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Abstract—Wireless backhauling at millimeter-wave frequencies
(mmWave) in static scenarios is a well-established practice in
cellular networks. However, highly directional and adaptive
beamforming in today’s mmWave systems have opened new
possibilities for self-backhauling. Tapping into this potential,
3GPP has standardized Integrated Access and Backhaul (IAB)
allowing the same base station to serve both, access and backhaul
traffic. Although much more cost-effective and flexible, resource
allocation and path selection in IAB mmWave networks is
a formidable task. To date, prior works have addressed this
challenge through a plethora of classic optimization and learning
methods, generally optimizing a Key Performance Indicator
(KPI) such as throughput, latency, and fairness, and little
attention has been paid to the reliability of the KPI. We propose
Safehaul, a risk-averse learning-based solution for IAB mmWave
networks. In addition to optimizing average performance, Safe-
haul ensures reliability by minimizing the losses in the tail of
the performance distribution. We develop a novel simulator and
show via extensive simulations that Safehaul not only reduces the
latency by up to 43.2% compared to the benchmarks, but also
exhibits significantly more reliable performance, e.g., 71.4% less
variance in achieved latency.

Index Terms—Millimeter-Wave Communication, Integrated
Access and Backhaul (IAB), Self-backhauling, Wireless Backhaul

I. INTRODUCTION

The emergence of mmWave cellular systems created a
unique opportunity for cellular operators to leverage a scalable
and cost-effective approach to deal with network densification.
The fact that mmWave base stations can support fiber-like
data rates facilitates the use of the same base station for
both access and backhaul traffic, a solution which in 3GPP
parlance is referred to as Integrated Access and Backhaul
(IAB). Consequently, 3GPP has included IAB in the standard
[1], [2] covering the details on architecture, higher layer
protocols, and the radio. Although Release 17 of the 5G-
NR defines the interfaces, architectures, and certain system
parameters, the actual configuration and resource allocation is
left to operators.

Traditional self-backhauled networks featured fixed-wireless
links decoupled from access networks with static configu-
rations. In contrast, IAB should account for the dynamic
nature of the backhaul links (particularly in dense mmWave
deployments) and their integration with the access network.
Further, IAB allows the traffic to traverse several hops (i.e.,

base stations) to reach its destination, adding a new dimension
to the problem’s complexity. In addition to the scheduling
problem, an IAB network should: (i) solve the problem of path
selection and link activation at the backhaul while considering
inter-cell interference and (ii) decide on serving access or
backhaul traffic depending on the access load and the ingress
backhaul traffic from neighboring base stations.

Prior work. Methodologically, the majority of the existing
works [3]–[11] focus on classic optimization techniques to
solve the above-mentioned problem. However, given the large
number of parameters involved, such formulations often result
in (non-)convex problems that are too complex for real-time
operations. Nonetheless, they are valuable indicators to mark
the upper-bound performances. Recently, some works focus on
more practical solutions which can be deployed in real net-
works [12]–[14]. Specifically, these works leverage Reinforce-
ment Learning (RL) to tackle both resource allocation and/or
path selection in IAB mmWave networks and demonstrate that
RL-based solutions achieve real-time performance.

Regardless of the methodology, prior works mostly aim
at maximizing the network capacity [3]–[10], minimizing
latency [15], [16] and improving throughput fairness [4], [17].
Although optimizing capacity and latency is a challenging
task by itself, network operators are often more concerned
about the reliability of such approaches. This is the underlying
reason that many commercial products rely on simplified but
reliable algorithms for resource allocation, despite their sub-
optimal performance.".

In this article, we propose Safehaul, a reinforcement
learning-based solution for reliable scheduling and path selec-
tion in IAB mmWave systems under network dynamics. We
use the concept of risk aversion, commonly used in economics
[18], [19], to measure and enhance the reliability of Safehaul.
The following summarizes our contributions:
• We model the scheduling and path selection problem

in IAB mmWave networks as a multi-agent multi-
armed bandit problem (Section III). We consider multiple
fiber base stations simultaneously supporting many self-
backhauled mmWave base stations. In our model, the self-
backhauled base stations independently decide the links
to activate. The consensus among the base stations is
reached via standard-defined procedures (Section IV-C).
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• We present the first solution to provide reliable perfor-
mance in IAB-enabled networks (Section IV). Specifi-
cally, we investigate the joint minimization of the average
end-to-end latency and its expected tail loss for each base
station. To this aim, we propose Safehaul, a learning
approach that leverages a coherent risk measure called
Conditional Value at Risk (CVaR) [18]. CVaR measures
the tail average of the end-to-end latency distribution that
exceeds the maximum permitted latency, thus ensuring
the reliability of the network.

• We provide a new means of simulating multi-hop IAB
networks by extending NVIDA’s newly released GPU-
accelerated simulator, i.e., Sionna [20] (Section V).
Specifically, we add codebook-based analog beamform-
ing capability for both uplink and downlink commu-
nications. Further, we extend Sionna by implementing
system-level components such as layer-2 schedulers and
buffers and Backhaul Adaptation Protocol (BAP)-like
routing across the IAB network. We believe our IAB
extensions will be instrumental for the open-source eval-
uation of future research on self-backhauled mmWave
networks.

• Exploiting the above simulator, we evaluate and bench-
mark Safehaul against two of the state-of-the-art algo-
rithms [16], [21]. The results confirm that Safehaul is
significantly more reliable than benchmarks as it exhibits
much tighter variance both in terms of latency (up to
71.4%) and packet drop rate (at least 39.1%). Further,
Safehaul achieves up to 43.2% lower average latency
and 11.7% higher average throughput than the reference
schemes.

II. SYSTEM MODEL

We consider a cellular system with N base stations capable
of self-backhauling and D base station with a fiber connection
to the core network. Following 3GPP terminology, we refer to
self-backhauled base stations as IAB-nodes (BSnode) and the
fiber base stations as IAB-donors (BSdonor). Each IAB-node
connects to the core network via a (multi-hop) wireless link
to an IAB-donor. The sets of all BSsnode and BSsdonor are
denoted by N = {1, . . . , N} and D = {1, . . . , D}, respec-
tively. The system works in a time-slotted fashion starting
from time slot i = 1 until a finite time horizon I . All the
time slots i = 1, . . . , I have the same duration. The IAB-
nodes are equipped with two RF chains. One RF chain is
used exclusively for the communication with cellular users
(access network), while the second RF chain is used for self-
backhauling. In line with the 3GPP specification [22], we
assume half-duplex self-backhauling, i.e., in each time slot
i an IAB-node can either transmit data, receive data or remain
idle.

We model the connections between the base stations as a
graph Gi = {V, Ei}, see Fig. 1. The set V = N ∪D of vertices
is formed by all the BSnode and BSdonor in the system. The set
Ei of edges is composed of the available wireless links (n, l)
between a BSnode n ∈ N and any BS (BSdonor or BSnode)

Fig. 1: Example of a graph Gi

l ∈ V in time slot i. Note that the graph Gi is not static. In a
given time slot i, some links can be unavailable due to failure,
blockage, or interference. Thus, only feasible wireless links are
considered in the set Ei. The path Xn,d from BSnode n to any
BSdonor d is a sequence of intermediate links (n, l). Note that
Xn,d changes over time according to the traffic loads of the
intermediate BSnode and the channel conditions. We model the
activation of link (n, l) with the binary variable xn,l,i. When
xn,l,i = 1, the link is activated and BSsnode n transmits to BS
l ∈ V during time slot i. Conversely, xn,l,i = 0 indicates the
link is deactivated and no transmission can occur.

Each BSnode n has a finite data buffer with capacity Bmax
n

to store the backhaul data to be transmitted to any of the
BSsdonor. In each time slot i, BSnode n is characterized by
its load and average queuing time. The load, denoted by
Bn,i ∈ N, indicates the number of data packets stored in the
buffer at the beginning of time slot i. The average queuing
time tqn,i ∈ R+ is the average number of time slots the current
packets in the data buffer have been stored. Additionally, we
denote by ttxn,l,i ∈ R+ and Mn,l,i ∈ R+ the transmission
time from BSnode n to BS l in time slot i, and the amount
of successfully transmitted data on the link, respectively. We
define the maximum tolerable latency Tmax as the maximum
time a packet can take from its source BSnode to any BSdonor.
Any packet that is not delivered before Tmax milliseconds will
be dropped. The average maximum end-to-end latency T̄n,d
from BSnode n to BSdonor d is the average, over the complete
time horizon I , of the maximum delay a packet originating
from BSnode n takes to reach any BSdonor d in time slot i.
This is calculated as:

T̄n,d =
1

I

I∑
i=1

Tn,d,i, (1)

where Tn,d,i is the maximum end-to-end latency among all
the packets originating in BSnode n which reach BSdonor d
in time slot i. Tn,d,i is a sample of the random variable Tn,d
drawn from an unknown stationary probability distribution P
that depends on the activated links xn,l,i, the cellular user’s
mobility, the location of the BSnode n, the interference in the
system, and the queue dynamics. Considering (1), the average
end-to-end latency in the system T̄ is defined as

T̄ =
1

ND

N∑
n=1

D∑
d=1

T̄n,d. (2)



III. PROBLEM FORMULATION

The joint minimization of the average end-to-end latency
and the expected value of its tail loss in IAB-enabled networks
is formulated in this section. We first introduce CVaR, the risk
metric accounting for minimizing the events in which the end-
to-end latency is higher than Tmax. Next, we formulate the
optimization problem in the complete network.

A. Preliminaries on CVaR

Traditionally, latency minimization in IAB-enabled net-
works has focused on optimizing the expected value of a
latency function [15], [16]. However, such an approach fails
to capture the time variability of the latency distribution, thus
leading to unreliable systems in which Tn,d,i > Tmax, for any
i = 1, ..., I , n ∈ N and d ∈ D. For this purpose, we consider
not only the average end-to-end latency T̄ in the system, but
also its expected tail loss based on the CVaR [18], [23].

Having in mind that Tn,d is a random variable, we assume it
has a bounded mean on a probability space (Ω,F , P ), with Ω
and F being the sample and event space, respectively. Using
a risk level α ∈ (0, 1], the CVaRα(Tn,d) of Tn,d at risk level
α quantifies the losses that might be encountered in the α-tail.
More specifically, it is the expected value of Tn,d in its α-tail
distribution [23]. Formally, CVaRα(Tn,d) is defined as [18]

CVaRα(Tn,d) = min
q∈R

{
q +

1

α
E [max{Tn,d − q, 0}]

}
, (3)

where the expectation in (3) is taken over the probability
distribution P . Note that lower CVaRα(Tn,d) results in higher
reliability in the system because the expected end-to-end
latency in the α-worst cases is low. Moreover, note that α
is a risk aversion parameter. For α = 1, CVaRα(Tn,d) =
E[Tn,d] which corresponds to the traditional risk-neutral case.
Conversely, for α = 0, limα→0 CVaRα(Tn,d) = sup{Tn,d}.
CVaR has been shown to be a coherent risk measure, i.e., it
fulfills monotonicity, subadditivity, translation invariance, and
positive homogeneity properties [24].

B. Optimization Problem

We aim to jointly minimize the average end-to-end latency
and its expected tail loss for each BSnode. For this purpose, we
decide which of the (n, l) links to activate in each time slot i
during the finite time horizon I . In the following, we formulate
the optimization problem from the network perspective and
consider the sum over all the BSnode in the system. The latency
minimization problem should consider three different aspects:
(i) link activation is constrained by the half-duplex nature of
self-backhauling, (ii) only data stored in the data buffers can
be transmitted, and (iii) packet drop due to buffer overflow
should be avoided. Formally, the problem is written as:

minimize
{xn,l,i, i ∈ [1, I]}

∑
n∈N

∑
d∈D

T̄n,d + ηCVaRα(Tn,f ) (4a)

subject to∑
l∈V

xn,l,i +
∑
l∈N

xl,n,i = 1, n ∈ N , (4b)

i∑
j=1

Bn,i ≥
i∑

j=1

Mn,l,i, n ∈ N , l ∈ V, (4c)

i∑
j=1

Bl,j +

i∑
j=1

Mn,l,j ≤ Bmax
l , n ∈ N , l ∈ V, (4d)

xn,l,i ∈ {0, 1}, n ∈ N , l ∈ V. (4e)

In (4a), η ∈ [0, 1] is a weighting parameter to trade between
minimizing the average end-to-end latency T̄n,d and the ex-
pected loss of its tail. As the considered scenario is not static,
solving (4) requires complete non-causal knowledge of the
system dynamics during the complete time horizon I . How-
ever, in practical scenarios, knowledge about the underlying
random processes is not available in advance. For example,
the IAB-node’s loads Bn,i depend not only on the transmitted
and received backhaul data, but also on the randomly arriving
data from its users. Similarly, the amounts of transmitted data
Mn,l,i depend on the varying channel conditions of both BS
n and l. As a result, the exact values of Tn,l,i, Bn,i and Mn,l,i

are not known beforehand. For this reason, we present in Sec.
IV Safehaul, a multi-agent learning approach to minimize in
each BSnode the average end-to-end latency and the expected
value of the tail of its loss.

IV. OUR PROPOSED SOLUTION: SAFEHAUL

In this section, we describe Safehaul, a multi-agent learning
approach for the joint minimization of the average end-to-end
latency and its expected tail loss in IAB mmWave networks.
In Safehaul, each BSnode independently decides which links
(n, l) to activate in every time slot i by leveraging a multi-
armed bandit formulation. The consensus among the BSnode
is reached by exploiting the centralized resource coordination
and topology management role of IAB-donors [1, Sec. 4.7.1].

A. Multi-Armed Bandit Formulation

Multi-armed bandits is a tool well suited to problems in
which an agent makes sequential decisions in an unknown
environment [25]. In our scenario, each BSnode n decides, in
each time slot i, which of the links (n, l) to activate without
requiring prior knowledge about the system dynamics. The
multi-armed bandit problem at BSnode n can be characterized
by a set An of actions and a set Rn of possible rewards.
The rewards rn,i ∈ Rn are obtained in each time slot i as
a response to the selected action an,i ∈ An. Specifically,
the actions are the links that BSnode n can activate, and the
rewards are a function of the observed latency. We define An
as

An = {(n, l), (m,n)|n,m ∈ N , l ∈ V}, (5)

where link (n, n) indicates the BSnode n remains idle. As
blockages, overloads, or failures might render certain links
(n, l) temporarily unavailable, we define the set An,i ⊆ An
of available actions in time slot i as

An,i = {(n, l), (l, n)|(n, l), (l, n) ∈ Ei}. (6)

Selecting action ai = (n, l) in time slot i implies xn,l,i = 1.



The rewards rn,i are a function of the end-to-end latencies
Tn,d,i and depend on whether at BSnode n a link (n, l) or (l, n)
is activated. BSnode n is connected to the BSdonor via multi-
hop wireless links. Consequently, Tn,d,i cannot be immediately
observed when a link (n, l), with l /∈ D is activated. In fact,
the destination BSdonor d might not even be known to BSnode
n at time slot i. To overcome this limitation, we define the
rewards rn,i as a function of the next-hop’s estimated end-to-
end latency T̂l,d,i as

rn,i =

{
tql,i + ttxn,l,i + T̂l,d,i, for link (n, l)

tqn,i + T̂n,d,i, for link (l, n),
(7)

where T̂l,d,i is calculated as

T̂l,d,i = min
(l,m)∈Ei

T̂l,m,i. (8)

B. Latency and CVaR Estimation

As given in (7) and (8), BSnode n learns which links (n, l)
to activate by building estimates of the expected latency T̂n,l
associated to each of them. Let Kn,l,i =

∑i
j=1 xn,l,i be the

number of times link (n, l) has been activated up to time slot
i. T̂n,l is updated using the sample mean as

T̂n,l,i+1 =
Kn,l,iT̂n,l,i + rn,i

Kn,l,i + 1
, (9)

where the subindex i is introduced to emphasize that the
estimate is built over time. The CVaR definition given in (3)
requires Tn,d which, as discussed before, is known a priori.
Hence, we leverage the non-parametric estimator derived in
[26] to estimate the CVaR of a link (n, l). To this aim, let
r̃1n, . . . , r̃

Kn,l,i
n be all the rewards received up to time i ordered

in a descending fashion, i.e., r̃1n ≥ · · · ≥ r̃
Kn,l,i
n . The estimated

ĈVaRi(n, l) at time slot i is calculated as [26]

ĈVaRi(n, l) =
1

dαKn,l,ie

dαKn,l,ie∑
k=1

r̃kn. (10)

Using the estimates in (9) and (10), BSnode computes the
value Qn(an,i = (n, l)) associated to the selected action an ∈
An, and defined as

Qn(an,i) = T̂n.l,i + ηĈVaRi(n, l). (11)

Note that (11) is aligned with the objective function in (4a).
Actions with an associated low value Qn(an,i) lead to lower
end-to-end latency and a low expected value on its tail.

C. Consensus

All the BSnode independently decide which links to activate
based on their estimates of the end-to-end latency. As a con-
sequence, conflicting actions may be encountered. A conflict
occurs when two or more BSnode n and m aim at activating
a link to a common BS l, l ∈ V , i.e., xn,l,i = xm,l,i = 1. We
reach consensus by first retrieving the buffer and congestion
status of the various IAB-nodes, leveraging the related BAP
layer functionality [1, Sec. 4.7.3]. With this information at

Algorithm 1 Safehaul algorithm at each BSnode
Input: α, η, An

1: Initialize T̂n,l, ĈVaR(n, l), and Qn for all (n, l) ∈ E1
2: Set counters Kn,l = 0 and initial action an,1 = (n, n)
3: for every time slot i = 1, ..., I do
4: perform action an,i and observe reward rn,i . Eq. (7)
5: increase counter Kn,l by one
6: update latency estimate T̂n,l . Eq: (9)
7: update CVaR estimate ĈVaR(n, l) . Eq: (10)
8: update Qn(an,i) . Eq: (11)
9: select next action an,i+1 using ε-greedy . Eq. (12)

10: share an,i+1, tqn,i and Bn,i with the others BSnode

11: if required, update an,i+1 to reach consensus . Sec. IV-C
12: end for

hand, conflicts are resolved by prioritizing the transmission
of the BSnode with the larger queuing times tqn,i and loads
Bn,i. Then, we let the IAB-donor mark as unavailable the
time resources of the remaining base stations with conflicting
scheduling decisions [1, Sec. 10.9]. Note that as the learning
is performed at each BSnode, only the link activation decision
and the weighted sum of tqn,i and Bn,i are transmitted. Thus,
low communication overhead is maintained.

D. Implementation of Safehaul

Here, we describe how the above-mentioned solution can
be implemented in a real system. Specifically, we elaborate
on the required inputs and the interactions among the different
entities as well as the pseudo-code of Safehaul, see Alg. 1.

Safehaul is executed at each BSnode n. For its implemen-
tation, the network operator provides α, η and An as an
input. α is the risk level parameter that influences the level
of reliability achieved in the system. Similarly, η controls the
impact the minimization of the latency in the α-worst cases
has on the overall performance. Both parameters, α and η, are
set by the network operator depending on its own reliability
requirements. The set An depends on the considered network
topology which is perfectly known by the network operator.
The set An includes all links (n, l) and (l, n) to and from the
first-hop neighbors of BSnode n.

The execution of Safehaul begins with the initialization of
the latency and CVaR estimates, and the values Q of the
actions in An. Additionally, the counters Kn,l, that support
the calculations of T̂n,l and ĈVaR(n, l), are initialized for all
links in An (line 1-2). These parameters are updated and learnt
throughout the execution of Safehaul. At time slot t = 0, no
transmission has occurred and Bn,0 = 0. Hence, BSnode n
remains idle for the first time slot i = 1, i.e., an,1 = (n, n)
(line 2). Next, and in all the subsequent time slots i ∈ [1, I],
the selected action is performed and the corresponding reward
is obtained (line 4). If BSnode n transmits in time slot i, i.e.,
an,i = (n, l), the reward rn,i is sent by the receiving BS
l through the control channel. If an,i = (l, n), the reward
rn,i depends, as given in (7), only on the current estimates at
BSnode n and the status of its buffer Bn,i. With the observed
reward rn,i, the counter for action an,i is increased and the
latency and CVaR estimates are updated (lines 5-7). Using
the new estimates (lines 6 and 7), the value Q(an,i) of the



performed action an,i is updated (line 8). The next action
an,i+1 is then selected according to ε-greedy (line 9). ε-greedy
is a well-known method to balance the exploitation of links
with estimated low latency, and the exploration of unknown
but potentially better ones. In ε-greedy a random action an,i+1

from the set An,i is selected with probability ε ∈ [0, 1]. With
probability (1− ε), the action that yields the estimated lowest
value is chosen, i.e.,

an,i+1 =

randomly selected action from An,i, if x ≤ ε
argmax
bn∈An,i

Qn(bn), if x > ε,

(12)
where x is a sample taken from a uniform distribution in the
interval [0, 1]. Once the action an,i+1 is selected, it is shared
with other BSnode in the network along with tqn,i and Bn,i
(line 10). As described in Section IV-C, this goes through
the control channel. If conflicts arise, consensus is reached by
prioritizing the transmission of BSnode with the largest loads
and queuing times (line 11).

The regret of Safehaul is defined as the expected loss caused
by the fact that the optimal action is not always selected
[27]. For brevity, we omit the regret analysis of Safehaul.
Nevertheless, a regret bound can be derived following an
approach similar to the work in [28] but including the ε-greedy
considerations [27]. Moreover, the bound should account for
the fact that the probability of not selecting an optimal action
also depends on the actions of the other BSsnode.

V. SIMULATION SETUP

Given the lack of access to actual 5G (and beyond) network
deployments, prior works mostly rely on home-grown simu-
lators for performance evaluation. Although a valid approach,
these simulators often cannot fully capture the real network
dynamics, introducing strong assumptions in the physical
and/or the upper layers of the protocol stack. Until very
recently, the most complete simulator for IAB networks was
a system-level simulator [29] developed as an extension of
the ns-3 mmWave module [30]. Despite accurate modeling of
the IAB protocol stack, it is currently behind the latest IAB
specifications1. Moreover, the ns-3 IAB extension is unsuitable
for large simulations with hundreds of nodes due to reliance
on an older version of the mmWave module. Therefore, in
our work we opt for Sionna [20], which is an open-source
GPU-accelerated toolkit based on TensorFlow. The tensor-
based implementation supports the native integration of neural
networks and prototyping complex communication systems.

However, unlike the aforementioned ns-3 module, Sionna
is a physical layer-focused simulator that does not explicitly
model 5G networks, thus lacking the characterization of the
5G-NR upper-layer protocol stack. Hence, we extend Sionna
by including the system-level functionalities such as MAC-
level scheduling and RLC-level buffering. Furthermore, since
Sionna exhibits slight differences compared to the 5G-NR

1For instance due to the assumption of layer-3 (instead of layer-2) relaying
at the IAB-nodes which was based on a draft version of the TR 38.874 [31].
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Fig. 2: Schematic of the hierarchical beam management procedure. First, the
general direction is estimated using wide beams (top). Then, the search is
refined using the narrow beams codebook.

physical layer, we extend Sionna’s physical layer model [20]
with the 5G-NR procedures. All these contributions will be
made publicly available upon publication of this article. In the
following, we describe the details of our extensions.

A. Extensions to Sionna’s physical layer module

In this section, we describe the physical layer modification
that were necessary to evaluate IAB scenarios using Sionna.

1) Codebook-based Beamforming: Sionna’s native beam-
forming only supports Zero-Forcing (ZF) pre-coding in down-
link. Therefore, as a first step, we extend Sionna by im-
plementing an NR-like codebook-based analog beamforming
both at the transmitter and at the receiver. Specifically, we
assume that the beamforming vectors at the transmitter wtx
and at the receiver wrx are a pair of codewords selected
from a predefined codebook. The codebook is computed by
defining a set of beam directions {ωn,m} which scans a given
angular sector with a fixed beamwidth. The steering vector
an,m corresponding to direction ωn,mcan be computed as:

an,m=
[
1,...,ej

2π
λ d(iH sinαn sinβm+iV cosβm),...,

ej
2π
λ d((NH−1)sinαn sinβm+(NV −1)cosβm)

]T
,

(13)

where NH and NV are the number of horizontal and vertical
antenna elements, respectively. The horizontal and vertical
index of a radiating element is denoted by iH ∈ [0, NH ] and
iV ∈ [0, NV ], respectively. αn and βm represent the azimuth
and elevation angles of ωn,m. Next, we define the codebook
as the set {

(√
NHNV

)−1
an,m}.

In line with the 5G-NR beam management procedure [32],
we assume the lack of complete channel knowledge, i.e.,
the communication endpoints do not know the corresponding
channel matrix. Accordingly, an exhaustive search is con-
ducted to identify the best pair of codewords resulting in
the highest Signal to Interference plus Noise Ratio (SINR).
Specifically, we leverage a hierarchical search [33], in which
the communication pairs first perform a wide-beam search
(a.k.a. sector-level sweep) in which the transmitter and receiver
approximate the direction of communication, see Fig. 2. Next,
the beamforming direction is fine-tuned through a beam refine-
ment procedure going through a codebook with narrow beams.
Consequently, we employ two types of codebooks, one with
wide beams for sector sweep and another with narrow beams
for beam refinement.
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Fig. 3: Overall design of our Sionna’s extension. The red blocks represent our
additions to the baseline simulator, i.e., Sionna [20].

2) SINR Computations: Since Sionna does not natively
calculate the SINR, we add this functionality to the simulator
to better model the impact of interference in our simulations.
We compute SINR experienced by Transport Blocks (TBs)
by combining the power of the intended signal with that of
the interferers and the thermal noise. Specifically, we first
compute the power Pi of the intended signal at receiver i over
frequency f and at time slot t . Then, we obtain the overall
interference power by leveraging the superposition principle
and summing the received power from all other interfering
base stations Pk(t, f) where k ∈ N and k 6= i . For the
purposes of this computation, we assume that each interferer
employs the beamforming vector yielding the highest SINR
towards its intended destination. Similarly, the transmitter
and receiver use the beamforming configuration estimated
via the hierarchical search procedure. Finally, the SINR is
γi(t, f) = Pi(t,f)∑

i∈N,k 6=i
Pk(t,f)+σ(t,f)

where σ(t, f) is the thermal

noise at the receiver.

B. System-level extensions to Sionna

As mentioned, Sionna is mainly a physical layer simulator.
However, to get closer to IAB networks as specified in Rel.
17, we have extended Sionna by implementing a selection of
system-level features. To such end, we introduced a discrete-
event network simulator for modeling IAB networks. This
system-level extension operates atop Sionna and provides
basic functionality such as a Medium Access Control (MAC)-
level scheduler, layer-2 buffers, and data flow and path se-
lection mechanisms. Our simulator, as depicted in Fig. 3,
generates a variety of system-level KPIs such as latency,
throughput, and packet drop rate.

1) Data Flow and buffer: 3GPP has opted for a layer 2-
relaying architecture for IAB-nodes where hop-by-hop Radio
Link Control (RLC) channels are established. This enables
retransmissions to take place just over the afflicted hops, thus
preventing the need for traversing the whole route from the
IAB-donor whenever a physical layer TB is not decoded.
Consequently, this design results in a more efficient recov-
ery from transmission failures and reduces buffering at the
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Fig. 4: Locations of the 223 BSnode and BSdonor in Manhattan, NYC.

communication endpoints [34]. To mimic this architecture,
we have implemented RLC-like buffers at each base station.
Specifically, each IAB-node features layer-2 buffers for both
receiving and transmitting packets. For instance, the data flow
for an uplink packet is the following. The User Equipment
(UE) generates packets and sends a transmission request to
the base station. Consequently, the scheduler allocates OFDM
symbols for this transmission, which is eventually received and
stored at the RX buffer of its Distributed Unit (DU). Next, the
packet is placed into the TX buffer to be forwarded to the
suitable next hop IAB-nodes. This procedure is repeated until
the packet crosses all the wireless-backhaul hops and reaches
the IAB-donor. Note that the packet can be dropped due to a
violation of latency constraints or interference.

2) Backhaul Adaptation Protocol: To manage routing
within the wireless-backhauled network, the 3GPP introduced
the BAP, i.e., an adaptation layer above RLC which is re-
sponsible for packet forwarding between the IAB-donor and
the access IAB-nodes [35]. Our simulator mimics this by
associating each IAB-node to a unique BAP ID. Moreover, we
append a BAP routing ID to each packet at its entry point in
the Radio Access Network (RAN) (i.e., the IAB-donor and the
UEs for DL and UL data, respectively). Then, this identifier
is used to discern the (possibly multiple) routes toward the
packet’s intended destination [35]. The choice of the specific
route is managed by Safehaul.

3) Scheduler: Finally, we implement a MAC-level sched-
uler which operates in a Time Division Multiple Access
(TDMA) mode. The scheduler periodically allocates the time
resources to backhaul or access transmissions in a Round-
Robin fashion. Specifically, each cell first estimates the num-
ber of OFDM symbols needed by each data flow by exam-
ining the corresponding buffer. Then, the subframe’s OFDM
symbols are equally allocated to the users. If a user requires
fewer symbols to transmit its complete buffer, the excess
symbols (the difference between the available slot length and
the needed slot length) are dispersed to the other active users.

VI. PERFORMANCE EVALUATION

In our simulations, we consider a realistic cellular base sta-
tion deployment in Manhattan, New York City2. Specifically,

2The locations correspond to the network of T-Mobile, as it has the largest
deployment among the operators.
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Fig. 5: Average network performance for 100 UEs and 80 Mbps per-UE source rate (Scenario 1).

TABLE I: Simulation parameters.

Parameter Value

Carrier frequency and bandwidth 28 GHz and 400 MHz
IAB RF chains 2 (1 access + 1 backhaul)
Pathloss model UMi-Street Canyon [36]
Number of BSnode N 223
Source rate {40, 80} Mbps
IAB Backhaul and access antenna array 8H×8V and 4H×4V
UE antenna array 4H×4V
IAB and UE height 15 m and 1.5 m
IAB antenna gain 33 dB
Noise power 10 dB
Risk level α 0.1
Reliability weight factor η 1

we collect the locations of N = 223 5G-NR base stations
in an area of 15 Km2 as depicted in Fig. 4. The detailed
simulation parameters are provided in Table I. We used the
channel model outlined by 3GPP in TR 38.901 [36], which
provides a statistical channel model for 0.5-100 GHz, and
analyzed the "Urban Micro (UMi)-StreetCanyon" scenario.

Benchmarks. To provide better insights on the performance
of Safehaul, we replicate two approaches from the state of
the art: (i) Scalable and Robust Self-backhauling Solution
(SCAROS), a learning-based approach that minimizes the
average latency in the network [16], and (ii) Maximum
Local Rate (MLR), a greedy approach aiming to maximize
throughput by selecting the links with the highest data rate.

Our evaluation consists of four scenarios studying the
convergence of the algorithms to a steady state, the number of
IAB-nodes, the number of IAB-donors, and the impact of risk
aversion. When demonstrating the results, we show the average
throughput, latency, and packet drop rate per UE. Furthermore,
we show the statistical variance of the obtained results using
candlesticks which include the max, min, mean, and 10 and
90 percentiles of the achieved performance.

A. Scenario 1: Average Network Performance

Analyzing the performance of the algorithms as a function
of time is crucial to determine the convergence speed of the
learning-based techniques, i.e., Safehaul and SCAROS. Hence,
in Fig. 5 we show the average network performance over time
for three metrics: latency, throughput, and packet drop rate.

In Fig. 5a, we can observe that Safehaul rapidly converges
to an average latency of approximately 8.6 ms which is 12.2%
and 43.4% lower than the latency of SCAROS and MLR,
respectively. The high performance of Safehaul stems from
the joint minimization of the average latency and the expected
value of its tail loss, which results in avoiding risky situations
where latency goes beyond Tmax. This is not the case for
SCAROS where we observe a high peak in the latency before
convergence, i.e., in between zero and 1000 ms. It is exactly
the avoidance of such transients in Safehaul that leads to
higher reliability in the system. The reliability offered by
Safehaul allows operators to deploy self-backhauling in an
online fashion and without disrupting the network operation.
Moreover, it protects the networks from the transients that may
arise from changes in the network topology. The performance
of MLR is constant throughout the simulation, as it is not
designed as an adaptive algorithm.

Figure 5b shows that the risk-aversion capabilities of Safe-
haul have no negative impact on the average throughput in the
network. The performance of Safehaul is comparable to that
of SCAROS, approximately 79.3 Mbps, and 11.7% larger than
the performance of MLR.

The performance shown in Figure 5c is consistent with the
behaviour observed in Figure 5a. As Safehaul additionally
minimizes the α-worst latency, it achieves the lowest packet
drop rate, compared to the reference schemes, namely, 16.6%
and 25.0% lower than SCAROS and MLR, respectively.

B. Scenario 2: Impact of Network Size

In Fig. 6 we evaluate the reliability of the three considered
approaches for different network sizes. Specifically, we vary
the number of BSnode starting from 25 up to 100. At the
same time, we increase the load in the network by increasing
the number of UEs. From the figures, we can clearly see that
Safehaul consistently achieves a lower variation compared to
the reference schemes. This verifies that Safehaul achieves the
intended optimization goal, i.e., the joint minimization of the
average performance and the worst-case losses.

Fig. 6a shows that Safehaul is able to maintain an al-
most constant latency as the number of BSnode increases.
Specifically, the variation of latency with Safehaul is 56.1%
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Fig. 6: Network performance for {25, 50, 75, 100, 200} IAB-nodes and 40 Mbps per-UE source rate (Scenario 2).
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Fig. 7: Network performance for 100 UEs and 40 Mbps per-UE source rate, versus the number of IAB-donors (Scenario 3).

and 71.4% less than SCAROS and MLR , respectively. Fur-
thermore, Safehaul achieves 11.1% and 43.2% lower latency
compared to SCAROS and MLR. MLR’s high variance is due
to a lack of adaptation capabilities, hence its latency variance
is governed by the network’s underlying random processes.

As shown in Fig. 6b, the average throughput of the learning-
based approaches Safehaul and SCAROS remains constant
for the different values of network size. However, the lowest
variation in the throughput is achieved by Safehaul, i.e., only
0.40 compared to 0.51 and 0.79 in the benchmark schemes.
Such behaviour corroborates Safehaul’s reliability capabilities.

The packet drop rate for different number of IAB-nodes is
shown in Fig. 6c. Safehaul not only consistently outperforms
the reference schemes, but also with the minimum variation
in the results (by at least 39.1% compared to benchmarks).
Considering the largest network size and load, i.e., 200 BSnode
and 400 UEs, Safehaul achieves 11.2% and 24.9% lower
packet drop rate compared to SCAROS and MLR, respectively.

C. Scenario 3: Impact of number of IAB-donors

Although the benchmark schemes do not support multi-
IAB-donors, Safehaul is designed to accommodate such sce-
narios. In Fig. 7, we investigate the impact of the number
of IAB-donors on Safehaul. Specifically, the network load is
constant in this scenario, i.e., the number of UEs is fixed.

We observe in Fig. 7a that the highest latency is experienced
when only one IAB-donor is present in the network. This

stems from the tributary effect of self-backhauling where
the traffic flows towards a central entity which itself can
become a bottleneck. As the number of IAB-donor increases,
the traffic flow is more evenly distributed, resulting in lower
latency. Specifically, from an average latency of 8.2 ms for
D = 1, to an average latency of 1.7 ms when D = 5. As
mentioned, since the load is constant in this scenario, the
average throughput remains also constant for all different
numbers of IAB-donors, see Fig. 7b. However we should
highlight that Safehaul’s learning speed is maintained for the
different values of D. This is an important design feature
of Safehaul because having more BSdonor means that the
number of paths a BSnode has to the core network increases
exponentially. From a learning perspective, such increment
implies a larger action set and a lower learning speed. Safehaul
avoids this problem by learning the average latency based on
the estimates of its neighbors and not on the complete paths to
the BSdonor. Finally, Fig. 7c shows that increasing the number
of BSsdonor significantly reduces the packet drops, which also
stems from a better distribution of traffic flows in the network
as observed in Fig. 7a.

D. Scenario 4: Impact of risk parameter α

The definition of losses in the tail of the latency distribution
is controlled by the risk level parameter α. Its impact on
the average latency is shown in Fig. 8, where an increasing
behaviour is observed for α ≤ 0.7. The lowest latency is
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achieved for α = 0.1, which corresponds to the most risk-
averse, and therefore the most reliable, case out of all the
considered ones. As α grows, the performance of Safehaul
tends to that of the risk-neutral case.

VII. RELATED WORK

Self-backhauling wireless networks have been studied in
different contexts. Ranging from the so-called Heterogeneous
Networks (HetNets) and IAB 5G New Radio (NR) systems, to
Cloud Radio Access Networks (C-RANs), each has considered
a different set of premises and optimization goals. In this
section, we review the related work in the context of basic
assumptions and their optimization goals. Furthermore, we
shed light on some of the common but perhaps unrealistic
assumptions which we refrain from in this article.

Ideal backhaul links. Numerous works assume either an
infinite or fixed capacity backhaul link. This is often motivated
due to the presence of a wired fiber link between the Small
Base Stations (SBSs) and the Macro Base Station (MBS) [3],
[5]–[7]. Indeed, most of these works consider a scenario where
a centralized Baseband Unit (BBU) is connected to several
Remote Radio Heads (RRHs), i.e., radios which lack signal
processing capabilities [3], [5], [6]. In particular, the authors
of [6] consider an even more complex scenario referred to
as F-RAN, i.e., a C-RAN where RRHs feature caching and
signal processing capabilities. However, in an IAB context it
is fundamental to consider limited-rate, time-varying backhaul
channels and to study the impact of such limitations on the
performance of the RAN.

Constrained topologies. It is often assumed that self-
backhauled networks have a specific topology. This assumption
usually simplifies the problem and makes it tractable and/or
solvable in polynomial time. For instance, the authors of [8],
[9], [12] assume a single-hop network where each SBS is
directly connected to the MBS. In [10], a k-ring deployment
is considered, i.e., a topology where a single IAB-donor
provides backhaul connectivity to k rings of IAB-nodes. Even
though this topology can be used to model networks with
arbitrary depth, it maintains a symmetric load for each node,
an assumption which generally does not hold in real networks.
In fact, the 3GPP does not impose any limits on the number
of IAB-nodes which can be connected to a given IAB-donor,

nor does it set an upper bound on the number of wireless hops
from the latter to other wireless-backhauled base stations [22].
Accordingly, in our problem formulation we consider IAB
networks with an arbitrary number of nodes and an arbitrary
maximum wireless hops between MBSs and SBSs.

Simplistic traffic models. Some works assume either a
full buffer traffic model and/or impose flow conservation
constraints. In particular, the authors of [7], [37] consider
systems where the capacity of each link can always be fully
exploited thanks to the presence of infinite data to transmit at
each node. However, in actual IAB deployments the presence
of packets at the MBSs and SBSs is conditioned on the status
of their RLC buffers and, in turn, on the previous scheduling
decisions. Moreover, packets can actually be buffered at the
intermediate nodes, thus preventing the need for transmitting
a given packet in consecutive time instants along the whole
route from the IAB-donor to the UEs (or vice versa).

Optimization goals. The works in the literature focus on
different optimization goals. Therefore, they prioritize differ-
ent network metrics. For instance, the authors of [38] aim
to optimize the beam alignment between MBSs and SBSs.
Instead, the work of [4] aims to compute the optimal user-
to-base-station association. However, they neglect backhaul
associations and focus on the access only. In [4], [8], [37],
[39] the objective function is a function of the users data-
rate. In particular, the authors of [37] optimize the max-min
user throughput, arguing that such a metric better captures the
performance of the bottleneck links. In [15], the average rate
of each link is maximized under bounded delay constraint.
In our work, we focus on reliability by minimizing not only
the average end-to-end delay, but also the expected value of
the worst-case performance. The work closest to this article
is SCAROS [16], a learning-based latency-aware scheme
for resource allocation and path selection in self-backhauled
networks. Assuming a single IAB-donor, the authors study
arbitrary multi-tier IAB networks considering the impact of
interference and network dynamics. In contrast to this work,
we aim at enhancing the reliability of the IAB-network by
jointly minimizing the average end-to-end delay and its ex-
pected tail loss. Moreover, considering realistic deployments,
our proposed Safehaul supports networks with an arbitrary
number of IAB-donors.

VIII. CONCLUSION

In this work, we proposed the first reliability-focused sche-
duling and path selection algorithm for IAB mmWave net-
works. Via extensive simulations, we illustrated that our RL-
based solution can cope with the network dynamics including
channel, interference, and load. Furthermore, we demonstrated
that Safehaul not only exhibits highly reliable performance
in the presence of the above-mentioned network dynamics
but also, it outperforms the benchmark schemes in terms of
throughput, latency and packet-drop rate. The reliability of
Safehaul stems from the joint minimization of the average
latency and the expected value of its tail losses. The latter is
achieved by leveraging CVaR as a risk metric.



Reliability is a highly under-explored topic that definitely
deserves more investigation. Some interesting research direc-
tions are the maximization of reliability under the assump-
tion of statistical system knowledge, or the evaluation of
the network’s reliability when the functionality of the BAP
layer is compromised. Furthermore, our system-level extension
to Sionna can be further developed to support an arbitrary
number of RF chains and in-band backhauling, allowing more
extensive investigation of IAB protocols and architecture.
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