
Securing 5G OpenRAN with a Scalable
Authorization Framework for xApps

Tolga O. Atalay∗, Sudip Maitra∗, Dragoslav Stojadinovic†, Angelos Stavrou∗†, Haining Wang∗
∗Department of Electrical and Computer Engineering, Virginia Tech, USA

†Kryptowire, LLC, McLean, VA, USA
Email: tolgaoa@vt.edu, smaitra@vt.edu, dstojadinovic@kryptowire.com, angelos@vt.edu, hnw@vt.edu

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Abstract—The ongoing transformation of mobile networks
from proprietary physical network boxes to virtualized functions
and deployment models has led to more scalable and flexible
network architectures capable of adapting to specific use cases.
As an enabler of this movement, the OpenRAN initiative pro-
motes standardization allowing for a vendor-neutral radio access
network with open APIs. Moreover, the O-RAN Alliance has
begun specification efforts conforming to OpenRAN’s definitions.
This includes the near-real-time RAN Intelligent Controller (RIC)
overseeing a group of extensible applications (xApps). The use of
these potentially untrusted third-party applications introduces a
new attack surface to the mobile network plane with fundamental
security and system design requirements that are yet to be
addressed. To secure the 5G O-RAN xApp model, we intro-
duce the xApp Repository Function (XRF) framework, which
implements scalable authentication, authorization, and discovery
for xApps. We first present the framework’s system design and
implementation details, followed by operational benchmarks in
a production-grade containerized environment. The evaluation
results, centered on active processing and operation times, show
that our proposed framework can scale efficiently in a multi-
threaded Kubernetes microservice environment and support a
large number of clients with minimal overhead.

Index Terms—5G, OpenRAN, system security, xApps

I. INTRODUCTION

The deployment of the next generation of mobile networks
is underway. Mobile network functions which existed as
physical network functions (PNFs) on proprietary hardware,
are now implemented as virtual network functions (VNFs)
on commercial off-the-shelf (COTS) servers. This transition
enables the scalable and flexible deployment of the 5G radio
access networks (RAN) and 5G core (5GC) in cloud-supported
virtualized environments. To that end, the OpenRAN initiative,
with the O-RAN Alliance [1], [2] as a leader, proposes the
disaggregation and softwarization of the RAN by employing
a functionality split where virtualized logical entities host
different layers of the radio stack [3]. Additionally, by steering
the 5G deployment effort towards the adoption of open RAN
interfaces with standardized APIs, it promotes a vendor-neutral
integration of the 5G RAN.

This material is based on research sponsored by Defense Advanced Re-
search Projects Agency (DARPA) under agreement number HR001120C0155.
The views, opinions, and/or findings contained in this article are those of
the author(s) and should not be interpreted as representing the official views
or policies, either expressed or implied, of the Defense Advanced Research
Projects Agency or the Department of Defense.

Furthermore, the O-RAN architecture introduces a new
software-defined networking (SDN) controller called the near
real-time RAN Intelligent Controller (near-RT RIC), which
hosts various RAN-related utility VNFs in the form of ex-
tensible applications (xApps). Through xApps, mobile virtual
network operators (MVNOs) are offered a high degree of
freedom in accessing and manipulating information in the
radio stack in a software-defined manner. Every gNB within
the O-RAN framework is fitted with an agent [4], allowing
it to interact with the near-RT RIC using a custom access
protocol [5]. Fig. 1 shows the high-level integration of O-
RAN into the 5G architecture. The scenario depicts a RAN
functionality split where the lower layers are implemented in
the distributed unit (DU) while the upper layers are inside the
central unit (CU). The O-RAN near-real time RIC is deployed
at the same hierarchy as the DU, where xApps will subscribe
to information from the radio stack. The management back-
end of O-RAN is deployed in the central cloud along with the
5G core components.

While O-RAN adoption supports a flexible RAN deploy-
ment, it inadvertently introduces a new attack surface due
to xApps being supplied by third-party vendors with vari-
ous levels of trust. Moreover, given the decentralized and
modular nature of 5G networks which will be developed as
microservices, it is impractical to implement bulky, monolithic
functionalities in a single VNF.

This creates a demand for inter-xApp communications at
a large scale, which requires secure and efficient execution
of cross-component authorization and discovery in addition to
permissions to access infrastructure functionality. Currently,
both the 3rd Generation Partnership Project (3GPP) [6] and the
community implementation of OpenRAN lack the necessary
security fundamentals to enable a scalable deployment.

Collaboration efforts [7], [8] have started pursuing experi-
mental work within O-RAN [9]–[12] with focus on real-life
measurements. Additionally, smaller scale testbeds have been
constructed [12]–[16] using open-source solutions [17], [18]
with the aim of incorporating O-RAN compatible RAN nodes.
However, none of these efforts addressed the inherent lack of
security mechanisms inside the O-RAN framework.

To address this security gap, we propose the xApp reposi-
tory function (XRF) framework, a microservice-based client-
to-server augmentation to the O-RAN platform, which will

ar
X

iv
:2

21
2.

11
46

5v
1 

 [
ee

ss
.S

Y
] 

 2
2 

D
ec

 2
02

2



VirtualizationFronthaul

DU

5G RAN 
5G Core

O-RAN

Midhaul

xApp xApp xApp

near-RT RIC

NFVI Edge
Virtualization

CU

NFVI Distributed

Physical

Logical
Backhaul

Virtualization
NFVI Central

SMO
non-RT RIC

UPF

AMF

SMF

NRF

UDM

NSSF

UDR

AUSF

Distributed Core Central Core

Fig. 1: High level overview of the 5G ecosystem with O-RAN augmentation

provide authentication, authorization, and discovery mech-
anism for xApps in the O-RAN architecture analogous to
the network functions repository function (NRF) [19] in the
5GC. XRF provides a secure service discovery mechanism,
facilitating the efficient interaction of xApps in a microservice
architecture. In addition to maintaining xApp metadata, the
XRF serves as an OpenAuthorization (OAuth) 2.0 server and
distributes access tokens to xApps, enabling them to provide
and consume services through secure API transactions.

We complete the system design, implementation, and testing
tasks of the XRF framework, which includes the modular
server-side as a centralized entity and the lightweight client-
side applications adjacent to xApps. These entities are de-
ployed on a highly-available (HA) Kubernetes cluster wrapped
in a service mesh, hosted on an Openstack infrastructure,
where various performance benchmarks demonstrate that the
XRF framework scales efficiently in a multi-threaded environ-
ment under the microservice model of deployment.

The rest of the paper is structured as follows: Section II
discusses related work and specifications regarding OpenRAN
and O-RAN security. In Section III, we detail our threat
model and framework requirements. Section IV describes the
complete XRF system design and proposed O-RAN integra-
tion. The experimental setup followed by the performance
benchmarks is presented in Section V. Finally, we conclude
the paper with Section VI.

II. RELATED WORK

In this section, we summarize previous work with prototype
solutions for certain issues in the O-RAN architecture and the
O-RAN Security Focus Group (SFG) efforts.
O-RAN security surveys and prototypes: Several studies
have been dedicated to mapping out the existing O-RAN attack
surface and prototyping various security solutions indepen-
dently from the specification efforts.

Authors of [20] have put together a primer, explaining the
various workflows and communication interactions involved,
as well as summarizing the work conducted by the O-RAN
SFG [21]–[24]. A systematic breakdown of the attack surface
has been conducted for O-RAN in [25] by identifying the
threat vectors of known physical and virtualization layer at-
tacks towards entities in the architecture. While it does provide
an overview, specific system design issues related to certain
sub-components such as xApps have not yet been analyzed.
Another analysis is provided in [26] where certain privacy
and mitigation strategies for cloud environments are discussed

in addition to discussing potential threats and actors. Authors
conclude that the integration of O-RAN with specifically 5G
will lead to an expanded attack surface.

A technical study on open fronthaul interface security is
conducted in [27], where the mandatory security requirements
for the management, control, user, and synchronization planes
are presented. The authors then propose MACsec [28] as a
candidate for securing the control user planes between the
RAN entities where open interfaces are used.
O-RAN security specifications: The O-RAN development
has been documented in a series of specifications by SFG.

The O-RAN specific components extend the attack surface
of the 5G system defined by 3GPP. This introduces additional
security challenges and risks to consider while implementing
these augmentations to the existing 3GPP architecture. In [21],
the O-RAN SFG outlines the implementation requirements for
security protocols used in O-RAN compliant interfaces.

Furthermore, the group is working on specifying high-level
security requirements and control mechanisms for O-RAN
defined interfaces and network functions in [22]. However,
security requirements for entities of interest maintained by
O-RAN are yet to be addressed. It is stated that interfaces
must provide basic information security primitives such as
confidentiality, integrity, authentication and access control for
services and applications.

Specifically for xApp and near-RT RIC security, key issues
such as the deployment of malicious xApps or the compromise
of existing xApps are identified in [29]. To address funda-
mental xApp security, network layer authentication solutions
such as IPsec and TLS are proposed, followed by a high-
level description of API authorization for xApps using the
near-RT RIC as an authorization server. The proposed solution
lacks specificity in how it will handle xApp authentication and
authorization at a large scale. Furthermore, it creates a reliance
on the near-RT RIC as a trusted entity which is required to
serve as an authorization server. Such a reliance will result in
the implementation of critical security functionality next to the
generic management modules, which will expose the former
to internal attack vectors from the latter.

In [23], roles and responsibilities are identified for main-
taining and operating O-RAN systems which also includes
prerequisites and assumptions to securely implement and run
O-RAN defined components, interfaces, and protocols. A
threat model is constructed by identifying the threat actors,
describing the attack surface, identifying the vulnerabilities



and assets, and listing affected components for each threat.
A recent study summarizes the work done by the O-

RAN SFG [30] while considering certain 5G related concerns
mentioned in [31]. Currently, it provides a concise overview
of the perspective on security from the side of the O-RAN
SFG. While the O-RAN SFG has taken the preliminary steps
towards formulating the attack surface and identifying certain
requirements, the majority of the surface remains unmapped.
Additionally, no concrete frameworks have been implemented
or proposed to address the lack of security primitives in inter-
xApp communication. To the best of our knowledge, this paper
is the first to design, implement and analyze a scalable authen-
tication, authorization and discovery framework for xApps that
addresses the fundamental system security requirements.

III. THREAT MODEL

The O-RAN architecture builds on top of the concepts
and standards laid out by 3GPP [6] for added functionality.
However, new features such as virtualized functions, open in-
terfaces, use of disaggregated COTS hardware, virtualization,
and use of open-source code affect the 5G attack surface.
Therefore, carefully defining the risks and scope considered for
introducing a security element (i.e., the XRF) in the O-RAN
architecture is crucial. Here we detail any relevant assumptions
regarding the system with trusted and untrusted entities, along
with the attacker model, objectives, and capabilities.

A. Assumptions

Operational and security requirements: The deployment
environment of the entities is assumed to be hardened against
virtualization attacks aiming to break through sandbox envi-
ronments (i.e., containers, virtual machines) [32]–[35]. Our
approach does not protect against side-channel attacks from
neighboring sandboxes, malicious code injections during in-
stantiation, and privilege escalation into infrastructure manag-
ing entities such as container engines and hypervisors.

Trusted entities:
• The RAN entities such as the RU, DU, and CU are

equipped with the O-RAN E2 agent [5] for communi-
cating with the near-RT RIC.

• Management and orchestration (MANO) entity handling
resource orchestration, VNF instantiation, and infrastruc-
ture management.

• O-RAN central deployment, which includes the service
management and orchestration (SMO) and the non-real-
time RIC (non-RT RIC) and interfaces to the near-RT RIC

Untrusted entities:
• MVNOs that wish to instantiate an xApp.
• near-RT RIC of the O-RAN architecture which handles

xApp registration and interfaces with the RAN nodes.

B. Attacker Model

Actor: Malicious xApps deployed through the MANO are
seeking to subscribe to a RAN node for eavesdropping on or
disrupting radio stack operations.

PHY

MANO

n
e

ar
-R

T 
R

IC

MVNO 1

xApp1

1

DU CUMAC
RLC

PDCP
RRC

E2 agentE2 agent

E2 termination

RIC Message Router

Subscription Manager

xApp2 xAppN

SMO

non-RT RIC

MVNO 2

2
3

4

MVNO N

Fig. 2: Attack vector propagation in the O-RAN system with
a malicious xAppN and trusted/untrusted entities

Objectives: Take advantage of the lack of proper authentica-
tion and authorization mechanisms to compromise the security
of other xApps and the near-RT RIC internal communications.
A malicious xApp can passively target the RAN to extract
or alter sensitive information (e.g., track user location, infer
identification). Moreover, a malicious xAPP can affect a RAN
node’s performance or QoS requirements by exploiting re-
sources and thereby affecting the availability of other services.
As an active attacker, the malicious xApp can compromise
the integrity of the data handled by legitimate xApps and
perform unauthorized manipulation of the RAN through rogue
signaling.

Capabilities: The xApp has access to the information
available in the near-RT RIC message router (RMR) before
subscribing to other endpoints in the RMR.

C. Attack Vector

Fig. 2 illustrates the attack vector used to reach the objective
while delineating the trusted and untrusted entities. In the
first step, a malicious MVNO will instantiate an xApp by
submitting a generic cloud template to the MANO. The xApp
is marked for deployment at the near-RT RIC in step 2.
Next, the xApp will register with the near-RT RIC, where
the messages between the near-RT RIC entities are handled
through the RMR. Once the xApp is ready, it will subscribe
to the desired RAN stacks through the E2 termination in the
near-RT RICs and the E2 agents on the RAN nodes [4].

As a passive attacker, without any authentication or autho-
rization method to control the access of xApps to the APIs of
the critical entities, the malicious xAppN in Fig. 2 can gain
access to the information intended for the other xApps through
the RMR. As an active attacker, xAppN can send rogue signals
to the radio stack pretending to be xApp1 or xApp2, resulting
in unwanted behavior from the RAN entities.

IV. XRF FRAMEWORK

Our ultimate goal with this framework is to build a mech-
anism which will oversee the authentication, authorization,
and discovery of xApps at a large scale. In the current
microservice dominant implementation ecosystem, a given
xApp will be required to consume services of other xApps
for service-chaining their individual functionalities into a
complete application. The XRF framework will facilitate this



Service Requster Authorization Server Service Provider

(1) Access token request

(2) Authenticate request

(3) Issue access token

(4) Attach token to resource request

(5) Token validation request

(6) Approve token

(7) Reply with requested resource

http://msc-generator.sourceforge.net v7.2

Fig. 3: OAuth 2.0 Framework

(1) Authenticate

(3) Session ID

Server

Session Log
ID Details
1
2
n

(2) Create 

session(4) Access
/w Session ID (5) Lookup

(a) Session tokens

(1) Authenticate
(3) Issue JWT 

Server

(4) Access
/w JWT

Create JWT 
Details

SignJWS

(b) JSON Web Tokens

Fig. 4: Access token mechanisms

by servicing local xApps as a local metadata database and
an OAuth2.0 server. It will distribute access tokens to service
consuming xApps for them to securely access the APIs of
service providing xApps.

In this section we first provide the reader with a brief
overview of the relevant background on some of the funda-
mental design components that were used in the creation of the
XRF framework. Next, details of the functional system design
are provided followed by the message flow between server and
client entities that were designed. We then dive into the non-
functional details of the implementation in a production-grade
environment and finally show a proposed integration of the
framework into the O-RAN architecture to address the threat
model described in Section III.

A. XRF Fundamentals

Here we give a brief overview of the relevant background
on some of the fundamental design components that were used
in the creation of the XRF framework.

1) Open-Authorization 2.0: OAuth 2.0 is a well-established
standard where a service provider delegates authorization dis-
tribution rights to a trusted middle-man entity [36]. The main
actors in the OAuth 2.0 framework are the service provider,
service requester (client), service server and the authorization
server. For the remainder of this paper, we will consider the
service provider and the service server to be the same entity.
The overall flow of the framework is given in Fig. 3. A service
will start by requesting an access token from the authorization
server for a target service. The server will authenticate this
request and issue an access token. The service requester will
use this token in accessing the API of the service provider. The
provider will validate this request through the authorization
server and, if the token is valid, will respond to the original
request with the desired information.

2) Access Tokens: The OAuth 2.0 framework [36] uses
access tokens [37] to authorize service requests. These to-
kens are typically either session tokens or JSON web tokens
(JWTs) [38]. The two frameworks are depicted in Fig. 4.

For session tokens shown in Fig. 4a, the server will maintain
a database of sessions with all their details and associate each
session with a unique ID. It will then issue this ID to the
user and they can use it on subsequent access requests. This
mechanism requires the server to maintain a log of sessions
and perform look-ups to validate access requests. While it is
a very popular method of authorization for web servers, in a
microservice deployment, due to the number of services and
volume of required lookups, it is not scalable.

JWTs, which are depicted in Fig. 4b, are more suitable
for this purpose. In this case, all the access details for a
particular service that would be required in any future request
are parameterized in JSON format and signed by the server,
forming a JSON web signature (JWS). This token is issued to
the user and attached to any API call that will require it.

A signed JWT contains three elements, namely – header,
payload, and signature. The elements are Base64 encoded
JSON key value pairs. The header contains general informa-
tion such as signature algorithm (e.g., alg: RS256), unique key
id (kid) associated with the token and media type (e.g., typ:
JWT). Payload element contains the relevant user information
such as unique identifier of the intended recipient or the service
consumer (aud), expiration time of the JWT (exp), issuer (iss)
of the JWT (e.g., authorization server), access type denoted
as scope (e.g., read, write) and unique identifier of the token
subject (sub). The issuer signs the header and the payload for
the recipient to verify the authenticity of the token.

3) Sidecar Proxies and Service Mesh: In the design of
microservices for containerized environments, the concept of
sidecar proxies (SCPs) [39] has become a popular choice
for abstracting non-functional requirements from the main
application. This is depicted in Fig. 5.

In a Kubernetes environment, where the smallest unit of
deployment is a pod, a single pod can be comprised of mul-
tiple containers. One of these containers is the microservice
application which is not exposed to the outside of the pod
but supported by SCP containers. These SCPs provide non-
functional security as well as other reverse proxy services to
the primary application such as monitoring, load balancing
and various other platform abstractions. The concept of SCPs
has also been adopted in 3GPP standardization for 5GC
VNFs in Rel.16 as a viable method of enabling inter-VNF
communication [6].

These SCPs are connected by a service mesh [40] and

Pod

Sidecar Proxy

Application

Pod

Sidecar Proxy

Application

Pod

Sidecar Proxy

Application

• TLS offloading
• Backend proxy services
• Debugger
• Platform abstraction

Control Plane
Monitoring Certificates Configuration Policy

Fig. 5: Sidecar proxy utilization in containerized environments
over a service mesh



Client-to-client API

Client Application

xApp Profile Authentication Registration

xApp DiscoveryAccess Token

Server-to-client API

Validation

Client 2

Client 1

Server

xApp Database
xApp ID, name, 
offering, status,
location, capacity

Token Map
-pub/priv key pair
-Token -> service
-Token -> pubkey

Permissions Matrix
-Scope of access 
-Individual read/
write permissions

Fig. 6: XRF functional system design overview with server
and client internals

share a common control plane in a Kubernetes deployment.
The control plane can provide transport layer security (TLS)
certificate management along with long-term monitoring, non-
functional configurations and policies.

B. XRF Functional System Design

The functional entities of the XRF system are presented in
Fig. 6. The framework is composed of two standalone entities,
which are the XRF client module and XRF server. The high-
level client flow and server internals are depicted in Fig. 6.

To enable server-to-client and client-to-client communica-
tion, representational state transfer (REST) APIs have been
constructed on both the server and the client. These are
described in Table I. The XRF server runs a multi-threaded
HTTP server with seven distinct endpoint handlers to offer a
concise collection of request and response loops necessary to
handle the lifecycle operations of a client.

When it is first instantiated, the XRF client will create a
metadata profile for the xApp. The profile parameters are given
in Table II. They are the instance identifier, an operator-chosen
descriptive name, a standardized service offering code, current

TABLE I: XRF server and client APIs

System API

Server

POST/InitialAuthentication(Challenge) → Counter
PUT/RegistrationHandler(xAppProfile) → HTTP::OK
PUT/ProfileUpdateHandler(xAppData) → HTTP::OK
GET/xAppDiscoveryHandler(targetProfile) → List
POST/AccessTokenRequest(Func, Loc) → JWT
POST/TokenIntropsection(JWT) → HTTP::OK
GET/JWKSRequestHandler(keyID) → token pubkey

Client PUT/ProfileUpdate(xAppData) → HTTP::OK
X/ServiceRequestAPI -H Bearer ”JWT” → desired

TABLE II: xApp profile metadata

Data Description
xAppInstanceID a universally unique identifier (UUID)

xAppInstanceName human-readable name for the instance
xAppOffering ServiceRequestAPI endpoints offered

xAppStatus availability status of the xApp
xAppLocation physical deployment location

xAppLoad number of serviced xApps

status, the physical location, and finally service load indicating
how many clients a given xApp is currently serving.

After the local creation of the xApp profile, the XRF client
will start a sequence of lifecycle operations until it becomes
service ready. First, it will create an authentication challenge
for the InitialAuthentication endpoint of the server and receive
a counter-challenge for mutual authentication. It will then
transform the xApp profile metadata into JSON format and
send it to the RegistrationHandler endpoint of the XRF server
where it will be stored in the xApp database.

The XRF server will maintain the metadata of clients using
an in-memory key-value storage. It will keep track of the
service consumers of any registered client and in the event
that the profile of a provider changes, it will notify the relevant
XRF clients of xApps through their ProfileUpdate endpoint.

In the steps towards joining a microservice chain, the client
will craft a discovery request to the XRF server xAppDis-
coveryHandler endpoint for a target client that is advertising
the desired xAppOffering code in the profile. To respond to
a discovery request, the server will query the internal xApp
database and respond with a list of eligible profiles.

The client will then formulate a request for the AccessTo-
kenRequest endpoint of the server to retrieve an access token
for consuming services from a target provider. This token can
be attached in the header of API calls whenever required.

With token distribution, the XRF server performs access
enforcement on target clients where the scope of a token is
determined by an internal permissions matrix populated using
the value of the xAppOffering parameter from Table II.

The xAppOffering advertises a standardized and globally
comprehensible xApp functionality while also indicating the
predetermined access rights allowed at the service endpoints
of a client. If an incoming access token request conflicts with
the recorded entry (e.g. write request to a read-only endpoint),
the server will reject this request.

Furthermore, the server will use the permissions matrix to
resolve any conflicting access rights so that no more than one
consumer is granted critical access to specific services of the
same provider at the same time. For instance, two consumers
might concurrently try to write to the same data in a provider,
which can result in service conflicts.

The distribution of access tokens makes the XRF server an
OAuth 2.0 authorization server where the XRF client modules
have a service consumer and provider back-and-forth flow.
The tokens in our framework are JWTs which are bound to
a unique RSA key pair where the private key is used to sign



new Client Server

POST/authenticate
Challenge

verify signature
create counter challenge

HTTP 200 OK
Counter challenge

verify signature

Authentication Successful

(1) Authentication Request

PUT/register
{local xApp profile}

HTTP 200 OK

Registration Complete

(2) Registration

GET/discover?<targetFunction>&<targetLocation>

HTTP 200 OK
{Available xApp profiles}

Select xApp

Discovery Complete

(3) Discovery Request

POST/oauth/token
{targetxAppID, requesterxAppID, scope}

Generate key pair

Create JWT
Sign with private key

HTTP 200 OK
JWS

Access token granted

(4) Access Token Request

http://msc-generator.sourceforge.net v7.2

Fig. 7: Preliminary operation flow between XRF client and
server showing (1) initial authentication, (2) registration, (3)
discovery request, (4) access token request

the token and the public key is used to verify them.
Any client can perform token validation on a service request

through either a self-contained validation using the JWKSRe-
questHandler, where the token is validated internally through
the server, or assisted validation where the token is forwarded
to the TokenIntropsection of the server.

C. XRF Server-Client Information Flow

The first set of messages exchanged between the XRF
client and the server are shown in Fig. 7 starting with the
instantiation of the client until it becomes service ready after
obtaining an access token for consuming services from other
client modules.

The first step the client performs after creating a profile
is to authenticate (1) with the server through public key
authentication.

Once the authentication is successful, the client will register
(2) by sending the required metadata in a PUT request to the
server. This includes the parameters described in Table II.

The client has now concluded the preliminary operations
and is ready to become part of the microservice-chain. To
proceed, it will query the server for a discovery (3) request
for a target xApp. This request will include the desired
xAppOffering and xAppLocation from Table II that the client is

new Client Server target Client

(5) Target Service Consumption
POST/service -H "Authorization : <JWT>"

Extract <keyid> from JWT

GET/oauth/jwks?<keyid>

Find public key corresponding to <keyid>

public key

Validate token

(6.a) Self-contained JWT Validation

Extract JWT from request

POST/oauth/intro
{JWT}

Validate token through <kid> in JWT

HTTP 200 OK

(6.b) Remote Token Introspection

(7) Respond with Requested Resource

http://msc-generator.sourceforge.net v7.2

Fig. 8: (5) Service consumption from a target client of another
xApp using a token bearer with (6.a) self-contained JWT
validation and (6.b) remote token introspection

expecting from a ServiceRequestAPI. The server will respond
with the available list of profiles and the client will select
the candidate with the lowest current xAppLoad among the
received profiles.

In order to consume the API of a target provider, the client
will create an access token request (4) with the UUID of this
target, its own UUID and the scope of the access that it wants
from the chosen client. If the requested scope is allowed in the
permissions matrix of the server as described in Section IV-B,
a JWT will be created using a new public-private RSA key
pair. The server will sign the JWT with the private key to
create a JWS and deliver it to the client.

Having received the access token, the client can now request
service consumption from the target XRF client of another
xApp, which is depicted in Fig. 8.

The token obtained in step (4) is attached to the header of
the API calls (5) destined for the XRF client of the chosen
xApp. Upon receiving the API request, the client can utilize
two methods of validating the token (6). These are depicted
in Fig. 9.

(6.a) Self-contained JWT validation is shown in Fig. 9a.
After receiving the service request (i) the target client will

(i)Service Request 
/w bearer token

Server(iii) Send 
key id

new Client
target Client

JWT
(ii) Extract 
key id

JWKSRequestHandler

Key ID Pubkey(iv) Lookup 
key id

Kn PUn

(v) Fetch public key
(vi) Respond 
with key

(viii) Verify Signature

(vii) Cache key

(a) Self-contained JWT validation

(i)Service Request 
/w bearer token

Server(ii) Forward 
new Client

target Client

JWT
TokenIntrospectionHandler

Key ID Pubkey

(iv) Lookup Kn PUn

(vi) Respond 
“Token Valid”

JWT (iii)Extract key id

(v) Validate

(b) Remote JWT introspection with server

Fig. 9: Implemented access token validation mechanisms



XRF Client Pods

xApp
Application

XRF client
Application

Sidecar 1

Linkerd mTLS
- Reverse Proxy
- SSL Proxy (TLS 1.3)

HTTP Server

Sidecar 2

XRF Server Pod

XRF server
Application

HTTPs Server HTTP Server

Linkerd monitoring
- Metrics server

xApp
Application

XRF client
Application

Sidecar 1

Linkerd mTLS
- Reverse Proxy
- SSL Proxy (TLS 1.3)

HTTP Server

Sidecar 2

HTTPs Server

Linkerd monitoring
- Metrics server

Sidecar 1

Linkerd mTLS
- Reverse Proxy
- SSL Proxy (TLS 1.3)

Sidecar 2

HTTPs Server

Linkerd monitoring
- Metrics server

Service Mesh Control Plane
Certificate 
Manager

Prometheus
Server

Fig. 10: Full Kubernetes deployment model with application
containers and auxiliary functionality providing SCPs con-
nected with a Linkerd service mesh

extract the key id (ii) from the header of the JWT and query
the JSON web key set (JWKS) endpoint JWKSRequestHandler
in Table I of the server with this value (iii). This key id will
be internally mapped to the public key of the private key used
in signing the JWT (iv-v). The XRF server will respond with
this public key (vi) and the target client will cache it (vii)
for future API calls with the same key id and then proceed
to validate the token (viii). The advantage of this approach
is that, after the first API call, the target client can perform
validation on the same key id independently from the server.
However, the approach expects token validation functionality
to be implemented on the XRF client.

(6.b) Remote token introspection is shown in Fig. 9b.
The target client will extract the JWT from the header of the
HTTP request and forward it entirely to the TokenIntrospection
endpoint of the server (ii) where the latter will validate it in
the same way (iii-v) as the client in (6.a) and respond with
the ”token valid” message (vi).

Once the token has been validated, the target client can now
respond (7) to the new client with the requested resource.

D. XRF Implementation

The implementation of the XRF server and client appli-
cations is done in C++17 in Ubuntu 20.04. Both applications
are running an HTTP server with REST API endpoints crafted
using the Pistache library [41]. Pistache is a mature C++ API
compatible with OpenAPI [42]. To make the API accessible,
we have first prepared the human-readable YAML files with
the OpenAPI 3.0.0 specification and later used the OpenAPI
generator to create template APIs that were populated with
our custom endpoint handlers.

For handling access tokens, we used a JWT library [43]
which uses OpenSSL as a primary dependency. It provides
encoding and decoding of access tokens which can be used
for creation, signing and validation.

The Kubernetes deployment model is given in Fig. 10. It
shows the deployment of the XRF client and XRF server pods.
The former is made up of four containers, where the xApp
application conceptually sits in the pod back-end and only

Virtualization
NFVI Distributed

Virtualization
NFVI Edge

xApp

XRF-client

xApp

XRF-client

xApp

XRF-client

H
TTP

 Se
rver

XRF

Near-RT RIC

DU CU

5GC

Fig. 11: Proposed XRF integration into the O-RAN ecosystem

has communication with the XRF client container. Depending
on the design, this can be inter-process communication (IPC)
or direct integration of the client libraries into the xApp
application. The client container is running an HTTP server
which is not exposed to the network but is connected to the
Linkerd mutual TLS (mTLS) [40] SCP, which is serving as a
back-end reverse proxy. The main use of this SCP is to serve as
a secure socket layer (SSL) proxy, which encrypts the HTTP
traffic from the client module with TLS 1.3 and exposes an
HTTPs server to the network using self-signed certificates.

The SCPs are connected using Linkerd [40], a lightweight
service mesh solution which provides a centralized monitoring
server and certificate manager that rotates TLS certificates over
time. To take advantage of the monitoring tool, we also deploy
the Linkerd monitoring SCP which connects to the central
Prometheus server to enable long-term metrics gathering.

The same implementation is mirrored on the XRF server
pod where the server application is separate from the Linkerd
SCPs. This model of deployment ensures that the microser-
vice application is not burdened with implementing any non-
functional security features.

A proposed integration of the XRF framework into the O-
RAN and 5G architecture is presented in Fig. 11. The XRF
server functionality is exposed to the XRF clients through
REST API endpoints. The client module is a microservice
application independent from the primary xApp. It plays the
role of a middle-man entity between the xApp and the near-
RT RIC, performing the operations described in Section IV-B.
The information routing through the RMR, mentioned in
Section III, is bounced through the XRF client pod (as shown
in Fig. 10) before reaching the xApps.

This procedure requires the xApp to supply the XRF client
with the metadata in Table II when it is first instantiated. From
this point forward, in any xApp-to-xApp or xApp-to-near-RT
RIC communication, the XRF client will behave as a proxy to
provide functional security with the flow illustrated in Fig. 6.

As an entity that oversees multiple edge domains at the same
time, the XRF server can be deployed in the distributed cloud.
Depending on the operational requirements it can be placed in
the edge network for lower latency or further centralized for
a broader management scope.

V. PERFORMANCE EVALUATION

In this section, we present our experimental setup for testing
with the XRF framework, followed by our findings from
various performance benchmarks on the XRF client and server.
First, a set of operational throughput and latency experiments



KVM
Controller Node

Networking Node

Block Storage Node

Openstack

Compute Node

Virtual Machines

Pods

High Compute Pod
for XRF Server

Fig. 12: Testbed with Openstack virtual machines hosting a
Kubernetes cluster

are carried out in a multi-threaded environment with varying
wall and CPU times. Next, micro-benchmarks are performed
over the individual modules in the XRF framework.

A. Experimental Setup

Our testing environment, depicted in Fig. 12, was used to
deploy XRF client and server connections at a large scale
where each client is instantiated inside a separate container.

We have two servers which are running a small-scale
Openstack infrastructure. One of the nodes is serving as a
controller, networking and block storage node while the other
serves as a compute node with the KVM hypervisor. The nodes
used are two Precision 7920 Tower servers with 2 x Intel Xeon
Gold 5218R 2.1GHz CPUs, 512GB RAM, 1TB disk space,
and running Ubuntu 20.04.

The compute node is running a total of 11 virtual machines
(VMs) for the HA-Kubernetes cluster constructed through the
Ranchers Kubernetes Engine (RKE) [44]. Three VMs are con-
trol nodes and the remaining eight are workers, one of which
is large (L-worker) and dedicated to the XRF server enabling
all the vCPUs to prioritize server threads. The others are small
workers (S-worker). The flavors are given in Table III.

TABLE III: HA Kubernetes cluster VM flavors

Node Instances vCPUs RAM
(GB)

Disk
(GB)

Control 3 2 8 40
S-worker 7 6 16 80
L-worker 1 20 200 80

B. Results and Discussion

We use end-to-end operational throughput on the server
side and end-to-end latency on the client side for performance
measurements. Our raw metrics are the system wall and CPU
times. The former corresponds to the total operation time and
the latter is the active processing time spent across the CPUs
for all the threads. The results are given in Fig. 13.

In each experiment, we instantiate the given number of
concurrent clients from separate containerized environments
for end-to-end benchmarking of the preliminary flows given

(a) Server end-to-end throughput (b) Client end-to-end latency

(c) Server-side context switching

Fig. 13: Operational benchmarking of the XRF server and
client in a multi-threaded environment

in Fig. 7. For measuring the server throughput, an internal wall
clock timer is started inside the application with the arrival of
the first user and stopped when the final user is fully processed.

We can see in Fig. 13a that increasing the number of threads
running on the XRF server significantly impacts the number of
users processed per second, indicating concurrency among the
modules. The throughput saturates after a while regardless of
the number of threads, which is a result of increased processor
scheduling explained in the next paragraph. The saturation can
be seen by comparing the marginal increase from 12 to 20
threads as opposed to the increase in 2 to 6 threads.

A lower-level explanation for this is provided by analyzing
the context switching measurements in Fig. 13c. To obtain
these numbers, we lookup the process ID (PID) of the XRF
server process on the L-worker in Section V-A in the Linux
file system. Later, we isolate the individual thread IDs (TIDs)
belonging to this PID and record the total context switches
performed across all the threads. This shows that there is
a considerable increase going from 12 to 20 threads, which
creates increased scheduling overhead in the processors.

The client end-to-end latency measurements given in
Fig. 13b complement the throughput results in Fig. 13a. The
latency is measured individually on each XRF client and
averaged. With fewer threads on the XRF server, clients are
suspended in scheduling, leading to higher wait times.

In a multithreaded system, the combined CPU time will be
higher than the overall wall time with multi-processing taking
place over a set of CPUs. In Fig. 14, we show the total client
and server CPU times with a varying number of threads.

The CPU time on the client side in Fig. 14a is inversely
proportional to the number of threads on the XRF server.
Fewer threads cause slower scheduling for the client, resulting



in operational HTTP connections being kept open longer than
necessary, leading to a slight overhead on the XRF clients. On
the other hand, increasing the number of threads on the server
allows for more processors to be engaged simultaneously
which means the XRF server can handle tasks more efficiently,
provided there are available CPUs.

To understand the difference between wall and CPU time,
we compare the two for the XRF client and server in Fig. 15
for a server with 20 threads. On the client side shown in
Fig. 15a, CPU time is much lower than wall time because
the majority of the latency is caused by processing on the
server. This shows that the XRF client is a lightweight entity
with minimal overhead, enabling xApps to efficiently scale in
a production-grade framework. On the server side, however,
as shown in Fig. 15b, CPU time is much higher than wall
time because multiple processors are engaged simultaneously
to execute different handlers within the XRF server.

Furthermore, we carried out operational benchmarks for
the individual modules of the XRF framework in Fig. 16
with 50 concurrent clients. The analysis given in Fig. 16a
illustrates the results for the initial authentication, registration,
discovery, and access token modules. We can see that initial
authentication, due to the cryptography operations, consumes
the most resources both on the client and server sides. For the
remainder of the operations, client side CPU time is negligible
because the XRF client will only supply the XRF server with
the desired HTTP request. On the server side, we can see that
registration uses very little time, while discovery and access
token requests are more considerable. The discovery operation
needs to traverse a key-value map while the access token
creation module performs the creation of a JWT payload as
well as permission validation on the request.

In Fig. 16b, we carry out a service request scenario with one
XRF server and two XRF clients deployed where one of the
clients is a service requester and the other a provider. In this
experiment, the same requester sends 100 consecutive service
requests to the provider with the same access token. We show
the total CPU and wall time for the two token verification
flows shown in Fig. 8 for the 100 requests.

Due to the overhead of contacting the XRF server each time,
the wall time on the requester side is approximately twice
as long with remote token introspection compared to JWKS

(a) Total client CPU time (b) Total server CPU time

Fig. 14: XRF server and client active CPU time measurements
with multiple threads

(a) Client CPU vs wall time (b) Server CPU vs wall time

Fig. 15: Comparing CPU and wall time on the XRF client and
server for an HTTP server with 20 threads

(a) Results for flows in Fig. 7 (b) Results for flows in Fig. 8

Fig. 16: Benchmarks for individual modules of XRF server
and client operations

token validation. On the provider side, we can see comparable
wall times since both cases use the same verification method,
regardless of whether the client or the server carries it out.

VI. CONCLUSION

The OpenRAN framework is a next-generation mobile net-
work platform aiming to achieve softwarization of the RAN
and standardization of the interfaces across vendors. As with
all new architectures, it expands the attack surface, requiring
new security frameworks to address emerging threats. In this
paper, we presented the system design, implementation, and
evaluation of the XRF framework, which ensures the scalable
authentication, authorization, and discovery of xApps within
O-RAN, a software community realization of the OpenRAN
initiative. XRF is built using proven and robust concepts tested
in mobile app ecosystems, compatible with the containerized
microservice model, offering seamless operational security for
xApps. To fulfill the non-functional security requirements,
we wrapped the deployment with the Linkerd service mesh
to provide mTLS between entities. We conducted large-scale
deployments in a HA Kubernetes cluster to evaluate XRF
using operational benchmarks. Our results show that the XRF
client has lightweight processing requirements, making it ideal
for xApp adjacent deployment in a decentralized microservice
environment. At the same time, the server-side handles the
majority of the workload. Additionally, we demonstrate that
the XRF server can scale in a multi-threaded environment
while supporting concurrent clients with minimal overhead,
trading off time for computing resources.



REFERENCES

[1] “O-RAN ALLIANCE e.V,” https://www.o-ran.org/, (Accessed on
05/31/2022).

[2] A. Garcia-Saavedra and X. Costa-Pèrez, “O-RAN: Disrupting the Vir-
tualized RAN Ecosystem,” IEEE Communications Standards Magazine,
vol. 5, no. 4, pp. 96–103, 2021.

[3] 3GPP, “Study on New Radio Access Technology: Radio Access Archi-
tecture and Interfaces,” 3rd Generation Partnership Project (3GPP), TR
38.801 V14.0.0 , Mar. 2017.

[4] O-RAN WG3, “O-RAN Near-Real-time RAN Intelligent Controller
Architecture & E2 General Aspects and Principles,” O-RAN Alliance
e.V., Technical Specification v02.01, Feb. 2022.

[5] ——, “Near-Real-time RAN Intelligent Controller, E2 Application Pro-
tocol (E2AP),” O-RAN Alliance e.V., Technical Specification v02.01,
Feb. 2022.

[6] 3GPP, “System architecture for the 5G System (5GS);Stage 2,” 3rd
Generation Partnership Project (3GPP), TR 23.501 V17.4.0 , Mar. 2022.

[7] “Commonwealth Cyber Initiative — Commonwealth Cyber Initiative —
Virginia Tech,” https://cyberinitiative.org/, (Accessed on 06/02/2022).

[8] “Public Rpository for POWDER-RENEW project / srslte-ric gitlab,”
https://gitlab.flux.utah.edu/powderrenewpublic/srslte-ric, (Accessed on
06/01/2022).

[9] D. Johnson, D. Maas, and J. Van Der Merwe, “NexRAN: Closed-
Loop RAN Slicing in POWDER - A Top-to-Bottom Open-
Source Open-RAN Use Case,” in Proceedings of the 15th ACM
Workshop on Wireless Network Testbeds, Experimental Evaluation &
CHaracterization, ser. WiNTECH’21. New York, NY, USA:
Association for Computing Machinery, 2022, pp. 17–23. [Online].
Available: https://doi.org/10.1145/3477086.3480842

[10] ——, “Open Source RAN Slicing on POWDER: A Top-to-
Bottom O-RAN Use Case,” in Proceedings of the 19th Annual
International Conference on Mobile Systems, Applications, and Services,
ser. MobiSys ’21. New York, NY, USA: Association for
Computing Machinery, 2021, pp. 507–508. [Online]. Available:
https://doi.org/10.1145/3458864.3466912

[11] Y. Wang, A. Gorski, and A. P. da Silva, “Development of a Data-
Driven Mobile 5G Testbed: Platform for Experimental Research,” in
2021 IEEE International Mediterranean Conference on Communications
and Networking (MeditCom), 2021, pp. 324–329.

[12] P. S. Upadhyaya, A. S. Abdalla, V. Marojevic, J. H. Reed, and V. K.
Shah, “Prototyping Next-Generation O-RAN Research Testbeds with
SDRs,” 2022.

[13] L. Bonati, M. Polese, S. D’Oro, S. Basagni, and T. Melodia, “OpenRAN
Gym: An Open Toolbox for Data Collection and Experimentation with
AI in O-RAN,” in 2022 IEEE Wireless Communications and Networking
Conference (WCNC), 2022, pp. 518–523.

[14] T.-H. Wang, Y.-C. Chen, S.-J. Huang, K.-S. Hsu, and C.-H. Hu, “Design
of a Network Management System for 5G Open RAN,” in 2021
22nd Asia-Pacific Network Operations and Management Symposium
(APNOMS), 2021, pp. 138–141.

[15] T. O. Atalay, D. Stojadinovic, A. Stavrou, and H. Wang, “Scaling
Network Slices with a 5G Testbed: A Resource Consumption Study,”
in 2022 IEEE Wireless Communications and Networking Conference
(WCNC), 2022, pp. 2649–2654.

[16] S. Niknam, A. Roy, H. S. Dhillon, S. Singh, R. Banerji, J. H. Reed,
N. Saxena, and S. Yoon, “Intelligent O-RAN for Beyond 5G and 6G
Wireless Networks,” 2020.

[17] L. Bonati, M. Polese, S. D’Oro, S. Basagni, and T. Melodia, “Open,
Programmable, and Virtualized 5G Networks: State-of-the-art and the
Road Ahead,” Computer Networks, vol. 182, p. 107516, 2020.

[18] A. Esmaeily and K. Kralevska, “Small-Scale 5G Testbeds for Network
Slicing Deployment: A Systematic Review,” Wireless Communications
and Mobile Computing, vol. 2021, 2021.

[19] 3GPP, “Network Function Repository Services;Stage 3,” 3rd Generation
Partnership Project (3GPP), TS 29.510 V17.6.0 , Jun. 2022.

[20] M. Polese, L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “Un-
derstanding O-RAN: Architecture, Interfaces, Algorithms, Security, and
Research Challenges,” 2022.

[21] O-RAN SFG, “O-RAN Security Protocols Specifications,” O-RAN
Alliance e.V., Technical Specification v03.00, Jul. 2022.

[22] ——, “O-RAN Security Requirements Specifications,” O-RAN Alliance
e.V., Technical Specification v03.00, Jul. 2022.

[23] ——, “O-RAN Security Threat Modelling and Remediation Analysis,”
O-RAN Alliance e.V., Technical Specification v03.00, Jul. 2022.

[24] ——, “O-RAN Security Test Specifications,” O-RAN Alliance e.V.,
Technical Specification v02.00, Jul. 2022.

[25] D. Mimran, R. Bitton, Y. Kfir, E. Klevansky, O. Brodt, H. Lehmann,
Y. Elovici, and A. Shabtai, “Evaluating the Security of Open Radio
Access Networks,” 2022.

[26] F. Klement, S. Katzenbeisser, V. Ulitzsch, J. KrÃ¤mer, S. Stanczak,
Z. Utkovski, I. Bjelakovic, and G. Wunder, “Open or Not Open: Are
Conventional Radio Access Networks More Secure and Trustworthy
than Open-RAN?” 2022.

[27] J. Y. Cho and A. Sergeev, “Secure Open Fronthaul Interface for
5G Networks,” in The 16th International Conference on Availability,
Reliability and Security, ser. ARES 2021. New York, NY, USA:
Association for Computing Machinery, 2021. [Online]. Available:
https://doi.org/10.1145/3465481.3470080

[28] “IEEE Standard for Local and Metropolitan area networks-Media Access
Control (MAC) Security,” IEEE Std 802.1AE-2018 (Revision of IEEE Std
802.1AE-2006), pp. 1–239, 2018.

[29] O-RAN SFG, “Study on Security for Near Real Time RIC and xApps,”
O-RAN Alliance e.V., Technical Specification v01.00, Jul. 2022.

[30] C. Shen, Y. Xiao, Y. Ma, J. Chen, C.-M. Chiang, S. Chen, and Y. Pan,
“Security Threat Analysis and Treatment Strategy for ORAN,” in 2022
24th International Conference on Advanced Communication Technology
(ICACT), 2022, pp. 417–422.

[31] J. Cao, M. Ma, H. Li, R. Ma, Y. Sun, P. Yu, and L. Xiong, “A Survey
on Security Aspects for 3GPP 5G Networks,” IEEE Communications
Surveys & Tutorials, vol. 22, no. 1, pp. 170–195, 2020.

[32] R. Khan, P. Kumar, D. N. K. Jayakody, and M. Liyanage, “A Ssurvey
on Security and Privacy of 5G Technologies: Potential Solutions, Recent
Advancements, and Future Directions,” IEEE Communications Surveys
& Tutorials, vol. 22, no. 1, pp. 196–248, 2020.

[33] A. O. F. Atya, Z. Qian, S. V. Krishnamurthy, T. La Porta, P. McDaniel,
and L. Marvel, “Malicious co-residency on the cloud: Attacks and
defense,” in IEEE INFOCOM 2017 - IEEE Conference on Computer
Communications, 2017, pp. 1–9.

[34] X. Gao, B. Steenkamer, Z. Gu, M. Kayaalp, D. Pendarakis, and H. Wang,
“A Study on the Security Implications of Information Leakages in
Container Clouds,” IEEE Transactions on Dependable and Secure
Computing, vol. 18, no. 1, pp. 174–191, 2021.

[35] Z. Wang, R. Yang, X. Fu, X. Du, and B. Luo, “A Shared Memory based
Cross-VM Side Channel Attacks in Iaas Cloud,” in 2016 IEEE Confer-
ence on Computer Communications Workshops (INFOCOM WKSHPS),
2016, pp. 181–186.

[36] E. Hardt, D., “The OAuth 2.0 Authorization Framework,” RFC
Editor, RFC 6749, October 2012. [Online]. Available: https://www.rfc-
editor.org/info/rfc6749

[37] M. Jones and D. Hardt, “The OAuth 2.0 Authorization Framework:
Bearer Token Usage,” RFC Editor, RFC 6750, October 2012. [Online].
Available: https://www.rfc-editor.org/info/rfc6749

[38] N. S. M. Jones, J. Bradley, “JSON Web Token (JWT),”
RFC Editor, RFC 7519, May 2015. [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc7519

[39] Microsoft, “Sidecar Pattern - Azure Architecture Center,” Jun.
2022, [Online; accessed 26. Jun. 2022]. [Online]. Available:
https://docs.microsoft.com/en-us/azure/architecture/patterns/sidecar

[40] “What is a service mesh? — Linkerd,” https://linkerd.io/what-is-a-
service-mesh/, (Accessed on 07/15/2022).

[41] “Github - pistacheio/pistache: A high-performance REST toolkit
written in C++,” https://github.com/pistacheio/pistache, (Accessed on
06/27/2022).

[42] “OpenAPI Generator,” https://openapi-generator.tech/, (Accessed on
06/05/2022).

[43] “Github - arun11299/cpp-jwt: JSON Web Token library for c++,”
https://github.com/arun11299/cpp-jwt, (Accessed on 06/27/2022).

[44] “Rancher Kubernetes Engine (RKE),” Jul. 2022, [Online; accessed 20.
Jul. 2022]. [Online]. Available: https://rancher.com/products/rke


