<]
TUDelft

Delft University of Technology

Plug and Power
Fingerprinting USB Powered Peripherals via Power Side-channel

Spolaor, Riccardo; Liu, Hao; Turrin, Federico; Conti, Mauro; Cheng, Xiuzhen

DOI
10.1109/INFOCOM53939.2023.10229048

Publication date
2023

Document Version
Final published version

Published in
Proceedings of the INFOCOM 2023 - IEEE International Conference on Computer Communications

Citation (APA)

Spolaor, R., Liu, H., Turrin, F., Conti, M., & Cheng, X. (2023). Plug and Power: Fingerprinting USB Powered
Peripherals via Power Side-channel. In Proceedings of the INFOCOM 2023 - IEEE International Conference
on Computer Communications |EEE. https://doi.org/10.1109/INFOCOM53939.2023.10229048

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1109/INFOCOM53939.2023.10229048
https://doi.org/10.1109/INFOCOM53939.2023.10229048

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!’ - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

IEEE INFOCOM 2023 - IEEE Conference on Computer Communications | 979-8-3503-3414-2/23/$31.00 ©2023 IEEE | DOI: 10.1109/INFOCOMS53939.2023.10229048

Plug and Power: Fingerprinting USB Powered
Peripherals via Power Side-channel

Riccardo Spolaor®, Hao Liu*, Federico Turrin®, Mauro Contit¥, Xiuzhen Cheng*
* School of Computer Science and Technology, Shandong University, Qingdao, China.
t Department of Mathematics, University of Padua, Padua, Italy.
! Delft University of Technology, Delft, Netherlands.
Email: {rspolaor, xzcheng}@sdu.edu.cn, 202035137 @mail.sdu.edu.cn, {turrin, conti} @math.unipd.it

Abstract—The literature and the news regularly report cases
of exploiting Universal Serial Bus (USB) devices as attack tools
for malware injections and private data exfiltration. To protect
against such attacks, security researchers proposed different
solutions to verify the identity of a USB device via side-
channel information (e.g., timing or electromagnetic emission).
However, such solutions often make strong assumptions on the
measurement (e.g., electromagnetic interference-free area around
the device), on a device’s state (e.g., only at the boot or during
specific actions), or are limited to one particular type of USB
device (e.g., flash drive or input devices).

In this paper, we present PowerID, a novel method to fin-
gerprint USB peripherals based on their power consumption.
PowerID analyzes the power traces from a peripheral to infer
its identity and properties. We evaluate the effectiveness of our
method on an extensive power trace dataset collected from
82 USB peripherals, including 35 models and 8 types. Our
experimental results show that PowerID accurately recognizes
a peripheral type, model, activity, and identity.

Index Terms—USB Security, Power Side-Channel, USB periph-
erals, Hardware fingerprinting.

I. INTRODUCTION

Universal Serial Bus (USB) is the de-facto standard for the
connections of a broad range of peripheral devices with higher
speed transfer capability. The USB standard supports two main
functions: data transfer (e.g., between USB guest and host) and
power supply (e.g., smartphone charging). While these stan-
dards have been highly studied and improved over the years,
little importance was given to their security [1], [2]. Indeed,
the USB standard still lacks basic security practices such as
encryption and authentication [2]. This aspect has exposed the
USB ecosystem to many threats and exploitations [2].

On the one hand, the default trust on USB ports on a host
device (e.g., workstation, public charging station, power bank)
can be exploited by hackers to exfiltrate private information
from USB devices [3], such as smartphones, tablets, and
flash drives (i.e., host-to-guest attack). On the other hand,
an attacker can disguise a malicious USB peripheral [4], [2]
(i.e., guest-to-host attack) as a legitimate one to inject harm-
ful commands (BadUSB, Mousejack, Rubber Ducky) deploy
malware [5], [6], steal private user information (OMGCable,
BadUSB2.0), spy on a user (tiny microphone/camera, cotton-
mouth, GSM spy bug), or destroy host’s hardware (USBKill).
Hence, malicious USB peripherals can cause severe harm to
a host device if not promptly identified and blocked.

In recent years, several research works have investigated
the feasibility of fingerprinting USB devices to protect
host devices by relying on Physical Unclonable Functionss
(PUFs) [7], or side-channels such as timing [8], [9] and
electromagnetic emissions [10]. To the best of our knowledge,
no work in the literature considers Power Side-Channel (PSC)
information to fingerprint USB peripherals.

Using PSC information to fingerprint a USB peripheral has
two main advantages. First, a USB peripheral’s power traces
are extremely difficult to replicate due to the complexity and
specificity of its hardware components. Second, power traces
do not retain information about the content of USB packets.
Hence they preserve the confidentiality of the data exchanged
between the peripheral and the host.

This paper presents PowerID, a framework that profiles
USB peripherals from their power traces. PowerID leverages
time series analysis and machine learning techniques to fin-
gerprint the power trace related to a USB peripheral type
(e.g., webcam, flash drive, or keyboard) and its specific actions
(e.g., booting, writing on memory, or downloading via WiFi).
Hence, users can rely on PowerID to uniquely fingerprint
their peripherals and detect the connection of unauthorized
devices or illicit actions. Since PowerID only leverages PSC
information, it can be deployed on an external standalone
device, i.e., it does not require additional information from or
access to the host device. We develop PowerID framework and
evaluate its effectiveness on a large-scale dataset composed of
the power traces generated by distinct actions for a wide range
of USB peripherals. Our experimental results demonstrate that
PowerlD recognizes with high accuracy the peripheral type, its
specific model, and actions performed. Furthermore, we also
show that PowerID can effectively detect attack tools disguised
as a legitimate flash drive (e.g., BadUSB), thereby helping to
protect host devices against such threats.

We can summarize our contributions as follows:

« We present PowerID, the first framework that leverages
PSC analysis to fingerprint USB peripherals, infers their
properties, and recognizes ongoing actions.

e Via an automated power traces collection system of our
design, we collect a large dataset” with solid ground

*The dataset is available at https://doi.org/10.5281/zenodo.7467989

Authorized licensed use limited to: TU Delft Library. Downloaded on August 31,2023 at 08:20:52 UTC from IEEE Xplore. Restrictions apply.

truth from 82 USB peripherals (8 types and 35 different
models).

« We evaluate the performance of PowerID on the power
traces dataset on different classification tasks. We show
that PowerID can build robust fingerprints and recognize
them with high accuracy.

II. BACKGROUND AND THREAT MODEL

In this section, we provide useful concepts to understand
the remainder of the paper. We briefly recall the USB power
management system in Section II-A. In Section II-B, we
present the threat model for PowerID and the related security
scenarios. Then, we state the research questions we investigate
in this work in Section II-C.

A. USB Power Management

The USB is the most popular standard for wired connections
between peripheral devices (e.g., flash drive) and a host (e.g., a
laptop) for exchanging data and powering. The USB standards
define the unit load for the power draw of a USB device, i.e.,
100mA and 150mA for USB 2.0 and 3.0, respectively [11].
When connected to a port, a device triggers a series of
preliminary operations, including the initial handshake, device
enumeration, and configuration. While only one unit load is
initially provided by default, a device can request up to six unit
loads in USB 3.0+ during the configuration for a maximum
of 900mA. Henceforth, we refer as state Boot to the above
operations after a device is connected to a host. At the end
of the state Boot, a USB device enters the state Sleep as no
activity is ongoing. Upon the OS request or interrupt from
the device, a device enters the state On to perform data
transfer. Thus its power draw increases. Therefore, a device
continuously switches between the states On and Sleep (i.e.,
life-cycle) until either removed from the port or turned off by
the OS (i.e., Sleep).

The versatility of the USB standard enables the use of
a broad range of peripherals categorized according to the
type of data transfer: storage peripherals (e.g., flash drives)
rely on bulk transfer since it guarantees delivery of extensive
data but has a low priority over the bus (i.e., bandwidth);
audio and video peripherals (e.g., webcams, microphones)
use isochronous transfer that allows the stream of data with
low latency but without guaranteeing delivery; and Human
Interface Devices (HID) (e.g., mouse, keyboards) use an
interrupt transfer with bounded latency. In this paper, we
use the term Type for the purpose of a USB peripheral.
Among the types, we consider the most common types of USB
peripherals: flash storage drive (Fd), external hard drive (Hdd),
WiFi and Bluetooth (Bt) network adapters, Microphone (Mic),
Webcam (Wcam), Keyboard (Keyb), and Mouse. Specifically,
manufacturers adopt their own or third parties hardware to
produce USB peripherals. We refer to the combination of
brand and model of a USB peripheral simply as Model (e.g.,
Kingston DT100 G3). As many peripherals share the same
model, we define as Device the specific individual peripheral.

B. Threat Model

This paper investigates the feasibility of inferring coarse-
and fine-grained information about a USB peripheral from
its power traces measured at a USB port. Our system aims
to protect the host device by identifying unauthorized USB
peripherals, thus preventing subsequent attacks such as mal-
ware injection or private information exfiltration. In what
follows, we describe possible use case scenarios, the attacker
capabilities, and the PowerID preparation.

1) Use Case Scenarios: We conceive the threat model by
considering two use case scenarios described in the following,
where users and system administrators can rely on PowerID to
enhance the security of the USB ecosystem.

End-user Personal Protection. Aside from malware-infected
storage drives, USB attack tools disguised as flash drives or
even concealed within USB cables are employed to perpetrate
dangerous threats to user security and privacy (e.g., data
exfiltration, command injection, credential theft). To protect
from these attacks, users may want to assess the legitimacy of
a connected-USB peripheral. Hence, users can deploy Pow-
erID on a USB port to build power trace-based fingerprints for
all their legitimate peripherals creating a whitelist of allowed
personal devices.

Organization Assets Protection. An organization has a strict
policy on the peripherals that its members are allowed to
use. For example, the Stuxnet worm [5] has penetrated an
air-gapped critical infrastructure via an infected USB storage
drive. Hence, an organization’s security team may enforce
access control on its workstations to avoid potential attacks or
human errors in connecting unauthorized USB peripherals. To
this end, an organization can deploy PowerID to only allow the
connection of USB peripherals with pre-approved characteris-
tics (e.g., type, model) or permitted actions (e.g., read-only),
alerting the security team whether anomalous power traces are
detected.

2) Attacker Capabilities: We assume an attacker aims to
compromise the host device of a user, an organization, or a
critical infrastructure with a malicious USB peripheral. The at-
tacker’s objective may include delivering malware, exfiltrating
sensitive information, or corrupting the host device. Therefore,
the attacker replaces the legitimate USB peripheral with a
compromised one (with the same appearance but concealing
an attack tool) inducing the user to connect it to the host.
Moreover, the attacker may obtain physical access to a user’s
host device (e.g., lunch-time attack) and attempt to connect its
attack tool to the USB port.

3) PowerID Preparation: We assume that the adversary
cannot interfere with power traces collection (e.g., sensor
tampering) or compromise the model training phase (e.g.,
poisoning attack [12]) since such processes are crucial in
the PowerID preparation. To obtain optimal fingerprints, we
assume that the hardware settings during these processes are
the same (or similar) as the ones of the final deployment
(i.e., testing phase). Therefore, the device employed for the
data collection is the same one used during the testing phase.

Authorized licensed use limited to: TU Delft Library. Downloaded on August 31,2023 at 08:20:52 UTC from IEEE Xplore. Restrictions apply.

We believe this is a reasonable assumption since organiza-
tions typically purchase many identical host devices with the
same hardware components. PowerID framework relies on an
external standalone device to collect the power traces from
an electric current sensor between the host and the peripheral
under test (more details in Section III-A).

Traces processing and analysis can be done locally on such
a device or remotely on a server (i.e., such a device streams
the collected traces via networking technologies).

C. Goals of the Analyses

In our analyses, we assess whether we can infer information
about a USB peripheral from the power traces analysis. In
particular, the objective of our analyses is to answer the
following questions:

(D Type: Can we recognize the type of a USB peripheral
during its states Boot and On?

@ Model: Can we distinguish the specific model of a
peripheral during its states Boot and On?

(® Device: Given peripherals of the same model, can we
assess the identity of a specific device?

@ Action: Considering a peripheral in On state, can we
recognize an ongoing action given a device type? E.g.,
reading from an Fd, or downloading from a WiFi adapter.

(B Device via action: Given an ongoing action for a type
of peripheral, can we identify a specific device?

©® Bad vs. Good: Can we discriminate between malicious
USB-based tools and legitimate peripherals?

III. POWERID SYSTEM DESIGN

In this section, we present our system and describe its
components. In Figure 1, we provide an overview of PowerID.
As a preliminary parameter, the inference target |1 defines
the specific information about the connected peripheral as the
target of the inference. Excluding the power traces acquisition
(2], such parameter influences all the other components [3H6]
and outcome |7] of our system. It is worth noticing that we can
use the same power trace as input of several instances of our
system with different inference targets. In what follows, we
describe in detail the components of PowerID system.

A. Power Traces Acquisition

This component acquires the power traces of a connected
peripheral via a sensor deployed between the port and such
a peripheral (step [2)). Such a sensor provides reliable mea-
surements of the electric current supplied by the port. The
resolution and the sampling rate of a sensor determine the
quality of power traces acquired and their size. While a low
resolution and sampling rate negatively affect the informative-
ness of a power trace, a high sampling rate requires more
computational resources and time for processing. For this
reason, it is important to find a trade-off between trace quality
and the required processing and resources available. A sensor
needs to be calibrated to provide readings within zero and
maximum current provided by the considered USB port safely
under the full-scale value to avoid saturation. As an additional

Host’s

USB port PowerlD system

={|Z| Power traces acquisition]

I
[EI Traces segmentation]]

[[4] State identification] !

Trace processing

f
s 8
8l 12

[=¥

[IE Features engineering] |

e

USB
peripheral

Fig. 1: The system design of PowerlID.

requirement, the sensor deployment should not affect the
performance of the peripheral. With the above requirements
in mind, we consider an Analog-to-Digital Converter (ADC)
as a sensor that measures current in terms of voltage drop
on a shunt resistor (see Section IV). Finally, this component
delivers the power traces for further processing. In Figure 2
we report some examples of power traces collected from our
experiments.

B. Traces Processing

We process the acquired power traces to obtain viable data
for a machine learning-based model. The goal of this process
is two-fold: preserving the information within power traces
and identifying the current state of the peripheral. To attain
this goal, we apply three methods: trace segmentation [3], state
identification [4], and feature engineering [3]. It is worth noticing
that we apply the same process to obtain the datasets for both
the model training and testing. However, while the state of a
peripheral is known in the training data, during the testing, we
identify the state with step [4].

1) Traces Segmentation: In this step, we divide the power
traces into segments by applying a sliding window. Such a
method considers two parameters: the window duration and
overlap ratio. In selecting values for these parameters, we
consider several insights obtained by observing the power
traces of USB peripherals. Since some activities span for a
brief time, a window with a long duration may produce seg-
ments that include an excessive amount of data unrelated to a
state or action. Hence, such segments may not contain enough
meaningful information for a considered inference target. The
overlap allows us to obtain more segments for training our
models, make them more robust to noise, and avoid overfitting.
However, a big overlap can produce excessive segments and
information redundancy, leading to high computational over-
head in the processing phase. From observing the obtained
traces, we set a duration window of 1 second with a 75%
overlap.

2) State Identification: In our system, we focus on the
states Boot and On of a USB peripheral. The analysis of
segments from state Boot allows achieving the inference target

Authorized licensed use limited to: TU Delft Library. Downloaded on August 31,2023 at 08:20:52 UTC from IEEE Xplore. Restrictions apply.

F— . 0.176 | —e— Delete
v rd I v In-write Yo%
0121 —g- Had 01754 - Open
o -
. rif
0104 -8~ Mc @B 0.174 1 € A
4 - Mouse HEEE . | Nk e
©- Wcam e o ARIE. L
— [g 0.173 4 vvlil Y
S 0.08{ -v- WiFi lgmme®® 2 ook B R B R e
g & ’Vﬁ‘v HET kY
& £0172 ot LA HR 1B
S 0.06 Q yovvvwey | S "1 bl |
vV¥ o 0.171 die il \1}; ¥ | %
ofE 0RQYOOROOCHEOH I
o0t) "}%@%‘ dut 1. 0.170 [n‘ ¥ gt
hat 9,) If
b vV wl % Al
0.02 oohd
dol J
0.168 {

0.0 0.5 1.0 1.5 2.0 0.1 0.2 0.3 0.4 0.5
Time [seconds] Time [seconds]

(a) State Boot for different types. (b) State On of a Flash drive.

Fig. 2: Example of power traces of states Boot and On for
different USB peripherals.

within a few seconds from the connection of a peripheral
to the monitored USB port. PowerID also relies on state
On segments to infer all the considered target information,
especially the ones related to the actions on a peripheral (i.e.,
@ and (®). Due to low variability, we do not consider the
power traces during the state Sleep. While identifying the
starting time of a state Boot is trivial (i.e., change between
open to close circuit), the identification of the transition time
between states Sleep and On requires a refined approach
since different peripherals produce heterogeneous power con-
sumption in these states. Hence, we need a general approach
independent of the considered peripheral (rather than setting
a specific threshold for each USB peripheral type and model).
To do this, we apply on groups of four consecutive segments
a Changing Point Detection algorithm based on cumulative
sum [13]. In particular, we consider a valid changing point if:
(1) the next one does not occur within less than 250ms, (2)
there is at least 25% of value increase. We consider as the
start of a state On the changing point identified by at least
three segments among the four in the same group.

3) Features Engineering: We consider the segment of a
power trace as a univariate time-series, i.e., sequential single
data points over a constant time increment. Therefore, we
apply the feature extraction method for time series provided
by the tsfresh libraries [14]. Such libraries allow to extract 740
features from each segment, such as statistical features (e.g.,
mean, standard deviation, variance), linear trend, coefficients
of Fast Fourier, and Continuous Wavelet Transform. The
feature extraction depends on the inference target and
differs between the model training and testing phases. During
the training phase, we select the & most significant features
that effectively characterize the inference target. As a general
approach, we aim to minimize the number k for two main
reasons: (1) to not incur the curse of dimensionality and (2)
to reduce the time and computational resources required by
the feature extraction process. In the testing phase, we only
extract the k£ meaningful features for the inference target.

C. Selected Model

For each inference target considered, we train a clas-
sification model on the selected features for such a target.
Upon the preliminary analyses, we select the Random Forest
(RF) classifier as it achieves a higher performance among
the other considered learners. While side-channel analyses via
deep learning techniques [15], [16], [8], [17] can automate the
feature selection process, the training of a deep neural network
requires a huge number of examples and high computational
and time resources due to the repeated training (i.e., epochs)
for weights and parameters optimization. By performing the
classification via non-deep learning-based techniques, we can
pre-select the important features, thus reducing the complexity
of the problem (i.e., the number of features to extract from
the time series) and, consequently, the model size in memory.
In the testing phase, we load the previously trained model
(step [6)) related to the inference target and test the previously
unseen power trace segments. As a result of the classification,
the model provides in the output the inferred information [7].

IV. EXPERIMENTAL SETUP

In this section, we describe the implementation details of
the power traces collection framework in Section IV-A and the
dataset collection and processing setup in Section IV-B.

A. Power Traces Collection Framework

We design and implement a framework to collect the power
traces for our analyses. In Figure 3a, we overview the logical
components of our framework”, while in Figure 3b we show
our experimental setup.

1) Power Traces Acquisition: In our experimental frame-
work, we measure the electric current supplied by a USB
port to a peripheral in terms of the voltage at the extremities
of a shunt resistor (i.e., 0.01Q2) in a series of the GND
(ground) wire of a USB extender cable. We measure such
voltage with the ADC of a National Instruments USB-6210
Data AcQuisition (DAQ) and acquire the measurements via
the DAQExpress tool (depicted purple in Figure 3a). Although
such ADC can acquire up to 125ksps (samples per second),
we set the sampling rate to 10ksps to achieve a faster feature
extraction.

2) Actions Controller: For our analyses, collected power
traces for states Boot, On, and Sleep of the USB peripherals.
To automatize this process, we rely on two components: Plug
in/out controller for Boot and Action executor for On and
Sleep.

From the hardware perspective, the Plug-in/Out controller
uses a series of electronic switches driven by a micro-
controller (i.e., Arduino Nano). Data and power wires of
the USB cable are connected to an electronic switch. From
a software perspective, we can open or close the switches
by sending the related command to the micro-controller. In
particular, we implement such a function to replicate the

“For the sake of simplicity, we report a USB 2.0 pinout while our
experimental setup fully supports the USB 3.1 standard

Authorized licensed use limited to: TU Delft Library. Downloaded on August 31,2023 at 08:20:52 UTC from IEEE Xplore. Restrictions apply.

Controller
=| [Micro- -t -
g lP controller Host device L_ Plug;nlll()ut
s USB port contro el

ire®

= | @R D+ \\'u e
172] — D- wire* -
2| O | GND wire Data collection
o Ca
= USBPcap collector
= Electronic
g] switches Power traces
&)

ADC acquisition

(a) Logical schema of the framework.

Shunt
resistor

NI USB-6210

Action
executor

Energy traces
collector

(b) Equipment setup.

Fig. 3: Framework for power traces collection.

insertion of a USB peripheral into a USB port (i.e., first
connecting the power and then the data wires), thus triggering
the state Boot.

Once the peripheral is connected to the host, the Action
executor performs a list of actions (i.e., state On) according
to the type of peripheral currently under test. In Table I, we
report the list of considered actions for each peripheral type.
For actions based on file transfer (e.g., Write, Download), the
action executor involves a file randomly selected from a pool
of files with assorted sizes (i.e., from 10MB to 200MB).

To obtain a reliable ground truth for our data, the scripts
of the Action controller log the timestamp for each plugin/out
and action. To assess whether a script is properly triggered
and action on the peripheral, we also monitor the USB data
traffic via USB sniffer (i.e., USBPcap collector).

B. Dataset Collection and Analyses Setup

We collected the power traces of the USB peripherals listed
in Table II. In total, we collected 8 different device types, 35
different device models, and 82 unique devices. In total, we
collect more than 6k traces for state Boot (i.e., around 43k
segments) and more than 14k traces for state On. (i.e., around
132k segments). We obtain the power traces from the USB
3.1 port of a laptop Lenovo Legion AMD Ryzen 7 5800H 16-
core CPU 3.2GHz with 16GB RAM running MS Windows 10
64-bit.

For the power traces processing and model training, we use
a Desktop PC AMD Ryzen 9 5900X 12-core 3.7Ghz CPU with
64GB RAM running MS Windows 10 64-bit. As libraries, we

TABLE I: List of considered actions for device types.

Type Action Description
Write Transfer files from host to guest
Flash Drive / In-Write Copy files locally guest to guest
Portable Open Open a file inside guest device
Hard Drive Read Transfer files from guest to host
Delete Delete files from guest device
Connect Connect to a WiFi network
WiFi Download Download files via WiFi network
Adapter Upload Upload files via WiFi network
Disconnect Disconnect from a WiFi network
Bluetooth Active Transfer files via Bluetooth
Microphone Active Audio recording from the guest
‘Webcam Active Video acquisition from the guest
Mouse Active User activity (click, move, scroll)
Keyboard Active A user typing textual contents

TABLE II: List of the USB peripherals involved in our
analyses (# indicates the number of individual peripherals).

Type ID Brand Model USBv. #
Fd1 Kingston DT100 G3 32 6
Fd2 Sandisk 3.2Genl 3.2 6
Fd3 Aigo U310 pro 3.1 6
Flash Fd4 A?go U310 3.1 1
Drive Fd5 Kingston DTKN 32 1
Fd6 Kingston MicroDuo3 G2 3.2 1
Fd7 PNY TA4-064 32 1
Fd8 Sandisk Ultra 32 1
Hdd1 WD My Passport 3.1 2
rorable THam WD Black P10 31 I
Drive Hdd3 Seagflte One Touch 32 1
Hdd4 Toshiba DTB420 3.0 1
WiFil TP-Link WN726N 2.0 6
WiFi2 TENDA U6 N300 2.0 6
WiFi W?F§3 D-Link DWA-171 2.0 3
Adapter W}F}4 ASUS USB-AC57 3.1 1
WiFi5 ASUS USB-AC68 3.0 1
WiFi6 Ugreen AC650 11ac 2.0 1
WiFi7 Mercury UD6H 2.0 1
Bluetooth Btl Lenovo BT5 LX1815 2.0 4
Adapter Bt2 Ugre(?n BT4 US192 2.0 1
Bt2 TP-Link TL-UB240 2.0 1
Micl Ugreen Desktop Mic. 1.1 4
Microphone ~ Mic2 Soaiy L28 1.1 1
Mic3 Depusheng T7 1.1 1
Wcaml Logitech C270 2.0 2
Webcam Wcam2 Logitech C920pro 2.0 1
Wcam3 Philips P506 HD 2.0 1
Mousel Dell MSl1l6c 2.0 6
Mouse Mouse2 Logitech G102 2.0 2
Mouse3 Logitech M546 2.0 1
Mouse4 Logitech MX Master 2.0 1
Keybl Dell KB216d 2.0 6
Keyboard Keyb2 Logitech K845 2.0 2
Keyb3 DURGOD TAURUS K320 2.0 1

utilize the tsfresh for the time series feature extraction, Scikit-
learn for the machine learning model and evaluation metrics
implementations, and imblearn to deal with dataset unbalance.

V. EXPERIMENTAL EVALUATION

We analyze the performance of PowerID to answer the
research questions in Section II-C. We select the RF classifier
upon a preliminary comparison across several learners. In
each analysis, we split the dataset into 80% training set and
20% testing set using a stratified approach to maintain the

Authorized licensed use limited to: TU Delft Library. Downloaded on August 31,2023 at 08:20:52 UTC from IEEE Xplore. Restrictions apply.

TABLE III: List and description of the analyses. For each anal-
ysis, we mark the states and types involved in the considered
analysis (* only data from models with at least four devices).

TABLE IV: Results of the analysis D for device type recog-
nition in terms of F1, Pr, Re, and Gm.

Types State = Boot, k=100 State = On, k=50
States Types F1 Pr Re Gm F1 Pr Re Gm
- - 5 Fd 098 099 098 099 | 099 099 099 0.9
S ol BRE £ Hdd 097 097 098 099 | 1.00 099 1.00 1.00
Analysis Target Approach 2 S |= = = O WiFi 099 100 098 099 | 1.00 1.00 099 1.00
@ Type Multiclass v ¢ |V v vV ¢ Bt 093 093 093 096 | 098 097 1.00 1.00
@) Model Multiclass ¢ v |V v vV Mic 095 093 096 098 [098 097 1.00 1.00
® Device Binary vV vV |vF vE VE Wcam 098 098 099 099 | 099 098 1.00 1.00
V(v Mouse 095 094 095 097 | 099 099 1.00 1.00
@ Action Multiclass v v Keyb 094 094 094 096 | 098 097 1.00 1.00
v v Avg. 096 096 096 098 | 099 098 1.00 1.00
_ _ viv Std. 002 002 002 001 | 001 001 000 000
® Device Binary 4
v v
(@) Bad vs. good Multiclass ¢ ¢ | v Vv

same class proportions. By relying on a validation set (10%
of the training set), we study the performance of a model
trained by varying the number of features k. In particular,
we select the k£ top features ranked by their ANOVA F-
value. Since the analyses have different goals, the best feature
set can change considerably. For this reason, we perform a
different feature selection for each analysis. To mitigate the
possible unbalancing in the training set, we employ SMOTE
algorithm [18] to balance the elements in each class. We apply
the above-described pipeline in all the considered analyses
unless explicitly mentioned.

In Table III, we summarize the analyses we present in the
remainder of this section. In particular, we report the states
considered for every analysis and the device models employed
for the classification. We refer as multiclass to a classification
task involving more than two classes. Instead, we refer as
binary to a specific binary classifier focusing on a single target
class at the time (i.e., we apply a One-vs-All strategy). This
second approach allows the model to create a decision bound
around the target class to discriminate it with respect to all
the other classes. In this type of classification, we report the
aggregated results as the average of the binary classification
of all the considered classes. Interested readers can find more
details on the difference between these two approaches in [19].

To attain an open-world scenario in a multiclass approach,
we consider an additional class Other composed of a random
sample of segments (10% of the considered dataset) unrelated
to the current analysis. Similarly, we attain an open-world
condition for a binary approach by removing the 10% of
the non-target classes from the training set but not from the
testing set. By leaving out classes from the training set, we can
evaluate the robustness of our models against unseen devices.

We evaluate our classification performance with several
standard metrics: Precision (Pr), Recall (Re), F1-Score (F1),
Geometric Mean (Gm), and Area Under the receiver operating
characteristic Curve (AUC). For each analysis, we present the
experimental results, highlight the meaningful insights and
discuss the limitations.

A. Device Type Classification (D

In this analysis, we aim to classify the device type from the
power traces during the states Boot and On. Considering the
state Boot, we can assess the peripheral within a few seconds
from its connection to a USB port. However, we also classify
the type of a peripheral during its activity (i.e., state On) to
continuously verify that its type would not change (e.g., an Fd
turns into a spy camera/microphone after some time).

1) Method and Dataset: We collected power traces from
peripherals and grouped them by device type, obtaining eight
classes. We also consider an additional class Other where in
the state Boot analysis corresponds to random traces from the
state On, and in state On analysis corresponds to random traces
in the state Sleep.

2) Results: We first analyzed the multiclass classification
performance on the validation set, varying the number of
features selected. By inspecting the Mouse and Keyb traces on
the state Boot, we observe that most of them follow a sequence
in terms of power draw: an initial peek at the connection
(below 0.5 second), flat low, moderate, and stabilize in the
state Sleep. Hence, we can assume that the model requires
more information (features) and segments to classify them
correctly. Hence, by selecting the best 100 features for the
state Boot, we achieve the performance plateau with all the
device types.

For state On, we can achieve high accuracy even with a
small number of features as we reach the plateau with 50
features for all considered types. Considering the best feature
sets for the two states separately, we report the classification
result on the testing set in Table IV. PowerID models can
discriminate with high accuracy between the device types for
both the states Boot and On. Therefore, every device type has
a unique fingerprint.

B. Device Model Classification)

In this analysis, we delve a further level deep into the device
identification by assessing whether the states Boot and On
can discriminate the device model. Therefore, we perform
a multiclass classification by considering as classes all the
different device models in Table II.

1) Method and Dataset: We group power traces by the
device model, obtaining the 35 different classes. We consider

Authorized licensed use limited to: TU Delft Library. Downloaded on August 31,2023 at 08:20:52 UTC from IEEE Xplore. Restrictions apply.

1.0

0.91

0.91

0.8 1 0.8 1

0.7 0.7

—— Fd -$- Mic

0.6 ¥~ Hdd —$- Wcam
—@ - WiFi &~ Mouse —@ - WiFi &~ Mouse
—— Bt ~-¥- Keyb —— Bt -¥- Keyb

1’0 2’0 SIO 7’5 l(l)O 1.":0 03 1‘0 2‘0 SIO 7‘5 1(I)0 1.":0
Number of features Number of features

—— Fd -$- Mic
0.6 ¥~ Hdd - Wcam

Averaged F1-score (grouped by type)
Averaged F1-score (grouped by type)

0.5

(a) State Boot. (b) State On.

Fig. 4: Performance for the analysis 2) varying the number of
considered features.

an additional class Other that for the state Boot analysis
corresponds to random traces from the state On while for state
On analysis corresponds to random Sleep traces.

2) Results: We report in Figure 4 the F1 on the validation
set, varying the feature number. The results indicate the
average F1 and the standard deviation of the device models
belonging to the same device type. Considering the state Boot,
we can notice in Figure 4a that the performance plateau for
every device model is reached at around 75 features. As in
the previous analysis, we also note that the Keyb models are
hard to classify when using information from a few features.
This is again due to the quick handshake between the host
and the device during the Boot phase. Regarding the state On
in Figure 4b, the classification performance is high. Thus, we
can conclude that this state presents a clear fingerprint for all
device models.

By selecting the best 75 features for both states Boot and
On, the results on the testing set underline that most of
the device models present a unique power fingerprint, also
among devices of the same type. However, the device model
fingerprints from the state On perform better than the ones on
state Boot. In particular, the devices which perform worst are
the Keyb3 and Fd8, from a visual inspection of the traces for
such models, we observe that the state Boot lasts a short time
(below 0.5 second), thus more difficult to fingerprint.

C. Authentication of Individual Device Q)

In this analysis, we aim to discriminate individual devices
of the same models. This fine-grained analysis detects whether
a device has been tampered with or substituted.

1) Method and Dataset: We consider power traces of the
device models with at least four individual devices, i.e., the
device models with # > 4 in Table II. For the same model
devices, we perform a binary classification using one device as
a target class at a time. Given a target device, we removed the
segments of one random non-target device from the training
set, and we added them to the testing set. We iterate this
process for every device of a given model considering the
states Boot and On.

2) Results: We analyzed the averaged F1 by device model
varying the number of considered features. As expected, due
to the high specificity of this analysis, we generally achieve
lower performance than analyses (D and). For both states, we
require at least 100 features to reach an F1 higher than 0.95
for most models. The detailed results of the testing set are
reported in Table V. Confirming the results from the previous
analysis, PowerID achieves an F1 higher than 0.9 for most
models on state On, but it cannot correctly discriminate a few
individual Mousel and KeyblI devices for the state Boot. As a
noticeable exception, the WiFil model has the lowest score on
the state On. Upon further inspection, we confirm our findings
by observing that the traces of the action are very similar
among the devices of such a model.

D. Actions Classification per Device Type @)

In this analysis, we focus on the state On, and we investigate
whether we can infer type-specific actions across all models.
After identifying the device type (analysis (), PowerID aims
to identify unexpected action a device performed (e.g., unau-
thorized file transfer).

1) Method and Dataset: We consider three device types of
power traces: Fd, Hdd, and WiFi. We focus on these types
because they have a broader set of actions to analyze (see
Table I). For every device type, the class Other is composed
of random segments of actions by the other types.

2) Results: Figure 5 reports the results of the analysis. In
particular, Figure 5a shows that the actions of WiFi type have
a clear fingerprint while Fd and Hdd require a higher number
of features to reach an average F1 higher than 0.8. For a
better understanding, in figures 5b, Sc, and 5d we report the
confusion matrix with the 75 best features selected for Fd,
Hdd, and WiFi, respectively. In figures 5b and 5c, we can
observe that most of the miss-classification of Fd and Hdd are
between Write and In-Write actions. This is probably because
In-Write is derived by the combination of Read and Write.
Therefore, In-Write generates power traces similar to the Write
actions. Moreover, the Hdd type suffers from the Other class
mainly due to the similarity with traces of the Fd type.

E. Individual Device by Actions)

The previous results demonstrate that PowerID identifies
with suitable accuracy types, models, the individual device
of a specific model, and actions. Building on top of analyses
D, and @, we investigate whether PowerID can discriminate
individual devices from the actions they are performing.

1) Method and Dataset: Similarly to analysis @, we focus
on Fd, Hdd, and WiFi types. In particular, we consider
Read and Write for Fd and Hdd, and Download and Upload
for WiFi. These actions are the most commonly performed
for legitimate and malicious purposes (e.g., data exfiltration,
malware injection). We select the power traces of the actions
from all device models for each type. Considering a class is
the pair (Device, Action), we obtain 46, 10, and 38 classes
for Fd, Hdd, and WiFi, respectively. For each device type, we
perform binary classification on such classes.

Authorized licensed use limited to: TU Delft Library. Downloaded on August 31,2023 at 08:20:52 UTC from IEEE Xplore. Restrictions apply.

TABLE V: Results of the analysis 3 for device fingerprinting. For each row, we report the averaged score (and its standard

deviation) across the devices of the same model.

Models State = Boot, k=100 State = On, k=100
F1-score Precision Recall Gmean AUC F1-score Precision Recall Gmean AUC
Fd1 0.97 £0.04 0.97 £0.05 0.97 +£0.03 0.98 +0.02 1.00 £0.00 | 0.98 £0.01 0.98 +0.02 0.98 £0.02 0.99 +0.01 1.00 £0.00
Fd2 0.98 £0.02 0.98 £0.03 0.98 +0.04 0.99 £0.02 1.00 £0.00 | 0.96 £0.02 0.96 +0.01 0.97 £0.02 0.97 £0.01 1.00 +0.00
Fd3 0.98 +£0.04 1.00 £0.00 0.96 £0.08 0.98 +0.04 1.00 £0.00 | 0.91 £0.07 0.91 +0.07 0.91 £0.07 0.95 £0.04 1.00 £+0.00
WiFil 098 £0.01 0.99 £0.01 0.98 +0.03 0.99 +0.01 1.00 +0.00 | 0.79 £0.02 0.72 £0.02 0.88 £0.05 0.90 +0.01 0.97 £0.02
WiFi2 099 +£0.01 0.99 £0.01 0.99 £0.01 0.99 £0.00 1.00 +0.00 | 0.97 £0.02 0.97 £0.03 0.98 £0.02 0.98 +0.02 1.00 £0.00
Bt1 1.00 £0.00 1.00 £0.00 1.00 £0.00 1.00 £0.00 1.00 £0.00 | 1.00 £0.00 1.00 £0.00 1.00 £0.00 1.00 £0.00 1.00 £0.00
Micl 1.00 £0.01 1.00 £0.00 0.99 £0.01 1.00 £0.01 1.00 +0.00 | 1.00 £0.00 1.00 £0.00 1.00 £0.00 1.00 £0.00 1.00 £0.00
Mousel 0.82 £0.12 0.79 £0.15 0.87 £0.10 0.90 £0.07 0.96 +0.03 | 0.95 £0.05 0.95 £0.06 0.96 £0.05 0.97 +0.03 1.00 £0.01
Keybl 0.90 £0.12 0.92 £0.07 0.89 £0.17 0.92 £0.10 0.98 £0.03 | 1.00 £0.00 1.00 £0.00 1.00 £0.00 1.00 £0.00 1.00 +0.00
Avg. 0.96 £0.06 0.96 £0.06 0.96 £0.05 0.97 +0.03 0.99 +0.01 [0.95 £0.06 0.94 £0.08 0.96 +0.04 0.97 +£0.03 1.00 +0.01
~ 1.0
g Open K 0.00 0.00 0.00 0.00 Open 0.00 0.00 0.03 Connect
Zos Read 0. 0.00 0.00 0.02 Read 0. 0.00 0.00 0.02 bownload
c@lo.a 2 Write{0.00 0.00 0.11 0.06 0.01| & Write {0.00 0.05 0.03 ,E;
= o o ; Upload
g 3 In-write {0.00 0.00 0.12 0.08 0.01| 3 In-write {0.00 0.00 0.11 0.07 0.04| &
307 = = Disconnect
E Delete 10.00 0.00 0.03 0.01 [(¥] 0.01 Delete {0.00 0.00 0.03
& 0.6 Other
3 Other {0.01 0.04 0.03 0.04 0.04 [UEE! Other {0.04 0.05 0.10 0.13 0.05 [I}:E!
z —- Fd -¥- Hdd —@i- WiFi i
0.5 = y y y T T S D & & & & S D & & 2
10 2ONuml:?;)r of f;:ture;oo 150 OQQ Qg:b é(\ \\\’\‘\Q 0@6 0‘6& OQ@ Qg:b $‘ \¢§< Q}Q‘ 0’&6

. Predicted label
(a) Performance varying the

number of features. (b) Confusion matrix for Fd.

Predicted label

Predicted label

(c) Confusion matrix for Hdd. (d) Confusion matrix for WiFi.

Fig. 5: Results for analysis @ for action identification per device type.

2) Results: We report the results in Figure 6. We represent
with the low and high caps of error bars the best and worst
scores among the individual devices, respectively. Overall,
PowerID achieves good classification for all the types and ac-
tions, despite the high number of classes per type. In particular,
we observe that in the case of Fd and Hdd, the different actions
are distinguishable from one device to another. However,
the WiFi type obtains slightly lower performance and higher
variability. From a detailed analysis, we assess that some
devices (of model WiFil, WiFi2, and WiFi6) are misclassified
due to similar behavior in several power trace segments.
Despite the variability in the WiFi type, PowerID can correctly
discriminate most of the devices. Hence, it is possible to
fingerprint an individual device from its actions.

F. Malicious Device Identification ©®

To assess whether it is possible to detect malicious devices
from their power traces, we perform a multiclass classification
between legitimate peripherals and BadUSB devices, focusing
on states Boot and On.

1) Method and Dataset: In this analysis, we collect power
traces from four BadUSB devices (two WiFi-enabled and two
memory-based BadUSB devices). While collecting the traces,
we run several common attacks, such as local (memory-based)
and remote (WiFi-enabled) command injection on the com-
mand prompt (varying the types and number of commands)
and WiFi scanning and connection. For the state Boot, we
execute the attack at the device connection, while for state On,

1.004

0.95 -

o
o
3 0.901 — — — 5
e
o
©
@ 0.85 v, 5 = — /!
< I:. m I’ I'
“%07 mL.PEN W omN | VP |
[Fl-score I Precision [Recall BN Gmean [Nl AUC
0.75 ¥ ¥ g ¥ ¥ ¥
Fd Fd Hdd Hdd WiFi WiFi
Read Write Read Write Download Upload

Type and action

Fig. 6: Performance of analysis 3 for device fingerprinting
on different actions.

we delay its execution. The class Other legitimate is composed
of traces from legitimate peripherals other than Fd type (e.g.,
Bt, Mic, WiFi). Moreover, we use the features set of the states
Boot and On identified in (.

2) Results: From the results in Figure 7, we observe that
PowerID discriminates the BadUSB devices from Fd and other
legitimate peripherals with perfect accuracy.

VI. RELATED WORK

In recent years, attacks and countermeasures for the USB
standard have been widely investigated [2], [4]. As an alterna-
tive to software-based approaches, researchers have considered
the analysis of side-channels on the USB ecosystem [1]. We

Authorized licensed use limited to: TU Delft Library. Downloaded on August 31,2023 at 08:20:52 UTC from IEEE Xplore. Restrictions apply.

1.00 A

=
o
o

0.98

4
©
©

Performance score
o o
o o
I o

0.96 1

0.94

Performance score

0927 fgmm Fl-score BB Recall 0927 F'gmm Fl-score R Recall
BX3 Precision s Gmean X3 Precision BN Gmean
0.90 ¥ T — 0.90 ? T R —
z - -} SB S ol SB S8
Arve? e, 55dUSE, gagu n a0 (AT gadV2n, gady
Flash S or 109t ced B27 \ed 7125t 1 er €9 ced B ed
otne! | ry-02% ei-end! et y-o?
Mern WV

(a) State Boot. (b) State On.

Fig. 7: Performance of analysis ® on the discrimination
between legitimate and malicious types.

are the first to propose a USB peripheral fingerprinting method
that relies on the power side-channel. In what follows, we
review and compare the work related to power and USB-based
side channels.

1) Power Side-channel: Researchers in the literature pro-
pose various attack and profiling techniques via PSC consider-
ing different targets for information inference (e.g., passcode,
browsing activities, encryption key), devices (e.g., PC, smart-
phones, embedded chips), and trace acquisition locations (i.e.,
local, vicinity, remote) [20]. In the vicinity settings, measuring
the power traces at the source (e.g., wall-socket, USB port)
is not invasive since it does not require any modification or
tampering with the target device. Brighente et al. in [21]
profile the Electric Vehicles charging based on the current
exchange between vehicles and charging columns. Conti et
al. in [22] use a wall-socket smart meter to obtain data on
the power traces of laptops and identify authorized users.
In the smartphone environment, Spolaor et al. [23] exploit
the PSC to covertly exfiltrate user information encoded as
power consumption bursts during the charging process of
the victim’s Android phone. Cronin et al. in [15] profile the
dynamic content of the smartphone display to infer the PIN
sequence by measuring the power consumption leaked via a
charging cable. Under the same settings, Yang et al. in [24],
[25] infer the user browsing activities in a smartphone via
PSC information. Recent work also investigates the privacy
leakage from wireless charging for smartphones. In particular,
La Cour et al. in [16] profile the user browsing activities while
Liu at al. in [17] infer additional private information such
as passcode, keystrokes, and payment apps. Su et al. [26]
assess that USB hubs expose a channel-to-channel crosstalk
information leakage. In particular, they show how PSC of a
USB port data lines are leaked from adjacent ports on the
USB hub. However, no previous research considers the PSC
analysis of USB peripherals (i.e., keyboards, webcams, flash
drives), despite their prominent role in our everyday lives and
their potential security threats [2].

2) USB Side-channels: In recent years, researchers have
investigated the physical and logical side-channels of USB
technology. Considering the physical side-channels, Belgarric

et al. [27] and Genkin et al. in [28] use the ElectroMagnetic
(EM) signal on the USB channel to recover the cryptographic
key from a device connected via a USB cable. DeviceVeil [7]
identifies individual USB devices by exploiting their PUF.
This method achieves an accurate identification, but it requires
a low-cost yet invasive hardware modification of individual
USB peripherals. Differently, PowerID does not require any
hardware or software modification of the peripherals under
test. MAGNETO [10] is a framework to authenticate USB
flash drives from their EM emissions. Despite sharing a
similar goal, PowerID differs from this work in terms of side-
channel considered, peripherals, and fingerprinting approach.
In the first instance, MAGNETO and PowerID consider two
different side-channels, EM and PSC respectively, making
different assumptions in the threat model (see Section II-B). In
particular, MAGNETO assumes that the peripheral under test
is in an electromagnetic safe zone, which may be challenging
to achieve in a realistic scenario. In the second instance,
MAGNETO only focuses on operations during the booting
(i.e., state Boot) for different models of USB flash drives
only. Differently, PowerID considers a wider variety of USB
peripherals, including multiple devices of the same model.
Moreover, PowerID builds the fingerprints not only during a
peripherals’ state Boot but also in their activity (i.e., state On),
which allows the identification of the ongoing actions (e.g.,
read/write, upload/download).

Other work considers USB logical side-channels (i.e.,
software-based). Monaco in [9] presents a fingerprint method
for USB HIDs (e.g., keyboards, mouses, and touchscreens)
based on clock timing and input events. Due to the peculiar
nature of this side-channel, this work can only fingerprint HID
peripherals, and it cannot be extended to other types of USB
peripherals. Time-Print [8] authenticate USB flash drives by
measuring USB packets’ timing during a series of reading
operations via a software tool on the host device. Unlike Time-
Print, PowerID does not need to access the host device, and it
aims to authenticate different types of peripherals (not limited
to flash drives) based on their state Boot and from several
actions (not only from reading operations), i.e., state On.

VII. CONCLUSION

This paper presents PowerlID, a framework to fingerprint the
USB peripherals based on their power consumption during
different working conditions. Based on the fingerprints of
authorized peripherals, PowerID can protect the host from
USB-based threats by identifying unauthorized peripherals and
detecting illicit actions. We extensively evaluated the perfor-
mance of PowerID with an exhaustive power traces dataset
composed of more than eighty unique devices spanning 35
models and 8 types. The results highlight that PowerID achieve
a high accuracy in inferring peripheral type, model, activity,
and identity. The authors have provided public access to their
data at https://doi.org/10.5281/zenodo.7467989.

Authorized licensed use limited to: TU Delft Library. Downloaded on August 31,2023 at 08:20:52 UTC from IEEE Xplore. Restrictions apply.

[1

—

[2

—

[3

[t

[4

=

[6]

[7]

[8

=

[9]
[10]

(11]

[12]

[13]

[14]

[15]

REFERENCES

H. Liu, R. Spolaor, F. Turrin, R. Bonafede, and M. Conti, “USB powered
devices: A survey of side-channel threats and countermeasures,” High-
Confidence Computing, vol. 1, no. 1, p. 100007, 2021.

J. Tian, N. Scaife, D. Kumar, M. Bailey, A. Bates, and K. Butler, “Sok:”
plug & pray” today—understanding USB insecurity in versions 1 through
¢,”in 2018 IEEE Symposium on Security and Privacy (SP). 1EEE, 2018,
pp. 1032-1047.

Larson, CNN Business. (2017) Please stop charging your phone
in public ports. https://money.cnn.com/2017/02/15/technology/public-
ports-charging-bad-stop/index.html. [Accessed: 07-06-2022].

N. Nissim, R. Yahalom, and Y. Elovici, “USB-based attacks,” Computers
& Security, vol. 70, pp. 675-688, 2017.

N. Falliere, L. O. Murchu, and E. Chien, “W32. stuxnet dossier,” White
paper, Symantec Corp., Security Response, vol. 5, no. 6, p. 29, 2011.
B. Bencsath, G. Pék, L. Buttyan, and M. Felegyhazi, “The cousins of
stuxnet: Duqu, flame, and gauss,” Future Internet, vol. 4, no. 4, pp.
971-1003, 2012.

K. Suzaki, Y. Hori, K. Kobara, and M. Mannan, “Deviceveil: Robust
authentication for individual USB devices using physical unclonable
functions,” in 2019 49th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN). 1EEE, 2019, pp. 302—
314.

P. Cronin, X. Gao, H. Wang, and C. Cotton, “Time-print: Authenticating
USB flash drives with novel timing fingerprints,” in 2022 IEEE Sympo-
sium on Security and Privacy (SP). 1EEE, 2022.

J. V. Monaco, “Device fingerprinting with peripheral timestamps,” in
2022 IEEE Symposium on Security and Privacy (SP). 1EEE, 2022.
0. A. Ibrahim, S. Sciancalepore, G. Oligeri, and R. D. Pietro, “Magneto:
Fingerprinting USB flash drives via unintentional magnetic emissions,”
ACM Transactions on Embedded Computing Systems (TECS), vol. 20,
no. 1, pp. 1-26, 2020.

J. Axelson, USB complete: the developer’s guide.
LLC, 2015.

B. Biggio, B. Nelson, and P. Laskov, “Poisoning attacks against support
vector machines,” in Proceedings of the 29th International Coference on
International Conference on Machine Learning, ser. ICML’'12. Madi-
son, WI, USA: Omnipress, 2012, p. 1467-1474.

O. A. Grigg, V. Farewell, and D. Spiegelhalter, “Use of risk-adjusted
cusum and rsprtcharts for monitoring in medical contexts,” Statistical
methods in medical research, vol. 12, no. 2, pp. 147-170, 2003.

M. Christ, N. Braun, J. Neuffer, and A. W. Kempa-Liehr, “Time series
feature extraction on basis of scalable hypothesis tests (tsfresh—a python
package),” Neurocomputing, vol. 307, pp. 72-77, 2018.

P. Cronin, X. Gao, C. Yang, and H. Wang, “Charger-Surfing: Exploiting
a power line Side-Channel for smartphone information leakage,” in

Lakeview research

(16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

30th USENIX Security Symposium (USENIX Security 21). USENIX
Association, Aug. 2021, pp. 681-698.

A. S. La Cour, K. K. Afridi, and G. E. Suh, “Wireless charging
power side-channel attacks,” in Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security, 2021, pp. 651—
665.

J. Liu, X. Zou, L. Zhao, Y. Tao, S. Hu, J. Han, and K. Ren, “Privacy
leakage in wireless charging,” IEEE Transactions on Dependable and
Secure Computing, pp. 1-1, 2022.

N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
synthetic minority over-sampling technique,” Journal of artificial intel-
ligence research, vol. 16, pp. 321-357, 2002.

Jason Brownlee. (2020) One-vs-Rest and One-vs-One for
Multi-Class Classification. [Accessed: 07-06-2022]. [Online].
Available: https://machinelearningmastery.com/one-vs-rest-and-one- vs-
one-for-multi-class-classification/

R. Spreitzer, V. Moonsamy, T. Korak, and S. Mangard, “Systematic
classification of side-channel attacks: A case study for mobile devices,”
IEEE Communications Surveys & Tutorials, vol. 20, no. 1, pp. 465-488,
2017.

A. Brighente, M. Conti, D. Donadel, and F. Turrin, “Evscout2.0: Electric
vehicle profiling through charging profile,” ACM Transactions on Cyber-
Physical Systems, sep 2022.

M. Conti, M. Nati, E. Rotundo, and R. Spolaor, “Mind the plug! laptop-
user recognition through power consumption,” in Proceedings of the 2nd
ACM International Workshop on IoT Privacy, Trust, and Security, ser.

I0TPTS 16, 2016, p. 37-44.
R. Spolaor, L. Abudahi, V. Moonsamy, M. Conti, and R. Poovendran,

“No free charge theorem: A covert channel via USB charging cable on
mobile devices,” in International Conference on Applied Cryptography
and Network Security. Springer, 2017, pp. 83-102.

Q. Yang, P. Gasti, G. Zhou, A. Farajidavar, and K. S. Balagani, “On
inferring browsing activity on smartphones via USB power analysis side-
channel,” IEEE Transactions on Information Forensics and Security,
vol. 12, no. 5, pp. 1056-1066, 2016.

Q. Yang, P. Gasti, K. Balagani, Y. Li, and G. Zhou, “USB side-channel
attack on tor,” Computer Networks, vol. 141, pp. 57-66, 2018.

Y. Su, D. Genkin, D. Ranasinghe, and Y. Yarom, “USB snooping
made easy: Crosstalk leakage attacks on USB hubs,” in 26th USENIX
Security Symposium (USENIX Security 17). Vancouver, BC: USENIX
Association, Aug. 2017, pp. 1145-1161.

P. Belgarric, P. A. Fouque, G. Macario-Rat, and M. Tibouchi, “Side-
channel analysis of weierstrass and koblitz curve ecdsa on android
smartphones,” in Cryptographers’ Track at the RSA Conference, 2016.
D. Genkin, L. Pachmanov, I. Pipman, E. Tromer, and Y. Yarom,
“ECDSA key extraction from mobile devices via nonintrusive physical
side channels,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, 2016, pp. 1626—-1638.

Authorized licensed use limited to: TU Delft Library. Downloaded on August 31,2023 at 08:20:52 UTC from IEEE Xplore. Restrictions apply.

