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Abstract—Federated learning (FL) has been proposed as a
promising distributed learning paradigm to realize edge artificial
intelligence (AI) without revealing the raw data. Nevertheless, it
would incur inevitable costs in terms of training latency and
energy consumption, due to periodical communication between
user equipments (UEs) and the geographically remote central
parameter server. Thus motivated, we study the joint edge
aggregation and association problem to minimize the total cost,
where the model aggregation over multiple cells just happens
at the network edge. After proving its hardness with complex
coupled variables, we transform it into a set function optimization
problem and prove the objective function is neither submodular
nor supermodular, which further complicates the problem. To
tackle this difficulty, we first split it into multiple edge association
subproblems, where the optimal solution to the computation
resource allocation can be efficiently obtained in the closed form.
We then construct a substitute function with the supermodularity
and provable upper bound. On this basis, we reformulate an
equivalent set function minimization problem under a matroid
base constraint. We then propose an approximation algorithm to
the original problem based on the two-stage search strategy with
theoretical performance guarantee. Both extensive simulations
and field experiments are conducted to validate the effectiveness
of our proposed solution.

I. INTRODUCTION

Recently, edge artificial intelligence (AI), where intelligence

is pushed from the network core to the edge via running AI

algorithms over edge devices, is seen as a promising key

enabler to meet the great vision of ubiquitous intelligence

[1]. With the proliferation of various mobile applications on

massive Internet of Things (IoTs) devices, e.g., autonomous

driving, and health monitoring [2], edge AI also caters to the

recent trend of most big data originated from the cloud to the

edge. Federated learning (FL), proposed by Google firstly [3],

has emerged as a promising distributed machine learning (ML)

paradigm to realize the aforementioned edge AI. At its core,

FL enables user equipments (UEs) to collaboratively train an

ML model without letting out the raw data.

FL has demonstrated its empirical success with theoretical

convergence guarantees [4]. Many literature have studied how
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to improve the learning performance [5]–[11]. Nevertheless, it

incurs inevitable costs including training latency and energy

consumption. This is because in FL, multiple local training

rounds are performed in parallel on those UEs, and then

periodical communication happens between them and the

central parameter server for model aggregation. Considering

the FL in a single cell is constrained by limited network

coverage, it cannot support adequate IoT devices and thus

leads to inevitable training performance loss. Moreover, since

the resources (e.g., communication and computation) are al-

ways limited in the wireless network [6], the costs could be

unacceptable and a cost-efficient FL design over multi-cell is

urgently needed in practice.

Existing researches about FL for edge AI mainly focus on

minimizing the training latency [12]–[16], energy consumption

[17]–[20], or both of them with trade-offs [21]–[23]. However,

most works rely on a central parameter server on the cloud to

aggregate the global model, which may incur unsatisfactory

latency performance due to the long-range communication

delay [24]. Besides, when realizing edge AI in some scenarios

such as UAV swarms [25], [26], aggregating FL models on

the cloud falls short in real-time nature and cannot cater to the

timeliness requirement for emergent task execution. Moreover,

aggregating the model on the cloud also faces the drawbacks

including privacy concerns, poor scalability, and single point

of failure. Although there exist some studies [14]–[17], [19]–

[21] exploit the innovative mobile edge computing (MEC)

architecture to aggregate the global model at the edge server

installed in a base station (BS), they restrict the FL within a

single cell which involves a relatively small number of UEs

owing to limited coverage of the cell. Therefore, to involve

more UEs for better learning performance and reduce the large

propagation latency, it is necessary to study optimizing the cost

of FL over multiple cells when the global model is aggregated
just at the edge.

In this work, we study the problem of joint Edge

AggRegation and associaTion for tHe cost-efficient multi-cell

FL (EARTH). In particular, we take the computation and

communication overhead into consideration and investigate

how to jointly determine where to aggregate the global model

(i.e., edge aggregation) and which edge BS should associate
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to which UE (i.e., edge association) alongside the resource al-

location. Our proposed optimization problem yields two main

technical challenges. First, edge association has been generally

NP-hard. Then combining the resource allocation forms a com-

plex mixed integer nonlinear programming (MINLP) prob-

lem with coupled optimization variables. Second, although

the objective function could be equal to a set function via

some transformation, it is essentially neither submodular nor

supermodular, which makes the problem more challenging.

To address the challenging EARTH problem, we first prove

its NP-hardness. Then, we split it into multiple edge asso-

ciation subproblems under given edge aggregation decisions,

while the optimal solution for computation resource allocation

can be obtained in the closed form. Next, we reformulate an

equivalent set function optimization problem under a matroid

base constraint and analyze the property of the objective

function. Finally, we construct a substituted supermodular

function with bounded gap and propose an approximation

algorithm with theoretical performance guarantee.

Our main contributions are summarized as follows:

• As far as we know, we first study the cost-efficient FL

over multiple cells where the global model aggregation

happens at the edge. We analyze the problem complexity

and identify the root cause of its NP-hardness.

• Via some problem transformation, we reformulate a set

function optimization problem under a matroid base con-

straint where the objective function is neither submodular

nor supermodular. Without loss of generality, we propose

an innovative approach to decompose the complex objec-

tive function, extract the supermodular part and finally

construct a substitute function for the non-supermodular

part. On this basis, we design a two-stage search-based

algorithm with theoretical performance guarantee.

• We conduct both extensive numerical simulations and

field experiments to evaluate the performance of the pro-

posed algorithm. The results show that our algorithm can

achieve effective and near-optimal performance, while the

average differences with the optimal solution in small-

scale networks are 0.35% and 0.51%, respectively.

II. RELATED WORKS

A large number of studies [12]–[20] have focused on cost

optimization in FL. To reduce the training time, Song et
al. [12] studied the joint optimization of computation and

communication duration. Vu et al. [13] proposed a cell-free

massive MIMO scheme to minimize the training time. Xia et
al. [14] introduced update-importance-based client scheduling

schemes using the multi-armed bandit theory. Wei et al.
[15] proposed the multi-agent multi-armed bandit framework

for channel assignment and client selection. To reduce the
energy consumption, Li et al. [17] designed an energy-

efficiency oriented compression control scheme. Zeng et al.
[18] explored an energy-efficient radio resource management

in FL. Yang et al. [19] and Mo et al. [20] both investigated

a joint learning and communication resource allocation. At

the same time, there existing several researches [21]–[23]

Fig. 1: An overview of federated edge learning over multi-cell networks.

devoting to capture trade-offs between training latency and

energy consumption or minimize the joint cost. All these

works introduce the importance weighting indicators of energy

and delay in the objective function.

To summarize, the aforementioned works mainly assume the

central parameter server is on the cloud, which may suffer the

large training latency. Although a few works [14]–[17], [19]–

[21] consider the model aggregation at an edge server, they

restrict the FL within a single cell and cannot cover a large

enough number of UEs. Different from all the above works,

we focus on how to minimize the overall cost of FL in terms

of training latency and energy cost, while considering both the

edge and global model aggregation happen at the edge.

III. MODEL AND PROBLEM FORMULATION

In this work, we consider an edge computing network

with a set of UEs N := {1, ..., N} and a set of BSs

M := {1, ...,M}, where each BS is equipped with an edge

server in the system. For simplicity, we interchangeably use

BS and edge server in this paper. Due to limited coverage of a

single cell, we suppose each BS covers a different set of UEs.

These UEs aim to collaboratively train an ML model such as

deep neural networks by FL, where each UE n ∈ N owns

a local training dataset Dn = {(Xi, Yi)}|Dn|
i=1 with Xi and

Yi denoting the i-th input sample and corresponding labeled

output, respectively.

A. Federated Edge Learning Model

The original federated edge learning system carries out the

model aggregation on both the remote cloud and the edge [11].

As illustrated in Fig. 1, we focus on all the model aggregation

happens within the edge only to achieve faster training, which

can suffice the timeliness requirement for emergent task exe-

cution such as UAV swarms reconnaissance and early warning

[26]. In this FL architecture, the training model goes through

model uploading and aggregation in edge servers. An edge

server acts as the parameter server to aggregate and broadcast

the global model in each global iteration.

Without loss of generality, we assume all the model aggre-

gation is executed by the widely used FedAvg algorithm [3],

which can be extended to other FL algorithms. To be specific,

for each UE n ∈ N , it should solve the ML model parameter ω
characterizing the output Yi with loss function fn(ω;Xi, Yi).
The loss function with respect to UE n can be defined as



Fn(ω) :=
1

|Dn|
|Dn|∑
i=1

fn(ω;Xi, Yi). (1)

In the local model update, each UE n should run a number of

local rounds denoted as L(σ) = η log(1/σ) for a large number

of iterative algorithm [27] to achieve the local accuracy σ ∈
(0, 1), where η is a constant related to the data size and the

ML task. In the t-th local round, each UE n calculates its local

update as ωt
n := ωt

n−δ�Fn(ω
t−1
n ), such that ||�Fn(ω

t
n)|| ≤

σ|| � Fn(ω
t−1
n )|| holds, where δ ∈ (0, 1) is the predefined

learning rate [28].

After L(σ) local rounds, each UE n will upload its local

model ωn to an associated edge server m. Let Nm ⊆ N
denote the set of UEs associated to edge server m, and the

corresponding edge model is aggregated by averaging the local

models as follows.

Wm =

∑
n∈Nm

|Dn|ωn∑
n∈Nm

|Dn|
. (2)

Then, edge server m will broadcast Wm to its associated UEs

for local model update in the next edge round, until reaching

an edge model accuracy σ′, which is identical for all edge

servers. For a general convex FL task, the number of edge

rounds can be obtained as L′(σ′, σ) = η′ log(1/σ′)
1−σ [29], where

η′ is a constant related to the exact learning task. After the

edge model aggregation, each edge server will transmit its

edge model Wm to one of the edge servers (the selected

parameter server) for global model aggregation. The global

model is aggregated as follows.

W =

∑
m∈M(

∑
n∈Nm

|Dn|)Wm∑
n∈N |Dn|

. (3)

B. Latency and Energy Cost Models

To quantify the training overhead, we formulate the latency

and energy cost in edge aggregation and association within one

global iteration. Let zm and xmn be the indicator variables

for edge aggregation and association, respectively. Variable

zm ∈ {0, 1} denotes whether edge server m is chosen as the

parameter server for global model aggregation (zm = 1) or not

(zm = 0). xmn ∈ {0, 1} denotes whether UE n is associated to

edge server m (i.e., xmn = 1 equals n ∈ Nm) or not (xmn = 0
equals n /∈ Nm). Considering edge servers generally possess

powerful computation capability, the edge model aggregation/

broadcasting latency is very small to be ignored [20].

1) Latency and energy cost in local model update: Let αn

denote the number of CPU cycles for UE n to process one

sample. The required CPU cycles to run one local round is thus

αn|Dn|. We denote the allocated CPU frequency of UE n for

computation by fn. Then, the latency of running L(σ) local

rounds at UE n is tncmp = L(σ)αn|Dn|
fn

and the corresponding

energy consumption is encmp = L(σ)β2 f
2
nαn|Dn|, where β

2 is

the effective capacitance coefficient [23].

2) Latency and energy cost in local model uploading:

Following [30], [31], we adopt orthogonal frequency-division

multiple access (OFDMA) for uplink channel access. In this

case, the communication bandwidth is divided into multiple

narrowband sub-channels without interference. For the sake

of fairness and simplicity, we assume the bandwidth resource

is shared equally among all associated UEs. Then, given the

maximal bandwidth Bmax
m for edge server m, we can achieve

the allocated bandwidth to UE n as Bmn =
Bmax

m

|Nm| . The

achievable uplink data rate for UE n is

rmn =
Bmax

m

|Nm| log(1 +
hmnpn

N0
), (4)

where hmn is the uplink channel gain between UE n and

edge server m, pn is the transmission power of UE n, and

N0 is the background noise. As a result, the latency for UE n
transmitting its local model ωn to edge server m is

tmn
up com = dn/rmn =

dn|Nm|
Bmax

m log(1 + hmnpn
N0

)
, (5)

where dn is the data size of local model ωn, and the corre-

sponding energy consumption is

emn
up com = pnt

mn
up com =

pndn|Nm|
Bmax

m log(1 + hmnpn
N0

)
. (6)

3) Latency and energy cost in edge/global model transfer:

For the edge/global model transfer between any two edge

servers m and m′, there exists a propagation latency tmm′
pro ,

and 2tmm′
pro for the round-trip transmission. In practical, the

value of tmm′
pro is mainly determined by distance between them

as well as the number of hops, which is also much smaller

than the communication latency to the remote cloud.

As a result, we can conclude that in each round of edge

aggregation, the total latency within edge server m is

Tm
edge = max

n∈N
{(tncmp + tmn

up com)xmn}, (7)

and the corresponding consumption is

Em
edge =

∑
n∈N

(encmp + emn
up com)xmn. (8)

Since it takes L′(σ′, σ) edge rounds to achieve the target

edge accuracy σ′, we can further conclude that in one global

round, the overall latency is given by

T = max
m∈M

{L′(σ′, σ)Tm
edge +

∑
m′∈M

2tmm′
pro zm′}

= max
m∈M

max
n∈N

{L′(σ′, σ)(tncmp + tmn
up com)xmn +

∑
m′∈M

2tmm′
pro zm′},

(9)

and the overall energy consumption is

E =
∑

m∈M
L′(σ′, σ)Em

edge

=
∑

m∈M

∑
n∈N

L′(σ′, σ)(encmp + emn
up com)xmn. (10)



C. Problem Formulation
Based on the aforementioned models, we consider the

system-wide overhead optimization problem in terms of la-

tency and energy cost. Similar to [21], [23], we introduce

weighted coefficients μ, ν ∈ [0, 1] (μ + ν = 1) to denote

the corresponding importance and strike the balance between

latency and energy cost. We then mathematically formulate the

problem of joint Edge AggRegation and associaTion for tHe

efficient multi-cell federated learning (EARTH) as follows:

(P1) : Min
Z,X,F

Ω(Z,X,F) = μE + νT (11)

s.t.
∑

m∈M
xmn = 1, ∀n ∈ N , (11a)

∑
m∈M

zm = 1, ∀m ∈ M, (11b)

fmin
n ≤ fn ≤ fmax

n , ∀n ∈ N , (11c)

xmn ∈ {0, 1}, zm ∈ {0, 1}, ∀n ∈ N ,m,m′ ∈ M. (11d)

The above optimization problem involves three variables

as Z, X and F which are coupled with each other. It is

a mixed integer non-linear programming (MINLP) problem,

since zm, xmn are integers and fn is continuous. Constrain-

t (11a) ensures that each UE should be associated to one of the

edge servers. Constraint (11b) states one edge server should

be selected as the sole parameter server. Constraints (11c) and

(11d) specify the basic range of optimization variables.

IV. PROBLEM TRANSFORMATION AND ANALYSIS

A. Complexity Analysis
In problem P1, there are three types of decision constraints:

the Z-constraint, the X-constraint, and the F-constraint.
1) Having X-constraint only: when the edge aggregation

decision and the computation frequency are given, i.e., Z0 =
{z0m},F0 = {f0

n}, we can denote the objective function in

P1 as Ω(X) and change to P2:

(P2) : Min
X

Ω(X) = μE(X) + νT (X) (12)

s.t.
∑

m∈M
xmn = 1, ∀n ∈ N , (12a)

xmn ∈ {0, 1},m ∈ M, ∀n ∈ N , (12b)

which is a binary integer programming (BIP) problem with

respect to X only. Then, we have the following theorem.
Theorem 1: The X-constraint alone induces the NP-

hardness of EARTH.
Proof: We can prove it by reduction from the k-median

problem [32], which is omitted due to the space limitation.
2) Removing X-constraint: when the edge association de-

cision is given, i.e., X0 = {x0
mn}, we have the set of

UEs Nm associated to edger server m. Then, we can loop

through all edge servers for parameter server selection, i.e.,

zm′ = 1 to compare the objective function value. To simplify

the notations, we first introduce the following terms:

An = L′(σ′, σ)L(σ)αn|Dn|,
Kn = L′(σ′, σ)L(σ)β2αn|Dn|,
Υmn = L′(σ′, σ)emn

up com,
Ψmn = L′(σ′, σ)tmn

up com,

Φm =
∑

m′∈M 2tmm′
pro zm′ .

Problem EARTH

Given any X Substitute F by F*(Z,X)

Equivalent

Equivalent

Approximation 
Guarantee

Substituted Function 
Construction

Given any

Fig. 2: A flowchart of problem transformation.

Thus, our problem turns into a computation resource allocation

problem with respect to F := {fn} only as follows:

(P3) : Min
F

Ω(F) = μE(fn) + νT (fn)

= μ
∑

m∈M

∑
n∈Nm

(Knf
2
n +Υmn)

+ ν max
m∈M

max
n∈Nm

{An

fn
+Ψmn +Φm}, (13)

s.t. fmin
n ≤ fn ≤ fmax

n , ∀n ∈ N . (13a)

Lemma 1: Removing X-constraint makes the problem

polynomial-time solvable.

Proof: From the expression, we can find that problem

P3 is convex, which can be solved using some convex

optimization solvers (e.g., CVX and IPOPT). Thus, the optimal

solution F∗ = {f∗
n} can be obtained in polynomial time.

B. Problem Reformulation

Fig. 2 presents the flowchart of problem transformation.

Inspired by Lemma 1, for any Z and X, we can always obtain

the closed form of optimal computation resource allocation

F∗(Z,X) by solving P3 in polynomial time. Moreover, when

given the edge aggregation decision Z, we can substituting F
with F∗(X) and it is equivalent to solve the edge association

sub-problem in P2 only regarding X. The objective function

is Ω(F∗(X)), abbreviated as Ω(X).
Next, we prove the objective function Ω(X) can be trans-

formed into a real-valued set function. Let G := {(m,n)|∀m ∈
M, n ∈ N}, which builds up a one-to-one mapping between

edge association variable xmn and element u = (m,n) ∈ G.

V ⊆ G present the selected association pairs of edge server

and UE, that is, V := {(m,n)|xmn = 1, ∀m ∈ M, n ∈ N}.

Then, we can define the new set function g(V) := Ω(X),
where xmn = 1 iff (m,n) ∈ V . The objective function in P2
becomes Min g(V).

Definition 1: (Matroid) [33] A matroid U is a tuple (G, I),
where G is a finite ground set and I ⊆ 2G is a collection of

independent sets, such that: (1) I is nonempty, in particular,

∅ ∈ I; (2) I is downward closed, i.e., if V2 ∈ I and V1 ⊆ V2,

then V1 ∈ I; (3) if V1,V2 ∈ I, and |V1| < |V2|, then ∃u ∈
V2\V1, such that V1 ∪ {u} ⊆ I. An independent set V1 ∈ I
with the maximum size is defined as a base of the matroid.

According to the constraint in Eq. (12a), each UE n should

be associated to only one edge server. That implies, taking n1

for example, we cannot select the pairs of edge association

(m1, n1) and (m2, n1) simultaneously in set V . Then, we can

define I as a collection of subsets of G, where each subset



consists of some elements of pairs that any UE is associated

to only one edge server. We assume there are no less than two

UEs and two edge servers, N ≥ 2 and M ≥ 2; otherwise, the

problem is trivial. Then, we have the following lemma.

Lemma 2: Given G := {(m,n)|∀m ∈ M, n ∈ N}, the pair

U := {G, I} is a matroid, where I is a collection of indepen-

dent sets, that is, I := {V|V ⊆ G, ∀u1 = (m1, n1), u2 =
(m2, n2) ∈ V, n1 �= n2}. Constraint (12a) in P2 corresponds

to a matroid base constraint, i.e., V ∈ b(U), where b(U) is the

set of bases of U .

Proof: According to the construction of the pair U :=
{G, I}, we can prove by contradiction that U has the same

three properties in Definition 1. We omit the specific process

due to the space limitation. Therefore, U is a matroid. Besides,

it is easy to obtain that the size of U is N since there are

N UEs. Considering constraint (12a) in P2,
∑

m∈M
xmn = 1

means that finding an edge association strategy for each UE

n is equal to find a set V ⊆ G, which constitutes a base of U ,

V ∈ b(U). The lemma is thus proved.

Therefore, we can transform the edge association subprob-

lem P2 into the set function minimization problem under the

matroid base constraint, that is,

(P2′) : Min g(V), ∀V ∈ b(U). (14)

C. Modularity Analysis

Definition 2: (Nonnegativity, Monotonicity, and Super-
modularity) [34]. Given a finite ground set G, a real-valued

set function defined as g : 2G → R, g(·) is called nonnegative,

monotone (nondecreasing), and supermodular if and only if it

satisfies following conditions, respectively.

• g(∅) = 0 and g(V) ≥ 0 for ∀V ⊆ G (nonnegative);

• g(V1) ≤ g(V2) for ∀ V1 ⊆ V2 ⊆ G (monotone);

• g(V1∪{u})−g(V1) ≤ g(V2∪{u})−g(V2), ∀V1 ⊆ V2 ⊆
G, u ∈ G\V2 (submodular);

Any function g(·) is said to be supermodular if −g(·) is

submodular. Supermodularity has an increasing return property

while submodularity captures a diminishing return property,

which means that the added value of an element to a bigger

set is less than that to a smaller set [34]. Thus, in this part,

we attempt to analyze the nonnegativity, monotonicity, and

modularity (supermodular or submodular) of g(V).
Firstly, g(V) is non-negative from the function defini-

tion. According to the equivalent expression of the objective

function in P2 and Eqs. (9), (10), all coefficients including

L′(σ′, σ), encmp, pn, tncmp, τmn, and 2tmm′
pro in Ω(X) are non-

negative. Thus, g(V) is non-negative.

Secondly, g(V) is the monotone since the expansion of

any set V ⊆ G will relax item Nm of Eq. (13) in P3 and

increase the optimal objective value potentially. For example,

when adding one element u = (mu, nu) in V , it is equal to

associate UE nu to edge server mu, which possibly induces

more energy cost (the accumulative energy consumption of

all edge associations) and increases the system latency (the

maximal one induced by edge association) as well. Then,

∀V1 ⊆ V2 ⊆ G, g(V2) ≥ g(V1), which proves it is monotone.

Lastly, to discuss the modularity (supermodular or sub-
modular) of the objective function, we need to compare the

marginal increment g(V2 ∪ {u}) − g(V2) and g(V1 ∪ {u}) −
g(V1) for any V1 ⊆ V2 ⊆ G and element u ∈ G\V2, such

that V1 ∪ {u} and V2 ∪ {u} are also feasible. Since g(V) has

two different components including energy consumption μE
and training latency νT , we analyze these two components

separately and derive the property as a whole.

To simplify the notation, we introduce the term τmn =
dn

Bmax
m log(1+hmnpn

N0
)

and rewrite function Ω(X) as

Ω(X) = μE(X) + νT (X)

= μ
∑

m∈M

∑
n∈N

L′(σ′, σ)(encmp + pnτmn|Nm|)xmn

+ ν max
m∈M

max
n∈N

{L′(σ′, σ)(tncmp + τmn|Nm|)xmn + 2tmm′
pro }. (15)

Recall the equivalence relation between g(V) and Ω(X), we

can construct another two set functions g1(V) and g2(V)
corresponding to μE(X) and νT (X), respectively.

g1(V) = μE(X)|∀(m,n)∈V,xmn=1;otherwise,xmn=0

= μ
∑

(m,n)∈V
L′(σ′, σ)(encmp + pnτmn|Nm|), (16)

g2(V) = νT (X)|∀(m,n)∈V,xmn=1;otherwise,xmn=0

= ν max
(m,n)∈V

{L′(σ′, σ)(tncmp + τmn|Nm|) + 2tmm′
pro }. (17)

Thus, we can separate function g(V) as g(V) = g1(V)+g2(V).
For g1(V), we have the following lemma.

Lemma 3: The first component g1(V) is supermodular.

Proof: For any new element (pair) u = (mu, nu) ∈ G\V2,

divide set V1 into two subsets V ′
1 and V1\V ′

1, where the first

component in V ′
1 is equal to mu and that in V1\V ′

1 is not, e.g.,
V ′
1 = {(mu, n1), (mu, n2), ..., (mu, nl)} with l = |V ′

1|. Note

that the difference between g1(V1 ∪ {u}) and g1(V1) is that

g1(V1 ∪ {u}) has the extra edge association between mu and

nu. We can calculate the difference value.

g1(V1 ∪ {u})− g1(V1) = g1(V ′
1 ∪ {u})− g1(V ′

1)

= μL′(σ′, σ)((en1
cmp + en2

cmp + ...+ e
nl
cmp + enu

cmp)

+ (pn1τmun1 + pn2τmun2 + ...+ pnlτmunl + pnuτmunu )(l + 1))

− μL′(σ′, σ)((en1
cmp + en2

cmp + ...+ e
nl
cmp)

+ l(pn1τmun1 + pn2τmun2 + ...+ pnlτmunl + pnuτmunu ))

= μL′(σ′, σ)(enu
cmp + pn1τmun1 + pn2τmun2 + ...+ pnlτmunl

+ pnuτmunu (l + 1)). (18)

In a similar way, we can also divide set V2 into two

subsets V ′
2 and V2\V ′

2, where the first component in set

V ′
2 is equal to mu and that in V2\V ′

2 is not. Owing to

V1 ⊆ V2, we have V ′
1 ⊆ V ′

2 and V ′
2 has more ele-

ments with first component equaling to mu, e.g., V ′
2 =

{(mu, n1), (mu, n2), ..., (mu, nl), ..., (mu, nl′)}, where l′ =
|V ′

2| ≥ l. Then, referring to the expression in Eq. (18), we

can calculate the difference value as follows.

g1(V2 ∪ {u})− g1(V2) = g1(V ′
2 ∪ {u})− g1(V ′

2)

= μL′(σ′, σ)(enu
cmp + pn1τmun1 + pn2τmun2 + ...+ pnlτmunl

+ ...+ pnl′ τmunl′ + pnuτmunu (l
′ + 1)). (19)



Therefore, we compare g1(V2∪{u})−g1(V2) with g1(V1∪
{u})− g1(V1) and have

g1(V2 ∪ {u})− g1(V2)− (g1(V1 ∪ {u})− g1(V1))

= μL′(σ′, σ)(pnl+1τmunl+1 + ...+ pnl′ τmunl′ + pnuτmunu (l
′ − l))

≥ 0. (20)

Noticeably, we can achieve the inequality due to the non-

negative coefficients including μL′(σ′, σ), pn, τmn and l′ ≥ l.
Thus, we have the result that g1(V) is supermodular.

Lemma 4: The second component g2(V) is neither super-
modular nor submodular, which essentially determines the

property of g(V).
Referring to the property definition, Lemma 4 can be proved

by giving two counter examples to show it is not supermodular

and submodular, respectively. We omit the proof process due

to the space limitation. Therefore, based on the above two

lemmas, we can easily obtain the following theorem.

Theorem 2: The reformulated objective function g(V),V ⊆
G is nonnegative, monotone (nondecreasing), but neither su-
permodular nor submodular.

To the best of our knowledge, for any set function which is

neither submodular nor supermodular, there exists no approx-

imation algorithm for optimization problem under the matroid

base constraint. One native solution is to enumerate all edge

association subsets and compute their value of the objective

function which is infeasible in largescare networks.

V. SOLUTION

In this section, we will construct a supermodular function

ĝ(V) with the tight upper bound to approximate the original

non-supermodular objective function g(V). On this basis, we

transform problem P2′ into P2′′ and P4, which falls into

the scope of maximizing the submodular function. Finally,

we design an approximation algorithm based on the two-stage

search strategy and prove it is performance-guaranteed.

A. Latency Function Construction with An Upper Bound

We define φ = ν max
m∈M

max
n∈N

{L′(σ′, σ)tncmp + 2tmm′
pro } and

ψ = ν min
m∈M

min
n∈N

{L′(σ′, σ)tncmp + 2tmm′
pro } be the maximum

and minimum value of the sum of local computation and

model transfer latency, respectively. Then, we construct the

following latency function

T̂ (X) = φ/ν + L′(σ′, σ) max
m∈M

max
n∈N

{τmn}
∑

m∈M

∑
n∈N

xmn, (21)

which always has the maximum latency components. We have

the corresponding set function ĝ2(V).
ĝ2(V) = νT̂ (X)|∀(m,n)∈V,xmn=1;otherwise,xmn=0

= φ+ νL′(σ′, σ) max
(m,n)∈G

{τmn}|V|. (22)

If we define Ω̂(X) = μE(X) + νT̂ (X), the substituted set
function can be constructed as

ĝ(V) = g1(V) + ĝ2(V)
= μE(X) + νT̂ (X)|∀(m,n)∈V,xmn=1;otherwise,xmn=0

= Ω̂(X)|∀(m,n)∈V,xmn=1;otherwise,xmn=0. (23)
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We introduce our method to calculate the value of function

ĝ(V): when given any set V , we can easily derive the corre-

sponding X0 by setting xmn = 1 for any (m,n) ∈ V . Besides,

if we have the edge aggregation decision Z0, e.g., zm = 1,

our objective function is equal to Ω̂(F) only with respect to

variable F. Since we can achieve the value Ω(F) by solving

P3, we can refer to this idea to obtain the value of Ω̂(F) as

well by solving the following problem P3′.

(P3′) : Min
F

Ω̂(F) = μE(fn) + νT̂ (fn)

s.t. fmin
n ≤ fn ≤ fmax

n , ∀n ∈ N . (24)

Next, we give the following lemma.

Lemma 5: The set function ĝ(V) is nonnegative, monotone
and supermodular. Furthermore, define

Δ = φ− ψ + νL′(σ′, σ)(N max
(m,n)∈G

{τmn} − min
(m,n)∈G

{τmn}),

the gap between ĝ(V) and g(V) is bounded as follows.

g(V) ≤ ĝ(V) ≤ g(V) + Δ, ∀V ⊆ G. (25)

Proof: ĝ(V) is nonnegative according to the definition in

Eqs. (16) and (22). Since g1(V) is monotone and supermodu-

lar, we just need prove ĝ2(V) is monotone and supermodular.

For any adding new element u = (mu, nu) to V , which

means xmunu
= 1, it incurs the constant marginal incre-

ment νL′(σ′, σ) max
(m,n)∈G

{τmn} referring to the definition in

Eq. (22). Naturally, ĝ2(V) is a linear increasing function which

can be regarded as a monotone supermodular function as well.

To find the gap between ĝ(V) and g(V), we present the

function curve of both ĝ2(V) and g2(V) in Fig. 3. Recall

the expression for g2(V) and ĝ2(V) in Eqs. (17) and (22),

we can easily derive ĝ2(V) ≥ g2(V) for any input V . This

is because ĝ2(V) always has the maximal computation and

model transfer latency φ in the first component, and has the

maximal communication latency νL′(σ′, σ) max
(m,n)∈G

{τmn}|V|
for any input V in the second component. Thus, we can always

have ĝ2(V) ≥ g2(V).
When V = ∅, the difference between ĝ2(V) and g2(V) is

ΔV = ĝ2(V)|V|=0 − g2(V)|V|=0

= ν max
(m,n)∈G

{L′(σ′, σ)tncmp + 2tmm′
pro } = φ. (26)

When V is not an empty set that |V| > 0,V ∈ b(U), we

have g2(V)|V|=N ≥ ψ + νL′(σ′, σ) min
(m,n)∈G

{τmn} and



ΔV = ĝ2(V)− g2(V)
≤ φ+ νL′(σ′, σ)|V| max

(m,n)∈G
{τmn}

− (ψ + νL′(σ′, σ) min
(m,n)∈G

{τmn})

= φ− ψ + νL′(σ′, σ)(|V| max
(m,n)∈G

{τmn} − min
(m,n)∈G

{τmn})

= Δ− (N − |V|) max
(m,n)∈G

{τmn}. (27)

Obviously, when |V| = N , the difference between ĝ2(V)
and g2(V) is bounded by Δ. We can achieve ĝ(V) ≤ g(V)+Δ
for any V ∈ b(U) to prove the above lemma.

Therefore, by replacing g(V) with ĝ(V), we can formulate

the non-negative monotone supermodular minimization prob-

lem with a single matroid base constraint, that is,

(P2′′) : Min ĝ(V) , ∀V ∈ b(U). (28)

B. Local Search Algorithm

According to Lemma 5, −ĝ(V) is non-monotone and sub-

modular. There exist approximation solutions for maximiz-

ing a non-negative non-monotone submodular function over

bases of a matroid [35]. To apply that solution, we need

to transform the objective function into an appropriate non-

negative function, i.e., h(V) := gmax − ĝ(V), where gmax

is the upper bound of ĝ(V) and h(V) ≥ 0. Since g1(V)
and ĝ2(V) achieve the maximum at V = G, we can define

g1max := g1(G) =
∑

(m,n)∈G
L′(σ′, σ)(encmp + pnτmnN) and

g2max := ĝ2(G) = φ + νL′(σ′, σ) max
(m,n)∈G

{τmn}MN , respec-

tively. Then, we can construct gmax = g1max + g2max and

calculate the value of function h(V). Since minimizing ĝ(V)
equals to maximizing h(V), we can transform problem P2′′

into P4 as follows.

(P4) : Max h(V), ∀V ∈ b(U). (29)

For the above set function maximization problem, we can

refer to the spirit in [35] and design an approximation algo-

rithm in Algorithm 1. The core idea is to loop through all

edge servers for edge aggregation selection and compare with

the value of h(Ṽm) which can be calculated by executing the

two-stage search procedure in Algorithm 2. We then obtain the

edge aggregation decision Z, edge association strategy X, and

computation resource allocation F with the maximum h(Ṽm′).
The two-stage search strategy devotes to decide the output

V . In Stage One (steps 1-10), we initialize V1 satisfying the

base constraint, e.g., each UE randomly selects an edge server

for association in order. We calculate ĝ(V1) and obtain the

value of h(V1). Then, we exploit the local search method only

based on the exchange operations to find the updated base V1,

such that the value of h(V2) can be increased by a factor of at

least 1 + ε
N4M4 at each iteration. In Stage Two (steps 11-25),

we initialize a singleton set V2 = (ms, ns) ⊆ G\V1 with the

maximum value h(V2), equals the minimum ĝ({(ms, ns)}).
We then run a local search on G\V1 using both deletion and

exchange operations to obtain an independent set V2 ⊆ G\V1.

After the above process, we compute two disjoint bases of

U ′ = U\{V2}, i.e., b1 and b2. Thus, we actually obtain three

Algorithm 1: Proposed Algorithm for Problem EARTH

Input: Edge server set M, UE set N , ground set
G := {(m,n)|∀m ∈ M, n ∈ N}, matroid U := {G, I},
constant ε > 0.

Output: Z,X,F.
1 Initialize: Let Z = 0, X = 0.
2 for m = 1, 2, ...,M do
3 zm = 1.

4 Execute the two-stage search procedure with returned Ṽm and

h(Ṽm).
5 end
6 m′ ← argmax

m∈M
h(Ṽm).

7 Set zm′ = 1, xmn = 1 and obtain F by solving P3′ ∀(m,n) ∈ Ṽm′ .
8 Return Z, X, F.

Algorithm 2: Two-Stage Search for Edge Association

Input: Edge aggregation decision Z, ground set
G := {(m,n)|∀m ∈ M, n ∈ N}, matroid U := {G, I},
constant ε > 0.

Output: Edge association set Ṽ , value of h(Ṽ).
1 Stage one:
2 Initialize V1 with an arbitrary base of matroid U .
3 Obtain the value of h(V1), h(V1) = gmax − ĝ(V1).
4 while 1 do
5 if ∃ (m,n) ∈ G\V1 and (m′, n′) ∈ V1 such that

V1
′ = V1\{(m′, n′)} ∪ {(m,n)} is a base of U and

ĥ(V1
′) > (1 + ε

N4M4 )h(V1) then
6 V1 ← V1

′.
7 break
8 end
9 end

10 Stage two:
11 Let (ms, ns) ⊆ G\V1 be a singleton set with the minimum value

ĝ({(ms, ns)}).
12 Obtain the value of h({(ms, ns)}) = gmax − ĝ({(ms, ns)})
13 Initialize V2 = {(ms, ns)}.
14 while 1 do
15 if ∃ (m,n) ∈ V2, V2

′ = V2\{(m,n)}, such that
h(V2

′) ≥ (1 + ε
N4M4 )h(V2) then

16 V2 ← V2
′.

17 end
18 else if ∃ (m,n) ∈ (G\V1)\V2, (m′, n′) ∈ V2 ∪ {∅} such that

V2
′ = V2\{(m′, n′)} ∪ {(m,n)} ∈ I and

h(V2
′) > (1 + ε

N4M4 )h(V2) then
19 V2 ← V2

′
20 end
21 else
22 break
23 end
24 end
25 Let U ′ = U\{V2}. Compute two disjoint bases of U ′, i.e., b1 and b2.

26 Choose Ṽ = argmaxV=V1,V2∪b1,V2∪b2h(V) and return.

different bases of U , i.e., V1,V2 ∪ b1,V2 ∪ b2. We select the

best one of the three bases that maximizes the value h(V) and

return the result. Last, the algorithm outputs the parameter

server decision Z and X according to the chosen base.

C. Theoretical Analysis

Theorem 3: Let Z̃, X̃, F̃ be the output of Algorithm 1. Let

Z∗,X∗,F∗ be the optimal solution of P1. Then, we have

Ω(Z̃, X̃, F̃) ≤
(
1

6
− ε

)
Ω(Z∗,X∗,F∗) +

(
1

6
− ε

)
Δ+

(
5

6
+ ε

)
gmax.

(30)

The time complexity is O( 1εN
4M5 log(NM −N) +NM2)

Proof: For the performance guarantee: The theorem is

a corollary of Theorem 5.2 in [35], which proves that there



exists a ( 16 − ε)-approximation algorithm for maximizing any

non-negative submodular function over bases of a matroid.

Recall that Algorithm 1 actually designs an approximation al-

gorithm for P4, we have gmax−ĝ(Ṽ) ≥ ( 16−ε)(gmax−ĝ(V∗)).
Thus, we can derive

g(Ṽ) ≤ ĝ(Ṽ) ≤
(
1

6
− ε

)
ĝ(V∗) +

(
5

6
+ ε

)
gmax

≤
(
1

6
− ε

)
(g(V∗) + Δ) +

(
5

6
+ ε

)
gmax

≤
(
1

6
− ε

)
g(V∗) +

(
1

6
− ε

)
Δ+

(
5

6
+ ε

)
gmax.

Remember the equivalence relation g(V∗) ↔ Ω(X∗) ↔
Ω(Z∗,X∗,F∗), g(Ṽ) ↔ Ω(X̃) ↔ Ω(Z̃, X̃, F̃) for any given

Z and the optimal F∗(X), and Algorithm 1 always selects the

maximal return Ṽm′ , then we can achieve Eq. (30).

We then analyze the time complexity as follows. First-

ly, looping through all edge servers in Algorithm 1 con-

sumes M operations. Secondly, when conducting the two-

stage search in Algorithm 2, steps 2-3 construct an arbi-

trary base V1 that consumes O(N) operations. Steps 4-

10 search a locally optimal base by swap operations that

consumes N(M − 1) = O(NM) at most. Steps 11-13

initialize V2 needs at most N(M − 1) = O(NM) operations,

due to G\V1 = NM − N . In steps 14-24, the number

of operations is at most log1+ ε
N4M4

OPT (G\V1)
OPT (G\V1)/(NM−N) =

O( 1εN
4M4 log(NM − N)). Finally, step 25 computes two

disjoint bases for matroid U ′ that needs O(N) + O(NM) =
O(NM) operations. Step 26 takes a constant time to find the

best one of the three bases. To summarize, the running time

is M(O(N) +O(NM) +O(NM) +O( 1εN
4M4 log(NM −

N))+O(NM)) = O( 1εN
4M5 log(NM−N)+NM2), which

is polynomial of the problem size.

VI. SIMULATION EVALUATION

In this section, we conduct extensive simulations under

different settings to verify the performance of the proposed

algorithm (labeled as “EARTH” in the figures).

A. Evaluation Setup

We assume all the UEs and edge servers are randomly

distributed in the 500 m ×500 m area. If no otherwise stated,

the number of UEs, edge servers are 50 and 10, respectively.

Referring to the setting in [23], the effective computation

capacity fn of each UEs is within [1, 10] GHz. The data trans-

mission power of each UE and edge server are set as pn = 0.2
W and pm = 0.3 W, respectively. The maximum bandwidth of

each edge server is the same as Bmax
m = Bmax

l = 2 MHz. We

set the channel gain hmn = [−50,−10] dBm and the noise

power N0 = −90 dBm [36]. The parameters setting of FL

task is based on the work in [19]. We suppose the collected

data size Dn of each UE uniformly distributed in [5, 10] MB

and the number of CPU cycles required per bit is in [40, 100]
cycles/bit. The uploaded model size is assumed to a constant

as 4.5 MB. We also set the typical parameters as σ = σ′ = 0.1,

L(σ) = L′(σ′, σ) = 5, tmm′
pro = [5− 10] s, μ = ν = 0.5.
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B. Baseline Setup

We involve five benchmark algorithms for comparison.

Random Edge Association (RAN-EA): each edge server m
randomly selects a set of UEs for model aggregation. Random
Resource Allocation (RAN-RA): it randomly determined the

computation capacity between fmin
n and fmax

n . Greedy: each

UE n greedily selects the connected edge server m in an

ascending order with the maximum communication bandwidth

that can be allocated. EAA: it is an algorithm proposed in [23],

which iteratively adjusts edge association strategy using the

transferring and exchanging method. Brute-Force: it utilizes

the exhaustive search method to find the optimal solution.

Since it cannot be applied in largescare networks, we only

show its results under the small network scale in Table I.

C. Evaluation Results

1) Impact of network size. As shown in Fig. 4, the global

cost has a growth trend when increasing the number of UEs

from 15 to 60. This is because more participants increase

the accumulated energy cost in local model updating and

also lengthen the model uploading time with the dimin-

ished allocated bandwidth. Our algorithm performs more cost-

efficient and can reduce the global cost by 31.36%, 49.18%,

24.62% and 20.49%, compared with four benchmarks (RAN-

EA, RAN-RA, Greedy, and EAA).

Fig. 5 depicts that the global cost gradually decreases when

the number of edge servers increases from 5 to 20. The reason

is that more edge servers provide UEs more chances with

better channel quality for local model uploading and UEs can

be allocated more bandwidth to reduce the uploading cost. It

is worth noting that when the number of edge servers is 5, the

global cost of RAN-RA is lower than EARTH. This is because

the random computation frequency might induce a feasible

solution closer to the optimal solution than EARTH. Finally,

our algorithm reduces the overall cost by 33.04%, 37.06%,

22.36%, and 16.65%, compared with four benchmarks.

2) Impact of maximum bandwidth Bmax
m . Fig. 6 illustrates

that the global cost goes down with the increase of bandwidth.

This is because the higher bandwidth speeds up the trans-

mission rate to shorten the model uploading time and allow

the lower computation frequency. In addition, our algorithm

can reduce the overall cost by 36.22%, 32.25%, 22.25% and

15.87%, compared with four benchmarks.

3) Impact of local data size Dn. As shown in Fig. 7, we

find that the larger size of local data would increase the global

cost for all algorithms. We account for this result that the

large amount of training data in UEs raises both the model
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TABLE I: The near-optimality performance.

Algorithm
Total bandwidth (MHz)

1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5
Brute-Force 217.59 209.62 203.14 197.59 192.73 188.71 185.15 181.97 179.20 176.68 174.38
EARTH 218.55 211.16 204.82 198.22 193.30 188.96 185.15 183.10 180.05 176.68 174.38
Difference 0.44% 0.73% 0.83% 0.32% 0.30% 0.13% 0 0.62% 0.47% 0 0

training latency and cost in local model update process. When

the data size increases from 3 MB to 8 MB, our algorithm

can reduce the overall cost by 31.99%, 38.18%, 24.36% and

19.01%, compared with four benchmarks.

4) Impact of UEs’ transmission power pn. Fig. 8 depicts that

there is an growing trend in the global cost when increasing

the transmission power from 0.1W to 0.5W. This is because

providing the larger transmission power would increase the

model uploading cost. Admittedly, the propagation delay can

be shortened when improving the transmission power. Nev-

ertheless, its impact on energy consumption weights over the

latency saving. In this case, our proposed algorithm still has

better performance, reduce the over cost by 31.61%, 34.38%,

21.02% and 15.68% compared with four benchmarks.

5) Impact of weighted coefficients μ, ν. In general, there

is a conflict between the goals of minimize the energy cost

E and the training latency T . We show the trade-off curves

in Fig. 9 and find that when μ/ν increases, our curves have

a descending trend. This is because a smaller μ/ν means

the larger coefficient value of training latency than that of

energy cost, which implies the latency important weight plays

a leading role in global cost reduction, and vice versa. In

addition, our curve is more efficient (means lower energy cost

and latency) when the transmission power becomes smaller.

6) Comparison with the optimal results. We also com-

pare the performance between our algorithm and the optimal

“Brute-Force” algorithm using exhaustive searches for edge

association decisions under the small network scale. We set

N = 8, M = 3 and present the comparison result in Ta-

ble I when varying the maximum communication bandwidth.

EARTH performs closely to Brute-Force and even the same

when the total bandwidth is 2.1, 2.4 and 2.5 MHz, respectively.

The average difference between them is 0.35% of the optimal

overhead, which shows the suboptimality.

VII. FIELD EXPERIMENT

To further evaluate our proposed algorithm, we conduct

field experiments in Fig. 10. Our testbed consists of several

computing modules such as NVDIA Jetson Nano, TX2, where

3 TX2 modules act as edge servers and the other modules serve

as 8 UEs, and three routers act as the wireless access point,

Edge server 
#3 TX2 Edge server 

#1 TX2
Edge server 
#2 TX2

UE #8 
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UE #6 
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UE #1 
TX2

UE #7 
NANO
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NANO
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NANO

Wireless AP

UE #4 
NX

UE #5 
NANO

3 TX2 modules serves as edge servers;
8 IoT modules, such as Jetson Nano, NX, act as UEs;
3 TP-LINK routers act as the wireless Aps for model transfer;
1 tablet PC is to control and display the FL process.

Fig. 10: Experimental scenario.
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and a tablet PC. These 8 UEs apply MNIST as the dataset and

the learning model is a two-layer DNN.

We consider both the uniform and nonuniform intercon-

nections among edge servers in this small-scale network. For

the uniform interconnection, the propagation latency between

edge servers are the same and negligible in practice, which is

expressed by tmm′
pro = 0. For the nonuniform interconnection,

we can set different timers for TX2 devices to simulate the

latency of edge model transfer between edge servers, that is

t12pro = t21pro = 1s, t13pro = t31pro = 5s, t23pro = t32pro = 7s.

For ease of measurement, we set μ = 0, ν = 1 to

compare the system performance in terms of training latency.

As shown in Fig. 11, our EARTH algorithm always has a better

latency performance when comparing with RAN-EA, Greedy,

and EAA. Besides, the training latency in the nonuniform

communication system is larger because it spends more time

for edge model transmission. Meanwhile, our results are very

close to the optimal results and the differences compared to

Brute-Force are about 0.26% and 0.76% (0.51% on average)

for two different communication systems, respectively.

VIII. CONCLUSION

To facilitate the implementation of edge AI, we consider

the global model aggregation over multiple cells happens at

the edge. Then, the joint edge aggregation and association

problem is investigated to minimize the total cost. After the

complexity analysis, we split into multiple edge association

subproblems and transform it into an equivalent set function

optimization problem under a matroid base constraint. We then

devise a substitute supermodular function with bounded gap

and propose an approximation algorithm using the two-stage

search strategy. Simulation and field experiments results show

that our algorithm has both the superiority and near-optimality.
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