and § V-B and
the validation proofs proposed by the shards are valid. It also
guarantees that a message along with a collective signature is
honest because malicious nodes are the minority, i.e., no more
than v, of the shard. Moreover, the message of each party

1

N1

N2

1

1

Communication

Computation

1

1 2

2

2

2

2

Cxn.1

C1 C3

Shard 1 Shard 2

Cxn.2

C2 C3

Shard 1Shard 2

(a) Sequential

2 2

1

N1

N2

1

1

Communication

Computation

N1

N2

21

1

21

1

1

2 1

1N1

N2

1

1

1

2

1

Thread 1

Thread 2

2

2

2

2

2

2

2

Cxn.1

C1 C3

Shard 1 Shard 2

Cxn.2

C2 C3

Shard 1Shard 2

1 2
2

(b) Overlap

2 2

1

N1

N2

1

1

Communication

Computation

N1

N2

21

1

21

1

1

2 1

1N1

N2

1

1

1

2

1

Thread 1

Thread 2

2

2

2

2

2

2

2

Cxn.1

C1 C3

Shard 1 Shard 2

Cxn.2

C2 C3

Shard 1Shard 2

1 2
2

(c) Parallel

2 2

1

N1

N2

1

1

Communication

Computation

N1

N2

21

1

21

1

1

2 1

1N1

N2

1

1

1

2

1

Thread 1

Thread 2

2

2

2

2

2

2

2

Cxn.1

C1 C3

Shard 1 Shard 2

Cxn.2

C2 C3

Shard 1Shard 2

1 2
2

(d) Legend

Fig. 6: Comparison of three cooperation modes for a recon-
naissance coalition in the pre-execution phase. The number
inside each rectangle denotes the transaction ID to which the
computation or communication time belongs.

(e.g., transaction profile, order, and proof) cannot be modified
and forged since the collective signature can be used to detect
forgery or tampering. Finally, because the correction phase
guarantees that any invalid transaction will not be committed
in all its related shards, all the honest nodes in the sharding
system can run an identical batch of transactions based on
the same global serial order and the same blockchain state.
Additionally, the code of smart contracts is deterministic [5],
which means each node can get the same result given the same
input for a contract method. It guarantees the determinism of
the consensus in PROPHET.

Next, we prove the serializability by contradiction as fol-
lows. Assume the global order produced by the sequence shard
is: · · · → Ti → · · · → Tj → · · · where Ti and Tj can be
two transactions in the same shard or in the different shards.
There are two possible outcomes to violate the serializability.
The first one is that Tj’s update is overwritten by Ti’s update.
The second one is that Ti reads Tj’s update. However, for
§ IV-D, Ti and Tj will not access the same contract. And,
for § V-B, the sequence shard only allows read-after-read
and write-after-read dependency, thus both outcomes result
in a contradiction and the consensus in PROPHET achieves
serializability. In addition, we emphasize that even if Ti is
invalidated in the correction phase, the following transactions
in the global order will not be influenced. It is because Ti
is not allowed to change the state of contracts that are read
or written by its following transactions considering the read-
after-write is not allowed.

Similar to the other sharding systems [7]–[9], [11],
PROPHET has a global fault threshold for the whole sharding
system denoted by f and a security parameter denoted by λ.
After dividing each node to a random shard, the proportion of
malicious nodes in each shard for PROPHET can be proven to
be lower than the fault threshold v with low probability, i.e.,
the probability is no more than 2−λ, thus Theorem 1 can be
guaranteed with high probability in PROPHET.

Overhead Analysis. In terms of the time overhead,
PROPHET parallelizes the sequence phase and execution phase
in § V-A; thus, there is one consensus in every shard for each
round, similar to the existing blockchain sharding. Besides,
asynchronous correction in § V-C enables each shard to move
to the next round without waiting for the other shards’ proof
after the execution phase, saving the time of the correction
phase. Therefore, only the pre-execution phase introduces an
additional time overhead for each round. In terms of the com-
putation overhead, the pre-execution phase introduces some
additional computation tasks to reconnaissance coalitions.

VII. IMPLEMENTATION

We implement a prototype of PROPHET based on Geth [35],
the Go language implementation of Ethereum. The smart
contracts in PROPHET run in EVM in Geth. We adopt a BFT
consensus with BLS multi-signature [36] as the intra-shard
consensus of PROPHET. For comparison, we also implement
two non-deterministic sharding prototypes. Since the intra-
shard consensus in PROPHET can be substituted by any other
BFT consensus, to ensure the result will not be affected by
the difference in intra-shard consensus, we adopt the same
consensus for the intra-shard consensus in these two non-
deterministic sharding prototypes. Moreover, for a fair com-
parison, both prototypes are equipped with the fine-grained
read/write approach in § V-B. The difference between two
prototypes is the cross-shard transaction processing. The first
one uses the OCC mechanism in Monoxide [10] and the
second one uses the 2PL mechanism in Chainspace [19]. Their
main ideas are referred to in § II.

VIII. EVALUATION

Dataset. To evaluate our sharding system PROPHET on the
historical transactions in Ethereum, we implement a smart con-
tract recorder/replayer based on EVM stateless state transition
tool [37] similar to [38] and collect the blocks from Nov-25-
2019 to May-04-2020 (block height: 9,000,000-10,000,000)
from Ethereum mainnet blockchain.
Setup. The number of nodes in each shard is set as 50. In OCC
and 2PL, the maximum retry count for the transactions is set
as 10, which means that a transaction with more than 10 retries
will be aborted. The testbed is composed of 16 machines, each
of which has an Intel E5-2680V4 CPU and 64 GB of RAM,
and a 10 Gbps network link. Similar to [8], [9], to simulate
geographically-distributed nodes, we set the bandwidth of all
connections between nodes to 20 Mbps and impose a latency
of 100 ms on the links in our testbed. The proportion of
malicious nodes in the system is set as 12.5%. In our setting,
the malicious nodes in each reconnaissance coalition provide
invalid cross-shard messages and read/write sets to interrupt
the pre-execution phase. We repeat each experiment three
times and compute the average as its result.
Metrics. We measure the performance of a sharding system
using the following metrics. 1) Transaction throughput: the
throughput of the confirmed transactions measured in TPS.
2) Confirmation latency: the delay between the time that a

2 4 8 16 32 64
Shard number

0

500

1000

1500

TP
S

×1.73 ×1.70 ×1.90
×2.25

×2.71

×3.11Non-sharding
OCC (Monoxide)

2PL (Chainspace)
Prophet (Ours)

Fig. 7: Transaction throughput of PROPHET and the existing
sharding systems (The number above each bar denotes the
ratio of the throughput of PROPHET over that of OCC.)

1 2 3
OCC (Monoxide)

4 5 1 2 3
2PL (Chainspace)

4 5 1 2 3
Prophet (Ours)

4 5

Number of inter-contract calls

0.0

0.5

1.0

Ab
or

t r
at

io

32 shards 16 shards 8 shards 4 shards

Fig. 8: Abort ratio of transactions during commitment in
PROPHET and the existing sharding works.

transaction is issued by a client until it can be confirmed by any
(honest) node in the system. 3) Abort ratio: the ratio of aborted
transactions during commitment, i.e., the transaction whose
retry count exceeds the maximum retry count as discussed
above. 4) Invalid ratio: the ratio of invalid transactions found
in the correction phase for PROPHET.

A. Performance

To evaluate the performance, we measure the throughput in
TPS for the two non-deterministic sharding blockchains and
PROPHET with varying number of shards. As shown in Fig-
ure 7, all three sharding systems achieve the linear scalability.
However, PROPHET improves the throughput 1.73 ∼ 3.11X
against the two traditional sharding systems and the improve-
ment is more significant when there are more shards. More-
over, the throughput of the sharding systems is even worse
than that of non-sharding system when there are less shards,
the reason of which is twofold. First, introducing sharding
into the blockchain results in cross-shard transactions, each of
which needs to be divided into multiple sub-transactions and
processed in multiple consensus rounds. Second, as discussed
in § II, the contention of cross-shard transactions results in
frequent aborts of transactions thus most of the throughput in
the two traditional sharding systems is wasted.

To investigate the wasted throughput reason as described
above, we measure the abort ratio of transactions with varying
number of inter-contract calls for the two non-deterministic
sharding blockchains and PROPHET. Note that although there
are many transactions with more than 4 inter-contract calls
in the system, Figure 8 only shows the transactions with 1-5
inter-contract calls due to the space constraint. Figure 8 shows
that the abort ratio in both of all sharding systems increases as
the number of shards increases. Specifically, the OCC-based
system aborts about 50% transactions with more than 2 inter-

2 4 8 16 32 64
Shard number

0

5

10
La

te
nc

y
(s

) OCC (Monoxide)
2PL (Chainspace)

Prophet (Ours)

Fig. 9: Confirmation latency of
PROPHET and the other blockchain
sharding systems.

2 4 8 16 32 64
Shard number

0

200

400

600

TP
S

1 Thread
2 Threads

3 Threads
4 Threads

5 Threads

Fig. 10: Pre-execution throughput of a
reconnaissance coalition for PROPHET
with different number of shards.

0 1 2 3 4 5
Shard number

0%

50%

100%

150%

%
 o

f c
om

m
. t

im
e

1 Thread
2 Threads

3 Threads
4 Threads

5 Threads

Fig. 11: Percentage of communication
time in the pre-execution in PROPHET.

contract calls. It limits the dApps consisting of complex smart
contract interactions. In comparison, PROPHET keeps the abort
ratio being 0 no matter how many cross-shard contract calls
the transactions include.

We then evaluate the confirmation latency of transactions
in PROPHET and the non-deterministic sharding blockchains
with varying number of shards. Figure 9 shows that the
latency increases as the number of shards increases in the
non-deterministic systems. This is because the increase of
shards can introduce more cross-shard transactions that need
more consensus round to be committed, thus the confirmation
latency is higher. In comparison, the latency in PROPHET is
low and relatively stable since any cross-shard transaction can
be committed by PROPHET in one round.

B. Micro-benchmark

To analyze the effectiveness of our communication ef-
ficient pre-execution proposed in § V-D, we evaluate the
pre-execution throughput of a reconnaissance coalition with
varying number of shards. As shown in Figure 10, the pre-
execution throughput increases with the number of threads
in each node. When there are more shards in PROPHET, the
number of nodes in a reconnaissance coalition increases and
each node has a thread. This parallelism improvement out-
weighs the increase of cross-shard transactions. Furthermore,
a reconnaissance coalition achieves 334 TPS with 5 threads.
Based on combining this observation and Figure 5a, we can get
that when there are more than 10 reconnaissance coalitions, the
pre-execution throughput can exceed the maximum throughput
(i.e., 1203 TPS in Figure 7) in PROPHET. Therefore, the
bottleneck is not in the pre-execution phase.

To further investigate the improvement of communication
efficient pre-execution, we evaluate the proportion of com-
munication time in the total time in the pre-execution phase
and the result is shown in Figure 11. Note that when the
communication is overlapped by the computation, we do not
consider the communication time in the total time. From the
figure, we can see that the proportion of communication time
is less in a node with more threads.

We also evaluate the average total size of cross-shard
messages for a transaction in a system with varying number
of shards. Table II shows that the average total message size
increases with the number of shards. It is because the number
of shards can result in more cross-shard contract calls in a
transaction. Moreover, the increment of message size gradually
decreases. Specifically, doubling the shard number from 32 to

TABLE II: The average total size of cross-shard messages for
a transaction in a system with varying number of shards.

Shard number 2 4 8 16 32 64
Message size (Byte) 177 240 267 310 319 322

2 4 8 16 32 64
Shard number

0%

1%

2%

3%

In
va

lid
 ra

tio 1%
5%

12.5%
25%

(a) Average invalid ratio.

0 50 100 150 200
Block time

0.0%

10.0%

20.0%

30.0%

40.0%

In
va

lid
 ra

tio 25%
12.5%
5%
1%

(b) Fluctuation of invalid ratio for 64 shards.

Fig. 12: Ratio of invalid transactions in the correction phase.

64 only increases the message size by 3 Bytes. It is because the
number of cross-shard contract calls will be mainly influenced
by the number of contract calls when the shard number is more
than the number of contract calls.

Although malicious nodes cannot make the invalid transac-
tions be confirmed because of the correction phase, they can
occupy the throughput for the valid transactions. We evaluate
the invalid ratio of PROPHET with different percentage of
malicious nodes (in particular 1%, 5%, 12.5%, and 25%)
and the result is illustrated in Figure 12a. The malicious
nodes have only a limited impact (less than 2%) on the
throughput of PROPHET. Figure 12b shows that the invalid
ratio decreases over time because of the gradual construction
of honest coalitions. As discussed in § IV-C, to gain more
transaction fees, the honest nodes tend to form and stay in
reconnaissance coalitions involving the other honest nodes and
leave coalitions involving malicious nodes.

IX. CONCLUSION

We present PROPHET, a sharding blockchain for conflict-
free transactions. PROPHET achieves conflict-free by introduc-
ing a layer-2 sharding architecture on top of the shards of the
existing blockchain sharding. The running of the architecture
depends on the cooperation and supervision among reconnais-
sance coalitions, sequence shard, and shards. PROPHET also
features several improved designs for ordering efficiency, such
as fine-grained ordering, asynchronous correction, and paral-
lel execution. Experimental evaluations show that PROPHET
boosts the throughput of 3.11× (i.e., 1203 TPS), decreases
the latency by 62.9%, and achieves nearly no aborts compared
with the existing blockchain sharding systems. In the future
work, we will study commutative contract instructions for
finer-grained ordering and fairness-aware incentive.

REFERENCES

[1] S. M. Werner, D. Perez, L. Gudgeon, A. Klages-Mundt, D. Harz, and
W. J. Knottenbelt, “Sok: Decentralized finance (defi),” 2021.

[2] Q. Wang, R. Li, Q. Wang, and S. Chen, “Non-fungible token (nft):
Overview, evaluation, opportunities and challenges,” 2021.

[3] CoinDesk, “Soaring defi usage drives ethereum contract calls
to new record,” https://www.coindesk.com/soaring-defi-usage-drives-
ethereum-contract-calls-to-new-record.

[4] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[5] G. Wood, “Ethereum: A secure decentralised generalised transaction

ledger,” Ethereum project yellow paper, 2014.
[6] G. Wang, Z. J. Shi, M. Nixon, and S. Han, “Sok: Sharding on

blockchain,” in Proceedings of the 1st ACM Conference on Advances in
Financial Technologies (AFT), 2019, pp. 41–61.

[7] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena,
“A secure sharding protocol for open blockchains,” in Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2016, pp. 17–30.

[8] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and
B. Ford, “Omniledger: A secure, scale-out, decentralized ledger via
sharding,” in IEEE Symposium on Security and Privacy (S&P), 2018,
pp. 583–598.

[9] M. Zamani, M. Movahedi, and M. Raykova, “Rapidchain: Scaling
blockchain via full sharding,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security (CCS), 2018,
pp. 931–948.

[10] J. Wang and H. Wang, “Monoxide: Scale out blockchains with asyn-
chronous consensus zones,” in USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2019, pp. 95–112.

[11] Z. Hong, S. Guo, P. Li, and W. Chen, “Pyramid: A layered sharding
blockchain system,” in IEEE International Conference on Computer
Communications (INFOCOM), 2021, pp. 1–10.

[12] G. Pı̂rlea, A. Kumar, and I. Sergey, “Practical smart contract sharding
with ownership and commutativity analysis,” in Proceedings of the 42nd
ACM SIGPLAN International Conference on Programming Language
Design and Implementation (PLDI), 2021, pp. 1327–1341.

[13] J. Hellings and M. Sadoghi, “Byshard: Sharding in a byzantine environ-
ment,” Proc. VLDB Endow., vol. 14, no. 11, pp. 2230–2243, jul 2021.

[14] H. Huang, X. Peng, J. Zhan, S. Zhang, Y. Lin, Z. Zheng, and S. Guo,
“Brokerchain: A cross-shard blockchain protocol for account/balance-
based state sharding,” in IEEE International Conference on Computer
Communications (INFOCOM), 2022, pp. 1968–1977.

[15] X. Qi, “S-store: A scalable data store towards permissioned blockchain
sharding,” in IEEE International Conference on Computer Communica-
tions (INFOCOM), 2022, pp. 1978–1987.

[16] Z. team, “Zilliqa,” https://www.zilliqa.com/.
[17] Ethereum, “Shard chains,” https://ethereum.org/en/eth2/shard-chains/.
[18] H. Dang, T. T. A. Dinh, D. Loghin, E.-C. Chang, Q. Lin, and B. C. Ooi,

“Towards scaling blockchain systems via sharding,” in Proceedings of
the 2019 International Conference on Management of Data (SIGMOD),
2019, pp. 123–140.

[19] M. Al-Bassam, A. Sonnino, S. Bano, D. Hrycyszyn, and G. Danezis,
“Chainspace: A sharded smart contracts platform,” in The Network and
Distributed System Security (NDSS) Symposium, 2018.

[20] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao, and D. J. Abadi,
“Calvin: Fast distributed transactions for partitioned database systems,”
in Proceedings of the 2012 ACM SIGMOD International Conference on
Management of Data (SIGMOD), 2012, pp. 1–12.

[21] Y. Lu, X. Yu, L. Cao, and S. Madden, “Aria: A fast and practical
deterministic oltp database,” Proc. VLDB Endow., vol. 13, no. 12, pp.
2047–2060, jul 2020.

[22] Y.-S. Lin, C. Tsai, T.-Y. Lin, Y.-S. Chang, and S.-H. Wu, “Don’t look
back, look into the future: Prescient data partitioning and migration for
deterministic database systems,” in Proceedings of the 2021 Interna-
tional Conference on Management of Data (SIGMOD/PODS), 2021, pp.
1156–1168.

[23] J. M. Faleiro, D. J. Abadi, and J. M. Hellerstein, “High performance
transactions via early write visibility,” Proc. VLDB Endow., vol. 10,
no. 5, pp. 613–624, jan 2017.

[24] D. J. Abadi and J. M. Faleiro, “An overview of deterministic database
systems,” Communications of the ACM, vol. 61, no. 9, pp. 78–88, aug
2018.

[25] Y. Tao, B. Li, J. Jiang, H. C. Ng, C. Wang, and B. Li, “On sharding open
blockchains with smart contracts,” in IEEE International Conference on
Data Engineering (ICDE), 2020, pp. 1357–1368.

[26] M. El-Hindi, C. Binnig, A. Arasu, D. Kossmann, and R. Ramamurthy,
“Blockchaindb: A shared database on blockchains,” Proc. VLDB Endow.,
vol. 12, no. 11, pp. 1597–1609, jul 2019.

[27] J. Zhang, Z. Hong, X. Qiu, Y. Zhan, S. Guo, and W. Chen, “Skychain:
A deep reinforcement learning-empowered dynamic blockchain shard-
ing system,” in 49th International Conference on Parallel Processing
(ICPP), 2020, pp. 1–11.

[28] M. J. Amiri, D. Agrawal, and A. El Abbadi, “Sharper: Sharding
permissioned blockchains over network clusters,” in Proceedings of the
2021 International Conference on Management of Data (SIGMOD),
2021, pp. 76–88.

[29] B. Research, “Bitcoin vs ethereum – blockchain size,” https://
blog.bitmex.com/bitcoin-vs-ethereum-blockchain-size/.

[30] E. Syta, I. Tamas, D. Visher, D. I. Wolinsky, P. Jovanovic, L. Gasser,
N. Gailly, I. Khoffi, and B. Ford, “Keeping authorities ”honest or bust”
with decentralized witness cosigning,” in IEEE Symposium on Security
and Privacy (S&P), 2016, pp. 526–545.

[31] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the
weil pairing,” in Proceedings of the 7th International Conference on
the Theory and Application of Cryptology and Information Security:
Advances in Cryptology (ASIACRYPT), 2001, pp. 514–532.

[32] L. Lao, X. Dai, B. Xiao, and S. Guo, “G-pbft: A location-based and
scalable consensus protocol for iot-blockchain applications,” in IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
2020, pp. 664–673.

[33] G. Bissias and B. N. Levine, “Bobtail: Improved blockchain security
with low-variance mining,” in The Network and Distributed System
Security (NDSS) Symposium, 2022.

[34] A. Momose and L. Ren, “Multi-threshold byzantine fault tolerance,” in
Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2021, pp. 1686–1699.

[35] Ethereum, “Go ethereum,” https://github.com/ethereum/go-ethereum.
[36] Harmony, “Harmony consensus protocol design,” https://github.com/

harmony-one/harmony/tree/main/consensus.
[37] Ethereum, “Evm state transition tool,” https://github.com/ethereum/go-

ethereum/tree/master/cmd/evm.
[38] Y. Kim, S. Jeong, K. Jezek, B. Burgstaller, and B. Scholz, “An off-the-

chain execution environment for scalable testing and profiling of smart
contracts,” in USENIX Annual Technical Conference (ATC), 2021, pp.
565–579.

https://www.coindesk.com/soaring-defi-usage-drives-ethereum-contract-calls-to-new-record
https://www.coindesk.com/soaring-defi-usage-drives-ethereum-contract-calls-to-new-record
https://www.zilliqa.com/
https://ethereum.org/en/eth2/shard-chains/
https://blog.bitmex.com/bitcoin-vs-ethereum-blockchain-size/
https://blog.bitmex.com/bitcoin-vs-ethereum-blockchain-size/
https://github.com/ethereum/go-ethereum
https://github.com/harmony-one/harmony/tree/main/consensus
https://github.com/harmony-one/harmony/tree/main/consensus
https://github.com/ethereum/go-ethereum/tree/master/cmd/evm
https://github.com/ethereum/go-ethereum/tree/master/cmd/evm

	I Introduction
	II Background
	III Strawman: An Ideal Cross-Shard Mechanism
	IV Byzantine-Tolerant Deterministic Ordering for Blockchain Sharding
	IV-A System Model & Threat Model
	IV-B Motivation & Overview
	IV-C Phase 1: Pre-execution
	IV-D Phase 2: Sequence
	IV-E Phase 3: Execution
	IV-F Phase 4: Correction
	IV-G Discussion

	V Design Refinement
	V-A Parallelization of Sequencing and Execution
	V-B Fine-grained Ordering
	V-C Asynchronous Correction
	V-D Parallel Pre-Execution

	VI Analysis
	VII Implementation
	VIII Evaluation
	VIII-A Performance
	VIII-B Micro-benchmark

	IX Conclusion
	References

