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Abstract—Federated learning (FL) enables geographically dis-
persed edge devices (i.e., clients) to learn a global model without
sharing the local datasets, where each client performs gradient
descent with its local data and uploads the gradients to a
central server to update the global model. However, FL faces
massive communication overhead resulted from uploading the
gradients in each training round. To address this problem,
most existing research compresses the gradients with fixed and
unified quantization for all the clients, which neither seeks
adaptive quantization due to the varying gradient norms at
different rounds, nor exploits the heterogeneity of the clients
to accelerate FL. In this paper, we propose a novel adaptive
and heterogeneous gradient quantization algorithm (AdaGQ) for
FL to minimize the wall-clock training time from two aspects:
i) adaptive quantization which exploits the change of gradient
norm to adjust the quantization resolution in each training
round; and ii) heterogeneous quantization which assigns lower
quantization resolution to slow clients to align their training time
with other clients to mitigate the communication bottleneck, and
higher quantization resolution to fast clients to achieve a better
communication efficiency and accuracy tradeoff. Evaluations
based on various models and datasets validate the benefits
of AdaGQ, reducing the total training time by up to 52.1%
compared to baseline algorithms (e.g., FedAvg, QSGD).

I. INTRODUCTION

Intelligent applications based on deep neural networks
(DNN) have been developed for edge devices such as Internet
of things (IoTs) and smart mobile devices over the past years
[1], [2]. These applications rely heavily on the knowledge
obtained from the big data, and they generate massive amounts
of data in return. The most straightforward way to utilize these
locally generated data is to upload the data to the cloud and
train the DNN models in the cloud [3], [4]. However, sharing
data is challenging due to the increasing privacy concerns.

Federated learning (FL) [5], [6] emerges as a solution to
privacy-preserving machine learning. In FL, multiple devices
train a shared global model without uploading their data to the
central server. Specifically, in each round every participating
device (i.e., client) does the following. First, it downloads
the latest model from the central server. Next, it updates the
downloaded model based on its local data using stochastic
gradient descent (SGD). Finally, all clients upload their model
updates to the central server, where the model updates are
aggregated to form a new global model. These steps are
repeated until a certain convergence criterion is satisfied.

One important research problem in FL is to address the
massive communication overhead resulted from uploading
the gradients and downloading in each training round. The
model updates (i.e., gradients) can be in the range from
megabytes to gigabytes for modern DNN architectures with
millions of parameters [7]. Thus, communication will become
a bottleneck when applying FL to edge devices where the
wireless bandwidth is limited. Existing approaches addressing
the communication overhead in FL fall into two folds: i) to
reduce the amount of communication by allowing each client
to perform multiple local updates between two communication
(aggregation) rounds [8], [9]. While the number of communi-
cation rounds is reduced, the data size in each communication
round is still very high; and ii) to mitigate the communication
overhead by using gradient compression [10]–[12], reducing
the amount of data transmitted in each training round.

One widely used gradient compression method is gradient
quantization, where the gradient is represented by a number of
bits which can determine the number of quantization levels and
affect the performance of the gradient quantization algorithms.
With fewer number of quantization levels (i.e., low quantiza-
tion resolution) used, the quantization algorithm uses fewer
number of bits and then reduces the communication overhead
more aggressively. However, it also introduces quantization
error in the uploaded gradients, and thus may require more
training rounds to converge. With higher quantization resolu-
tion, there will be less quantization error, but more data has
to be transmitted in each round, increasing the accumulated
training time. Thus, the quantization resolution should be
carefully determined to minimize the wall-clock training time.

Existing gradient quantization algorithms [11]–[13] rely on
fixed and pre-determined quantization throughout the training
process. However, different FL task has different characteris-
tics in terms of convergence time, communication cost and
network condition, etc., and then it makes pre-determined
quantization less effective because the optimal quantization
resolution at different time may be different. For example,
based on our measurements, the gradient value has large
variations during the training process, and thus we should
adaptively adjust the quantization based on the training rounds.

Moreover, in mobile edge computing, different edge devices
have different communication resources and some of them
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only have limited wireless bandwidth. Such heterogeneity
makes fixed quantization less effective because the training
speed is bounded by the slowest client, thus leading to long
waiting time for other clients (i.e., straggler effects). Recent
work [14]–[18] studied FL under heterogeneous clients. For
example, [17], [18] addressed the straggler problem by de-
signing an asynchronous aggregation strategy where clients
do not wait for each other every round and simply run
independently so that the waiting time of faster clients is
reduced. Although asynchronous aggregation can reduce the
communication time, delaying gradients of the stragglers may
introduce errors, increase the number of training rounds or
even cause divergence in model training. We take a different
approach to address this problem by assigning fewer number
of quantization levels to the slow clients. In this way, the
slowest client will transmit less amount of data in each round,
and its transmission time can be reduced and aligned with
other clients, thus reducing the overall per-round training time.

To realize our ideas, in this paper, we propose an Adaptive
and Heterogeneous Gradient Quantization algorithm, namely
AdaGQ, which dynamically assigns different number of quan-
tization levels to different clients based on online learning to
minimize the wall-clock training time of FL. Specifically, the
proposed strategy includes two aspects. (i) The number of
quantization levels should be adaptive to the training process in
accordance with the gradient norm. Since the gradient norm
(indicating the upper bound of the gradient magnitude) has
large variations as the training proceeds, different numbers
of quantization levels are chosen based on the training round
to achieve better tradeoff between communication efficiency
and accuracy. (ii) The number of quantization levels should
adapt to the clients’ communication capability. Specifically,
slow clients (i.e., the clients with longer local training and
communication time) are assigned fewer number of quantiza-
tion levels to mitigate the delay of gradient aggregation at the
server; while fast clients are assigned more quantization levels
to maintain the accuracy achieved by the global model.

This paper has the following main contributions.
• Through extensive experiments, we identify that gradient

quantization should be adaptive to the training process
and the clients’ communication capability to reduce the
training time for heterogeneous clients.

• We design AdaGQ, an online learning based adaptive
and heterogeneous gradient quantization, to minimize the
wall-clock training time.

• We evaluate the proposed scheme through extensive ex-
periments with various datasets and deep learning models.
Evaluation results show that AdaGQ reduces the total
training time by 34.8%-52.1% compared to baselines.

II. BACKGROUND AND MOTIVATION

In FL, the goal of the training process is to find the
model parameters (weights) w that can minimize a loss
function L(w) := 1

D

∑D
h=1 lh(w), where lh(w) is the loss

of data sample h and D is the number of data samples.
In particular, we minimize L(w) using SGD algorithm, i.e.,

wk+1 = wk − ηkg(wk) for k ∈ {0, 1, · · · }, where g(wk)
denotes the stochastic gradients at iteration k, and ηk is the
step size at iteration k. In FL, the training data is spread
across a number of edge devices, and FL enables distributed
training without sharing data across these clients. Assume
there are n clients and a central aggregating server. Each client
i ∈ {1, · · · , n} has a dataset Di of size mi. In a typical FL
algorithm [9], [13], [19], the goal is to train a global model,
represented by the parameter vector w, which minimizes

min
w∈Rd

L(w) =

n∑
i=1

piLi(w), (1)

where Li(w) is the loss function at client i, and pi = mi∑n
i=1 mi

represents the fraction of data stored at client i.

A. Federated Learning with Gradient Quantization

In the conventional FedAvg [8], every client performs a
certain number of gradient descent steps locally at each round,
and then uploads the updated weights to the central server
followed by a global aggregation. This procedure is repeated
until the training converges. In quantized SDG [12], the
clients upload quantized gradients instead of model weights.
Formally, let g(w

(i)
k ) denote the stochastic gradient on the ith

client’s dataset Di at round k. To reduce the communication
cost at each round, every client sends quantized weight updates
(gradients) Q(g(w

(i)
k )) to the server, where Q(·) represents

a stochastic quantization function. Once the server receives
the quantized gradients from all clients, the aggregation is
performed to update the global model by Eq. (2):

wk+1 = wk − ηk
n∑

i=1

piQ(g(w
(i)
k )). (2)

We adopt the commonly used stochastic uniform quanti-
zation function (QSGD) Qs(·) [11], [12], where s ∈ N =
{1, 2, · · · } is the parameter that determines the compression
resolution, i.e., the number of quantization levels. Let v denote
the aligned gradients: v = [v1, · · · , vd] ∈ Rd with v 6= 0. The
jth dimension of v, vj , is quantized to be Qs(vj) as follows,

Qs(vj) = ||v||2 · sign(vj) · ζj(v, s), (3)

where ζj(v, s) is a random variable defined as

ζj(v, s) =

{
l/s, with probability (1− |vj |

||v||2
s+ l)

(l + 1)/s, otherwise.
(4)

Here, 0 ≤ l < s is an integer such that |vj |||v||2 ∈ [l/s, (l+1)/s].
Qs(v) is defined to be 0 if v = 0.

The idea of QSGD can be explained as follows. A gradient
vj consists of a sign bit and the absolute value |vj |. To quantize
|vj | ∈ [0, ||v||2], we divide the interval into s−1 bins of equal
length, with end points 0 = τ1 < τ2 < · · · < τs = ||v||2.
Given vj that belongs to a bin [τi, τi+1), the probability is
assigned to represent vj to be τi or τi+1 based on its relative
location inside the bin. That is, τi is chosen to represent vj
with probability p = 1−(vj−τi)/(τi+1−τi), and τi+1 is cho-
sen with probability 1− p (so that we have E[Qs(vj)] = vj).
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Fig. 1. Training process of ResNet-18 on Cifar-10.

Then, vj is represented by an end point which only needs
log2(s) + 1 bits (with the sign bit). Different from weight
quantization which quantizes the model weights, gradient
quantization compresses the gradients without changing the
number of bits to represent the model weights.

In QSGD based FL, the number of quantization levels (i.e.,
quantization resolution) is manually pre-defined, and shared
by all clients throughout the model training process, which
faces two issues: i) the gradient norm ||v||2 may change in
different rounds of the training process, leading to a vary-
ing interval [0, ||v||2]. However, the pre-defined quantization
fails to automatically adapt to different intervals; ii) clients
have heterogeneous communication resources, which creates
opportunities to minimize the total training time by assigning
different clients with different quantization resolutions.

Next, we will detail our motivation of adaptive gradient
quantization by inspecting the gradient norm during training.
We also explain how to assign different quantization resolu-
tions to heterogeneous clients to minimize the training time.

B. Motivations

In this section, we investigate the idea of adaptive gradient
quantization and heterogeneous gradient quantization. We
start with observing the gradient norm during the training
of ResNet-18 and GoogLeNet on the Cifar-10 dataset. As
shown in Fig. 1(a), the gradient norm has large variations
in training ResNet-18, i.e., with a rapid decrease in the
early rounds and mild decrease later on (similar observations
for GoogLeNet). Based on the aforementioned analysis of
QSGD, a larger gradient norm, e.g., the ||v||2 in the early
rounds, results in a wide value range of gradients. Thus, to
reduce the quantization error, more quantization levels (i.e.,
higher quantization resolution) should be used to represent the
gradient in the early training rounds.

On the other hand, a small gradient norm in later training
rounds suggests that the gradient has a small value range.
Then, fewer number of quantization levels will be able to
sufficiently represent the gradient with good precision. This
idea is supported by some other research [20], [21] that
highlights the importance of early training phases. More
importantly, low quantization resolution means less amount
of data to be uploaded to the server and thus reducing the
communication time, potentially reducing the total training
time. The above analysis motivates us to adaptively adjust
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Fig. 2. Different quantization strategies for heterogeneous edge devices.

the quantization resolution based on the gradient norm to
minimize the training time without compromising accuracy. To
validate this idea, we adjust the quantization resolution based
on the change of gradient norm, i.e., sk = sk−1 + log ||gk||

||gk−1|| ,
where sk denotes the quantization resolution of round k and
||gk|| denotes the gradient norm of round k, respectively.
Fig. 1(b) shows the accuracy in each communication round
when training ResNet-18 on Cifar-10 dataset with the above
adaptive quantization. We observe that adaptive quantization
achieves similar final accuracy as that achieved by always
using 8-bit quantization, higher than that by always using 2-
bit quantization. Thus, using lower quantization resolution at
later training stage may reduce the total training time (due to
less bits transmitted) without degrading the performance. We
also have similar observations for GoogLeNet, but not shown
due to space limitations.

To further reduce the training time, we study the heterogene-
ity of the edge devices. Given the heterogeneous communica-
tion capability of the edge devices (clients), the training time
depends on the slow clients with poor network conditions. To
mitigate such straggler problem, we investigate heterogeneous
gradient quantization strategies, which use less quantization
resolutions for slower clients. Specifically, we train ResNet-
18 on CIFAR-10 with four clients: three clients with data
transmission rate of 20 Mbps, and one client (straggler) with
data transmission rate of 5 Mbps. We evaluate the traditional
quantization strategy that uses 6-bit quantization for all clients,
and compare it with four heterogeneous quantization strategies
by letting the slowest client use 2-bit, 3-bit, 4-bit, and 5-bit
quantization, respectively.

Fig. 2(a) shows the total training time of different quan-
tization strategies, to reach the same accuracy of 85.0%
(near convergence). We observe that 3-bit, 4-bit and 5-bit
quantization strategies all outperform the traditional approach,
and the 4-bit quantization strategy has the lowest training
time. To find out how the heterogeneous quantization strategies
reduce the training time, we draw accuracy as a function of
training rounds for different strategies, as shown in Fig. 2(b).
From the figure, we observe that 2-bit quantization takes 76
communication rounds to reach the accuracy of 85%, while the
traditional quantization takes 51 rounds. However, in the 2-bit
quantization strategy, less quantization is used and each round
takes less time. As a result, it has similar accumulated time to
reach 85% accuracy as that of the traditional quantization (as



shown in Fig. 2(a)). Although the 4-bit quantization strategy
has 6 more rounds than the traditional quantization strategy,
it can significantly reduce the training time since each round
takes less time. In summary, we should consider both per-
round communication time and the number of communication
rounds when determining the quantization resolution for het-
erogeneous clients.

These evaluation results show the potential of using adaptive
and heterogeneous quantization to reduce the training time
without compromising the model accuracy. However, it is hard
to quantify the relationship between the quantization resolution
and the training time. For example, clients may have various
transmission rates and it is hard to know which clients are the
bottleneck at which time, and thus it is a challenge to assign
quantization resolutions to heterogeneous clients to minimize
the overall training time. In the next section, we propose
AdaGQ, an adaptive and heterogeneous gradient quantization
algorithm that exploits online learning to adaptively adjust the
quantization resolutions based on the gradient norms and the
local training and transmission time of the clients.

III. DESIGN OF ADAGQ

The main challenges of designing AdaGQ are: (1) How
to integrate gradient norm with the algorithm to minimize
the total training time. To address this challenge, AdaGQ
dynamically adjusts the number of quantization levels assigned
to the clients based on the observed change of gradient norm.
Specifically, when observing a larger gradient norm, AdaGQ
tends to increase the number of quantization levels to preserve
the precision of the gradients to reduce the number of training
rounds; while for a smaller gradient norm, AdaGQ assigns
fewer numbers of quantization levels to the clients to reduce
the communication time, and thus reducing the total training
time. (2) How to deal with the training time bottleneck brought
by the slowest clients (i.e., straggler effects). To address
this challenge, AdaGQ assigns different numbers of quanti-
zation levels to different clients based on their computation
and communication resources. Intuitively, slow clients (i.e.,
with less resources) are assigned relatively fewer number
of quantization levels to reduce the communication time to
mitigate the straggler effects, while fast clients are assigned
more quantization levels to reduce the precision loss due to
quantized gradients, and then to reduce the number of training
rounds. In the following, we first give an overview of AdaGQ,
and then present the details of AdaGQ.

A. Overview of AdaGQ

AdaGQ follows the system design of the state-of-the-art FL
system [6], [22] by adopting the adaptive and heterogeneous
quantization. Fig. 3 gives an overview of AdaGQ. In step 1,
the server sends clients the aggregated gradients collected in
the last round to synchronize the saved model parameters.
In step 2, the clients collect necessary inputs of the AdaGQ
algorithm, e.g., the losses achieved by the model when up-
dated by gradients of different quantization levels and their
corresponding training time, which are then sent to the server.

Server

Clients ① Send Aggregated gradients to clients

② Send collected information for AdaGQ to server

④ Send Number of quantization levels to clients

⑤ Send quantized gradients to server

③(b) Derive quantiza-

-tion levels by AdaGQ

③(a) Stochastic 

gradient decent

Time Time

…

Fig. 3. Overview of AdaGQ.

In step 3 (a), the clients apply stochastic gradient descent to
the updated model (with the aggregated gradients received in
step 1) and obtain the gradients. Meanwhile, in step 3 (b), the
server derives the number of quantization levels for each client
with the collected information in step 2. In step 4, the server
sends to each client its own number of quantization levels in
this round. Finally, each client quantizes the gradients derived
in step 3 (a) and sends them back to the server.

We emphasize the novel parts in the AdaGQ design with
bold fonts in Fig. 3. Note that AdaGQ collects the necessary
algorithm inputs in step 2 and follows an algorithm in step 3 to
derive quantization levels for all the clients. More specifically,
AdaGQ algorithm first determines the average quantization
level of all clients in the current round based on both the
loss decrease rate and the change of the gradient norm to
facilitate adaptive quantization. Then, AdaGQ derives the
quantization levels for heterogeneous clients. In the following,
we present the adaptive and heterogeneous quantization in
detail, respectively.

B. Adaptive Quantization

AdaGQ adpats the average number of quantization levels of
all clients to minimize the total training time in two steps: (i)
to maximize the loss decrease rate, and (ii) to calibrate the
adaptation in (i) based on the change of the gradient norm.

Let si,k denote the number of quantization levels used by
client i at round k, let sk denote the average number of
quantization levels at round k, i.e., sk = 1

n

∑n
i=1 si,k, where n

is the number of clients. Note that sk is introduced to assist the
design of adaptive quantization and it does not have to be an
integer. In the first step, we adapt sk to minimize the training
time by finding the optimal average number of quantization
level s∗k. Then, we optimize the loss decrease rate of each
round, defined as

Rk = (Lk−1 − Lk)/Tk−1,k, (5)

where Lk denotes the average loss of all clients achieved at the
end of round k, and Tk−1,k denotes the elapsed time between
the end of round (k − 1) and that of round k. Suppose R∗k is
the loss decrease rate achieved by s∗k, we first construct the
loss function

f(sk) = R∗k −Rk. (6)



and then explore the idea of online gradient descent based
algorithms to use the derivative of the loss function to indicate
the direction of the optimal solution, as shown below:

sk+1 = sk − λ∇f(sk), (7)

where λ is the step size (i.e., learning rate) to update sk,
and ∇f(sk) denotes the derivative of the loss function at Rk.
In practice, it is impossible to obtain the exact value of the
derivative ∇f(sk) due to the unknown form of f(sk). Thus,
we obtain the sign of the derivative ∇f(sk) which indicates
the update direction, instead of the exact value.

In order to obtain the sign of ∇f(sk), besides the current
used sk, we use another quantization level s′k, which is slightly
lower than sk, and record the loss decrease rate R′k achieved
by s′k. Then, the sign of ∇f(sk) is derived as

sign(∇f(sk)) = sign(
R′k −Rk

sk − s′k
). (8)

The details of obtaining R′k will be explained in Section III-D.
After obtaining the derivative sign, our algorithm updates sk
to the opposite direction of the sign. That is{

ŝk+1 = sk − λ1, if sign(∇f(sk)) = 1
ŝk+1 = sk + λ2, if sign(∇f(sk)) = −1.

(9)

where λ1 is set as half of sk so that ŝk+1 = sk/2 has one
fewer bit than sk, and λ2 is set as the same of sk so that
ŝk+1 = sk × 2 has one more bit than sk. Note that λ1 and
λ2 are not designed as constants, and AdaGQ will explore a
larger range of sk, by increasing or decreasing the number of
bits by 1 at a time, and quickly approach to a better setting.

We calibrate sk+1 with the change of the gradient norm.
We estimate the change of the gradient norm from round k
to (k + 1) by the observed gradient norm change from round
(k − 1) to k. We increase sk+1 when expecting a rise of the
gradient norm and decrease sk+1 otherwise. By denoting the
aggregated quantized gradients by the server at the end of
round k as gk and its norm as ||gk||, we calibrate ŝk+1 to be
sk+1 by,

sk+1 = ŝk+1 + λg(log2 ||gk|| − log2 ||gk−1||) (10)

where λg is the learning rate to weight gradient norm change.

C. Heterogeneous Quantization

The goal of heterogeneous quantization is to let the server
receive the gradients of each client at similar times, so that the
waiting time of fast clients and server is minimized. We first
derive the relationships of the number of quantization levels
among clients.

For a client i, its local time tri,k in the training round
k consists of its local training time tcpi,k spent on stochastic
gradient descent to derive new gradients, and the communi-
cation time tcmi,k spent on sending the quantized gradients to
the server. Let bi,k denote the number of bits for a quan-
tized gradient (referred to as quantization bit), which means
bi,k = blog2(si,k) + 1c. The server determines the number

of quantization level for each client in the round (k + 1) as
follows.

E(tri,k+1) = E(tcpi,k+1 + tcmi,k+1) ≈ E(tcpi,k+1) + bi,k+1 × E( P

rtrans
i,k+1

),

(11)
where P denotes the number of gradients which is a constant
(same for all clients in all rounds), and rtransi,k+1 denotes the
transmission rate of client i in round (k + 1). Then, our goal
is to make the expected local time of each client as similar as
possible, i.e., to satisfy the condition E(tr1,k+1) = E(tr2,k+1) =
· · · = E(trn,k+1). Note that we omit the time for the server
to broadcast the aggregated gradients to clients since it is
relatively small. By introducing Eq. (11) as the condition, for
any two clients i and j, their quantization bits bi,k+1 and bj,k+1

should satisfy the following:

bj,k+1 =
1

E( P
rtrans
j,k+1

)
(E(tcpi,k+1)− E(tcpj,k+1) + bi,k+1 × E( P

rtrans
i,k+1

))

(12)
Local training time and transmission rate estimation. In

practice, in order to assign bi,k+1 to every client, we have to
estimate the local training time E(tcpi,k+1) and the transmission
time coefficient E( P

rtrans
i,k+1

). Since the per-round local training
time of a client does not vary much, E(tcpi,k+1) is estimated by
the average of all the historical local training times spent by
client i, i.e., E(tcpi,k+1) = 1

k

∑k
k′=1 t

cp
i,k′ .

On the other hand, the transmission rate may have variations
over different training rounds (but usually smooth) and thus we
estimate E( P

rtrans
i,k+1

) based on the same transmission rate of last

round, i.e., E( P
rtrans
i,k+1

) ≈ P
rtrans
i,k

= tcmi,k /bi,k. Given the number
of quantization bits (levels) of one client (e.g., client i), the
number of quantization bits of other clients can be determined
as follows.

bj,k+1 =
bj,k
tcmj,k

(
1

k

k∑
k′=1

tcpi,k′ −
1

k

k−1∑
k′=1

tcpj,k′ + bi,k+1 ×
tcmi,k
bi,k

),

∀j ∈ {1, · · · , n}, j 6= i.

(13)

where bi,k+1 = blog2(si,k+1) + 1c, for i = 1, 2, ..., n, and
1
n

∑n
i si,k+1 = sk+1. Thus, we can derive bi,k+1 from Eq.

(13) and refine si,k+1 as (2bi,k+1 − 1). Once the server
determines the number of quantization levels for client i (i.e.,
si,k+1), it sends si,k+1 to client i as its quantization in round
(k + 1).

D. Implementation of AdaGQ

As an example, we describe how our algorithm runs in a
round (k+ 1). As shown in Fig. 4, at the beginning of round
(k + 1), the server broadcasts the aggregated gradients gk

obtained in the last round (k), and a parameter s′i,k (introduced
later) to the clients (step 1). Next, to estimate sign(∇f(sk)),
AdaGQ has to estimate Rk and R′k based on Eq.(8). Recall
that the loss decrease rate Rk is defined in Eq. (5). Thus,
AdaGQ needs to estimate the average loss Lk−1, Lk and the
round time Tk−1,k to derive Rk. In addition, AdaGQ needs to
estimate R′k, which is the loss decrease rate if s′k was used
instead of sk in the round k, requiring further estimation of L′k
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Fig. 4. Timeline in Round (k + 1) of AdaGQ.

and T ′k−1,k. Because these average losses and the round times
may not be easily measured, AdaGQ estimates their values
in step 2. After client i receives the aggregated gradients gk

from the server, it quantizes gk with si,k (i.e., the number
of quantization level assigned to client i with sk) and s′i,k
(i.e.,the number of quantization level assigned to client i with
s′k) quantization levels, respectively. Here s′k is an auxiliary
selected by the server by s′k = bsk/2c (i.e., one bit fewer than
sk), and s′i,k is derived from s′k following the same way in
which the server derived si,k from sk in round k. Suppose
the obtained quantized gradients are denoted as gs

i,k and gs′

i,k.
The client i computes two losses Li,k and L′i,k, which are
the losses obtained by the models updated with gs

i,k and gs′

i,k,
respectively. Next, client i uploads the calculated losses Li,k

and L′i,k, as well as the parameters downloading time tdown
i,k ,

local computation time tcpi,k and communication time tcmi,k in
round k, to the server. Then, the clients conduct a new round
of model training SGD (step 3 (a)).

After the server receives the information from all clients,
at the same time with step 3 (a), it needs to compute two
estimated loss decrease rates Rk and R′k (step 3 (b)). The
server first derives the estimation of the average loss Lk by
averaging the loss Li,k collected from all the clients, i.e.,
L̄k = 1

n

∑n
i=1 Li,k where n is the number of the clients.

Similarly, the server estimates L′k by L̄′k = 1
n

∑n
i=1 L

′
i,k. As

the server saves the status of model parameters and gradients
at the beginning of round k, it can easily obtain the real loss
Lk−1 for Eq. (5).

The server estimates the average time of training round k
when clients quantize the gradients under the condition of sk
and s′k, denoted as Tk−1,k and T ′k−1,k, respectively. Tk−1,k is
determined by the slowest client in round k, i.e., the maximum
time spent among all clients, and it is obtained by the server
as follows:

Tk−1,k = max
i
{tcpi,k + tcmi,k + tdown

i,k }+ tserverk . (14)

To estimate T ′k−1,k, the main challenge is to estimate the
transmission time t′cmi,k since the main change is the number
of bits for transmission. To bridge this gap, AdaGQ computes
the number of bits when using si,k by bi,k = blog2(si,k)c+1,
and that of using s′i,k by b′i,k = blog2(s′i,k)c + 1. Then the

transmission time t′cmi,k can be estimated as
b′i,k
bi,k

tcmi,k , and thus
AdaGQ estimates the training round time T ′k−1,k of using s′k−1
as follows.

T ′k−1,k = max
i
{tcpi,k+

blog2(s′i,k)c+ 1

blog2(si,k)c+ 1
tcmi,k+t

down
i,k }+tserverk . (15)

Then, the server estimates the two loss decrease rates Rk and
R′k with Eq. (5) as follows.

Rk = (Lk−1 − L̄k)/Tk−1,k, R′k = (Lk−1 − L̄′k)/T ′k−1,k
(16)

The server estimates the sign of ∇f(sk−1) following Eq. (8)
using Rk and R′k. To obtain sk+1, the next step in step 3 (b) is
to compute the gradient norm of the aggregated gradients (i.e.,
gk) and update sk+1 following Eq. (9) and Eq. (10). Finally,
the server derives bi,k+1 and si,k+1, for i = 1, 2, · · · , n, as
introduced in Section III-C.

After the client i receives si,k+1 from the server (step 4)
and finishes computing the new model gradients in the current
round, client i quantizes the newly computed gradients in
si,k+1 quantization levels. The quantized gradients are then
uploaded to the server (step 5). Finally, the server collects
all quantized gradients from all clients, and conducts a global
aggregation on these gradients to generate gk+1 in step 6.
The server also prepares s′k+1 as bsk+1/2c, derives s′i,k+1 for
i = 1, 2, ..., n, and sends it to the clients in the next round,
i.e., round (k + 2). The details are shown in Algorithm 2.

IV. PERFORMANCE EVALUATIONS

In this section, we evaluate AdaGQ against four baselines
under four federated learning (FL) tasks. We first introduce
the evaluation setup and then present the evaluation results of
all algorithms based on four FL tasks.

A. Evaluation Setup

We evaluate the proposed algorithm with non-iid data dis-
tribution at 20 clients on various learning tasks and compare
its performance with state-of-the-art algorithms.

Models and datasets. We consider two model architec-
tures with different parameter sizes: ResNet-18 [23] and
GoogLeNet [24]. ResNet-18 is a CNN network consisting of
residual blocks with over 11 million parameters. GoogLeNet is
a 22-layer CNN network without any skip connections, which
has over 6 million parameters. We evaluate AdaGQ by training
ResNet-18 and GoogLeNet on two benchmark datasets: Cifar-
10 [25] and FashionMNIST (FMNIST) [26]. The CIFAR-10
dataset consists of 50K color images as the training set and
10K color images for testing, where each image belongs to one
of the 10 classes. The FMNIST dataset contains 60K train and
10K test grey scale images of 10 different fashion items. Four
FL tasks are used in the evaluation, i.e., training ResNet-18 on
Cifar-10, training ResNet-18 on FMNIST, training GoogLeNet
on Cifar, and training GoogLeNet on FMNIST (all with cross-
entropy loss function).

Methods for comparison. We compare AdaGQ with the
following four baseline approaches.



Algorithm 1: The AdaGQ Algorithm
1 Initialization: global model weight w0; initial model

weights of clients wi,0 = w0, ∀i ∈ {1, · · · , n}; initial
number of quantization levels s0;
si,0 = s0, ∀i ∈ {1, · · · , n}.

2 for each k = 1, 2, · · · do
3 for each client i = 1, 2, · · · , n in parallel do
4 gk ← receives aggregated gradients from server;
5 wi,k+1 ← update model parameters with gk;
6 gs

i,k, gs′
i,k ← quantize gradients;

7 w′i, w
′′
i ← model parameters when updated with

gs
i,k, gs′

i,k;
8 Li,k, L′i,k ← losses of w′i and w′′i in local test set;
9 Send Li,k, L′i,k, tdown

i,k , tcpi,k, tcmi,k to server;
10 g(wi,k+1)← Perform SGD locally;
11 Receive si,k+1 from server;
12 Qsi,k+1(gi,k+1) ← Perform gradient quantization;
13 Upload Qsi,k+1(gi,k+1) to server;
14 record tdown

i,k+1, tcpi,k+1, tcmi,k+1 of this round;
15 end
16 The server does:
17 Send the aggregated gradients gk together with s′i,k,

i = 1, 2, · · · , n to the clients;
18 Receive Li,k, L′i,k, tdown

i,k+1, tcpi,k, tcmi,k from all clients;
19 Compute the expected loss decrease rate Rk, R′k

following Eq. (16);
20 Compute sk+1 following Eq. (10);
21 Compute si,k+1 following Eq. (13) and send

si,k+1, i = 1, 2, · · · , n to clients;
22 Gather Qsi,k+1(gi,k+1), i = 1, 2, · · · , n;
23 ||gk+1|| ← Computes gradient norm;
24 gk+1 ← Aggregate gradients by∑n

i=1 piQsi,k+1(gi,k+1);
25 Set s′k+1 as bsk+1/2c and derive s′i,k+1 for

i = 1, 2, ..., n based on Eq. (13).
26 end

(a) ResNet-18 on Cifar-10 (b) ResNet-18 on FMNIST

(c) GoogLeNet on Cifar-10 (d) GoogLeNet on FMNIST

Fig. 5. Accuracy v.s. accumulated time of AdaGQ compared to baselines.

• FedAvg [9]: clients communicate updated local parame-
ters with the central server after multiple epochs of local
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(a) ResNet-18 on Cifar-10
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(b) ResNet-18 on FMNIST
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(c) GoogLeNet on Cifar-10
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(d) GoogLeNet on FMNIST
Fig. 6. Total training time of AdaGQ compared to baselines.

training and download the aggregated global model. Here
the communication period is set to be 5 epochs.

• QSGD [12]: clients send quantized gradients to the
central server and download the aggregated global model
for every epoch. The number of quantization levels is set
to be 8-bit.

• Top-k [10] is a sparsification method that compresses
the communicated gradients by selecting the largest k
elements of the gradients. In this method, clients send
sparse gradients to the central server and download the
aggregated global model every epoch. We set k to be 10%
of the total parameters.

• FedPAQ [13] incorporates periodic averaging into
QSGD. In FedPAQ, models are trained multiple epochs
at clients and only periodically averaged at the server.
Clients quantize their updates before uploading. Similar
to FedAvg, we set the communication period to be 5
epochs and the number of quantization levels to be 8-
bit.

Hyperparameters. As the default configuration, we set the
local batch size to 32 and assign every client an equally
sized subset of the training data. For each client, the data
transmission rate is initialized to be a rate sampled randomly
between 5 Mbps and 20 Mbps by default. We set the initial
learning rates for both ResNet-18 and GoogLeNet to be 0.01
and the decay as 0.995. For AdaGQ, the initial number of
quantization levels is set to be 8-bit, which is relatively large
as suggested in [12]. The step size λg is set to 1.

Similar to the definition in [19], we use σd to denote the
level of non-iid data, which corresponds to the fraction of data
that only belongs to one class at each client. For example,
σd = 0.2 means that 20% of the data on one client belongs
to one class and the remaining 80% of the data uniformly
belongs to other classes. For the baselines in comparison, we
set their hyper-parameters (as shown above) the same as those
suggested in the corresponding literature.

We evaluate all the algorithms in terms of the total wall-
clock training time, including computation time, communica-
tion time and all extra overhead, when they reach the target
accuracy.



σd Method Avg.
rounds

Avg. data
uploaded Total time (Second)

0.2

FedAvg 13.25 6.52 (1×) 2190.89± 40.43 (1×)
QSGD 44.50 5.28 (1.23×) 1891.91± 58.21 (1.16×)
Top-k 40.75 3.92 (1.67×) 1568.57± 62.43 (1.40×)

FedPAQ 19.25 2.33 (2.80×) 2014.05± 46.32 (1.09×)
AdaGQ 43.25 3.43 (1.90×) 1033.50± 49.86 (2.12×)

0.5

FedAvg 14.25 7.01 (1×) 2359.41± 44.10 (1×)
QSGD 48.00 5.72 (1.23×) 2018.04 ± 61.20 (1.17×)
Top-k 45.75 4.40 (1.59×) 1759.86 ± 64.49 (1.34×)

FedPAQ 21.25 2.57 (2.73×) 2226.06± 47.24 (1.06×)
AdaGQ 47.00 3.73 (1.88×) 1129.60 ± 53.56 (2.09×)

0.8

FedAvg 20.25 9.96 (1×) 3370.59 ± 49.25 (1.26×)
QSGD 69.75 8.28 (1.20×) 2942.98 ± 65.32 (1.44×)
Top-k 60.50 5.82 (1.71×) 2295.50 ± 71.10 (1.85×)

FedPAQ 39.75 4.81 (2.07×) 4240.11 ± 48.20 (1×)
AdaGQ 68.00 5.40 (1.85×) 1634.31 ± 56.71 (2.59×)

TABLE I
RESNET-18 ON CIFAR-10 UNDER DIFFERENT σd

B. Comparison of the Algorithms

First, we compare the wall-clock time of AdaGQ with all
baseline algorithms when they reach the same accuracy (with
σd = 0.5). Fig. 5 shows the accuracy over accumulated time of
the four FL tasks respectively. We observe that AdaGQ takes
the least amount of time to reach the accuracy of 85.0% for
Cifar-10 and 87.0% for FMNIST, reducing the training time
by 29.1%-34.8% compared to the best baselines (i.e., Top-k
in Fig. 5(a)(c) or QSGD in Fig. 5(b)(d)), and 45.5%-52.1%
compared to FedAvg under the four FL tasks.

Among the baselines, FedPAQ spends longer time than most
of other baselines and fails to reach the target accuracy when
training GoogLeNet on Cifar-10 and FMNIST. This is because
FedPAQ incorporates both periodic averaging and gradient
quantization, which incur more information loss in each round
to delay the convergence. In addition, we observe that Top-
k and QSGD spend less training time than FedAvg, which
suggests that the gradient compression can save more time
than periodic averaging. By comparing AdaGQ with Top-k
and QSGD, we observe that AdaGQ outperforms Top-k and
QSGD consistently on all four FL tasks, which validates the
advantages of adaptive and heterogeneous quantization.

To analyze how AdaGQ reduces the total training time, we
separate the communication time and the computation time
for all the algorithms, as shown in Fig. 6. We observe that
AdaGQ spends similar computation time but significantly less
communication time compared to QSGD (the second best
algorithm). Because the computation time spent in each round
is similar for both algorithms, having similar computation
time indicates that both algorithms take similar numbers of
rounds to reach the target accuracy. However, AdaGQ saves
the communication time in each round, by adjusting the
number of quantization levels based on the adaptive and
heterogeneous quantization, and thus reduces the accumulated
wall-clock time. In addition, among all the baselines, we
observe that FedPAQ has the longest computation time, which
verifies that it takes more rounds to reach the same accuracy.
Though FedPAQ reduces the communication time of each
round aggressively, the increased number of training rounds

σd Method Avg.
rounds

Avg. data
uploaded Total time (Second)

0.2

FedAvg 19.75 5.46 (1×) 2538.56 ± 50.21 (1.31×)
QSGD 70.50 4.73 (1.15×) 2144.46 ± 43.24 (1.56×)
Top-k 78.50 4.21 (1.30×) 2187.28 ± 48.43 (1.53×)

FedPAQ 37.75 2.44 (2.24×) 3338.05 ± 52.42 (1×)
AdaGQ 69.25 2.39 (2.29×) 1295.97 ± 40.10 (2.58×)

0.5

FedAvg 23.00 6.36 (1×) 2919.34 ± 53.90 (1.35×)
QSGD 82.25 5.50 (1.16×) 2476.70 ± 46.32 (1.60×)
Top-k 85.50 4.61 (1.38×) 2411.62 ± 51.20 (1.64×)

FedPAQ 45.25 2.91 (2.19×) 3952.95 ± 58.23 (1×)
AdaGQ 82.75 2.86 (2.22×) 1558.92 ± 42.36 (2.54×)

0.8

FedAvg 28.25 7.81 (1.26×) 3553.98 ± 57.30 (1.31×)
QSGD 146.50 9.83 (1×) 4409.73 ± 50.54 (1.06×)
Top-k 122.50 6.57 (1.50×) 3421.14 ± 54.32 (1.36×)

FedPAQ 52.75 3.41 (2.88×) 4655.70 ± 63.47 (1×)
AdaGQ 142.25 4.90 (2.00×) 2667.07 ± 48.92 (1.75×)

TABLE II
GOOGLENET ON CIFAR-10 UNDER DIFFERENT σd

makes the total training time longer than others.

C. Different Levels of Non-IID Data

In this section, we evaluate AdaGQ under different lev-
els of non-iid data (i.e., different σd) against the baselines.
Table I and Table II show the results by training ResNet-
18 and GoogLeNet on Cifar-10, respectively. Owing to space
limitation, we do not present the results on FMNIST, which
share similar observations as those on Cifar-10. For each FL
task, we evaluate the algorithms in terms of the total number of
communication rounds, the average amount of uploaded data
per client (in GB), and the total time (in second) to reach the
same accuracy. We repeat the evaluation four times and report
the average of those metrics.

From the tables we observe that AdaGQ outperforms all
baseline algorithms in terms of total time under various
non-iid levels. Among the baselines, FedAvg has the fewest
communication rounds under all levels of non-iid data due to
the periodic averaging to reduce the communication frequency.
Here, we clarify that FedAvg (and also FedPAQ) has five
epochs in each round, so the total number of epochs is five
times the number of communication rounds. For example, in
Table I when σd = 0.5, FedAvg has about 71 (14.25 × 5)
epochs which imply a longer computation time than QSGD
(∼48), Top-k (∼46) and AdaGQ (∼47). Meanwhile, without
any gradient compression, the amount of data transmitted each
round in FedAvg is much higher than other algorithms, leading
to longer communication time and thus longer total time.
In addition, we observe that FedPAQ has the most training
epochs, which results in the longest computation time and a
long total time. An interesting observation is that, in Table I
with σd = 0.8, AdaGQ has more communication rounds than
Top-k (68.0 v.s. 60.5) and 5.92% less data uploaded, while
achieving 28.8% less total time. Such a big improvement
may be attributed to the heterogeneous quantization. Although
AdaGQ has 5.40GB data uploaded on average per client,
the slowest clients may have much less data to upload,
which greatly reduces the communication overhead caused by
waiting for the slowest clients in each round.



σr Method Avg.
rounds

Avg. data
uploaded Total time (Second)

2

FedAvg 14.25 7.13 (1×) 1742.20 ± 38.29 (1.11 ×)
QSGD 45.75 5.49 (1.30×) 1488.89 ± 55.32 (1.30 ×)
Top-k 46.00 4.47 (1.60×) 1232.43 ± 56.49 (1.57 ×)

FedPAQ 22.50 2.75 (2.60×) 1938.03 ± 51.35 (1×)
AdaGQ 43.75 4.07 (1.75×) 913.70 ± 47.24 (2.12×)

4

FedAvg 14.50 7.26 (1×) 2378.65± 43.16 (1×)
QSGD 47.50 5.64 (1.29×) 2176.67 ± 66.50 (1.09×)
Top-k 45.75 4.38 (1.66×) 1763.90 ± 67.82 (1.35×)

FedPAQ 23.00 2.81 (2.58×) 2269.42± 52.27 (1.05×)
AdaGQ 47.75 3.78 (1.92×) 1134.63 ± 55.08 (2.10 ×)

6

FedAvg 14.75 7.38 (1×) 2996.6 ± 48.23 (1×)
QSGD 48.00 5.84 (1.26×) 2889.67 ± 68.90 (1.04×)
Top-k 47.50 4.66 (1.58×) 2321.29 ± 66.35 (1.29×)

FedPAQ 23.25 2.75 (2.68×) 2514.09 ± 52.54 (1.19×)
AdaGQ 53.25 3.87 (1.91×) 1419.71 ± 61.34 (2.11×)

TABLE III
THE PERFORMANCE OF RESNET-18 ON CIFAR-10 UNDER DIFFERENT

LEVEL OF RESOURCE HETEROGENEITY

The non-iid level of data distribution affects the convergence
speed of training. A higher level of non-iid data decreases
the convergence speed in general, which results in more
communication rounds, thus more data uploaded and longer
total time. For example, the average number of communication
rounds of AdaGQ when training ResNet-18 on Cifar-10 with
non-iid levels of 0.2, 0.5, and 0.8 are 43.25, 47.00, and 68.00,
respectively, which is increasing. Similar conclusion is also
suggested by other algorithms.

D. Levels of Resource Heterogeneity

In this section, we evaluate AdaGQ under different levels
of resource heterogeneity. To isolate the effects of resource
heterogeneity, we fixed the dataset of each client with a non-
iid level to be 0.5 for each running of the experiment. We
define the resource heterogeneity level σr to be the ratio of
the data transmission rate of the fastest client and that of the
slowest client. We set the transmission rate of the fastest client
to be 20Mbps, and the slowest client to be 20/σr Mbps, and
the transmission rates of other clients are sampled randomly
between [20/σr, 20] Mbps. Similar to Section IV-C, we repeat
the evaluation four times and report the average of the metrics.
We only present the results for training ResNet-18 on Cifar-10
(in Table III), since other FL tasks share similar observations.

For FedAvg, QSGD, Top-k and FedPAQ, the resource het-
erogeneity does not affect the number of their communication
rounds and the amount of uploaded data, and only changes
the communication time of each round due to the delay of
aggregation caused by the slowest client. AdaGQ is able to
adapt the number of quantization levels based on the clients’
resources, thus reducing more total training time under higher
resource heterogeneity. For example, when training ResNet-18
on Cifar-10, AdaGQ reduces the total time by 38.8% compared
to Top-k (the second best algorithm) when σr = 6, which is
higher than 25.9% that is achieved when σr = 2.

V. RELATED WORK

Communication-efficient federated learning. FL has been
widely deployed for mobile and IoT devices. To reduce the

communication bottleneck, various methods have been pro-
posed which fall into two main categories. The first category
reduces the communication overhead by periodic averaging
which allows clients to perform multiple rounds of local
updates and upload the updates less frequently [8], [9], [17],
[27]. The second category of research solves this problem by
reducing the communication overhead of every communication
round [11], [12], [28]–[33]. In this category, a variety of
compression schemes have been proposed, including gradient
quantization [11], [12], [34], gradient sparsification [28], [30],
[35] and low-rank approximation [29]. Seide et al. [34]
replaced each weight with just the sign values. Similarly, Wen
et al. [11] proposed TernGrad which requires three numerical
levels {−1, 0, 1}, to aggressively reduce the communication
time. However, these two gradient quantization algorithms
lack flexibility in controlling the resolution of quantization.
Alistarh et al. [12] proposed quantized SGD (QSGD) that can
adjust the number of bits (i.e., quantization resolution) sent
per iteration to reduce the bandwidth cost, which provides
more flexibility. However, how to find the optimal quantization
resolution is not studied. Han et al. [30] proposed an adaptive
approach for gradient sparsification (i.e., Top-k) to achieve
the near-optimal communication and computation trade-off by
controlling the degree of gradient sparsity. Although they seek
to find the optimal degree of gradient sparsity, the optimal
value is assumed to be fixed. Besides, there are also some
literature combines the two directions by integrating gradient
quantization in periodic averaging [13]. Different from them,
we do not assume a fixed quantization resolution given the
variations of gradient value during the training process.

Federated learning under heterogeneous clients. Consid-
ering the heterogeneity of edge devices, FL under heteroge-
neous clients have also been studied in recent literature [14]–
[18], [36]–[39]. Some of them consider the data heterogeneity
across devices [14], [15], [37]. For example, Li et al. [14]
proposed a subnetwork based approach that aims to improve
inference accuracy by learning personalized models. Though
the proposed framework also reduces the communication cost,
the heterogeneous communication resources are not consid-
ered and hence the clients with poor communication conditions
can still be the bottleneck. In [38], Wang et al. proposed
an approach that identifies irrelevant updates of clients and
precludes the uploading of these updates to save bandwidth.
Considering the resource heterogeneity, the asynchronous ag-
gregation strategy has been designed to address the straggler
problem [17], [18], where the server aggregation does not have
to wait for all clients. Although the asynchronous aggregation
reduces the delay by stragglers, the delayed gradients of
stragglers introduce errors or even diverge the learning of
the model. Different from them, we propose heterogeneous
gradient quantization to reduce the communication time of
stragglers without compromising the model performance.

VI. CONCLUSIONS

In this paper, we proposed AdaGQ, an adaptive and hetero-
geneous gradient quantization algorithm for communication-



efficient federated learning for mobile edge devices. Based
on varying gradient norm during training, we proposed an
adaptive gradient quantization to seek the optimal quantization
resolution in an online manner to minimize the total training
time. We further designed heterogeneous gradient quantization
to align the training time of slow clients in each round with
others to mitigate the straggler effects. Evaluations based
on various models and datasets validate the effectiveness of
AdaGQ.

REFERENCES

[1] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile Edge
Computing: A Survey,” IEEE Internet of Things Journal, vol. 5, no. 1,
pp. 450–465, 2017.

[2] H. Liu and G. Cao, “Deep Learning Video Analytics Through Online
Learning Based Edge Computing,” IEEE Transactions on Wireless
Communications, vol. 21, no. 10, pp. 8193–8204, 2022.

[3] W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y.-C. Liang, Q. Yang,
D. Niyato, and C. Miao, “Federated Learning in Mobile Edge Networks:
A Comprehensive Survey,” IEEE Communications Surveys & Tutorials,
vol. 22, no. 3, pp. 2031–2063, 2020.

[4] H. Liu and G. Cao, “Deep Reinforcement Learning-Based Server
Selection for Mobile Edge Computing,” IEEE Transactions on Vehicular
Technology, vol. 70, no. 12, pp. 13 351–13 363, 2021.
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