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Abstract—Time series data have numerous applications in big
data analytics. However, they often cause privacy issues when
collected from individuals. To address this problem, most existing
works perturb the values in the time series while retaining their
temporal order, which may lead to significant distortion of the
values. Recently, we propose TLDP model [45] that perturbs tem-
poral perturbation to ensure privacy guarantee while retaining
original values. It has shown great promise to achieve significantly
higher utility than value perturbation mechanisms in many time
series analysis. However, its practicability is still undermined by
two factors, namely, utility cost of extra missing or empty values,
and inflexibility of privacy budget settings. To address them,
in this paper we propose swirch as a new two-way operation
for temporal perturbation, as opposed to the one-way dispatch
operation in [45]. The former inherently eliminates the cost of
missing, empty or repeated values. Optimizing switch operation
in a stateful manner, we then propose StaSwitch mechanism
for time series release under TLDP. Through both analytical
and empirical studies, we show that StaSwitch has significantly
higher utility for the published time series than any state-of-the-
art temporal- or value-perturbation mechanism, while allowing
any combination of privacy budget settings.

Index Terms—Local differential privacy; time series; temporal
perturbation; switch operation

I. INTRODUCTION

In big data era, continual data, i.e., a sequence of values
in the temporal order (a.k.a., time series), has numerous real-
world applications [39]. Among them, many time series are
collected from individuals, such as biosensors in telecare, IoT
sensors in smart home, and trajectories for mobility tracking
in COVID-19 pandemic. Directly releasing them to the public
can cause privacy infringement [21]], [28]]. For example, the
periodic heart rate readings from an Apple Watch may reveal
the daily activity of its owner, e.g., sleeping, sitting, or
walking.

To address this issue, many privacy-preserving time series
publishing techniques have been proposed [32], [43], most
of which are based on differential privacy [13], in either a
centralized [[14]], [31] or a local setting [4], [9], [36], [42].
However, all these works are value perturbation mechanisms,
i.e., they perturb the value at each timestamp so that no
value at any timestamp can be inferred with high confidence.
Unfortunately, in medical and financial applications, such
mechanisms do not work because distorted values are useless
or even harmful, for example ECG/blood pressure readings,
and stock trading prices.

Our recent work [45] has proposed to mitigate this issue by
perturbing the temporal order of a time series. The privacy
model, namely local differential privacy in the temporal setting
(TLDP), guarantees an adversary cannot infer the original
timestamp of a value with high confidence. As temporal per-
turbation does not inject any noise to the value, the accuracy of
most time series statistics (e.g., moving average, range count)
and manipulations (e.g., window smoothing, resampling) can
be significantly enhanced. The following is a concrete example
beyond the medical or financial domain.

Example: Smart Meter. Utility (electricity, gas, and water)
companies are deploying smart meters in households to collect
real-time consumption data for usage prediction and resource
scheduling. However, such data may disclose the activities in
an individual household, such as away-from-home (low usage
of all three utilities) and heavy washing (high usage of both
electricity and water in a laundry room). To preserve privacy
under differential privacy, unfortunately we cannot perturb
these reading values as they must be accurately reflected in the
utility bills. Therefore, temporal perturbation (independently
on these three time series) becomes the natural way to achieve
deniability and differential privacy.

Although TLDP is a promising privacy model in value-
critical applications, there remain two issues in [45]]. First, the
proposed Threshold Mechanism (TM) is built on the operation
of dispatch, which randomly moves the value of the current
timestamp to a future timestamp within a sliding window of
length k. But since this is a one-way operation (i.e., only from
current to future, but not vice versa), it causes missing, empty
or repeated values in a released time series. Second, TLDP has
two privacy parameters, namely, the privacy budget ¢ and the
sliding window length k. However, the Threshold Mechanism
(TM) cannot effectively support all combinations of € and k.
A mismatch of € and k could either cost TM extra missing or
empty values to satisfy a small € or a large k, or waste the
large € for a small k. The following two examples explain this
mismatch issue of TM.

« Frequency counting, which counts the occurrences of a
specific value in a time series, is sensitive to missing
values. Using TM with € = 1.0 and k& = 10 causes very
large estimation error, 382 times higher than Randomized
Response [38]], a value-perturbation mechanism on time
series.



« When k = 4, the largest privacy budget TM can support
is only 2.19. In other words, any ¢ larger than 2.19 has
to be wasted [45]].

In this paper, we present a switch-based mechanism for
TLDP that addresses these two issues. As opposed to the
dispatch operation in TM, switch is a two-way operation
in a time series, which exchanges two values S; and S,
of timestamps ¢; and ¢;. In essence, a switch is equivalent
to two synchronous dispatch operations, and it is free of
missing, empty or repeated values. Based on this operation, we
propose StaSwitch (short for Stateful Switch) perturbation
mechanism, which bounds each value’s choice of switch
by a stateful probability distribution. Furthermore, this new
mechanism does not cause any mismatch on € and k as in
TM. As such, users have full flexibility on the choice privacy
parameters without degrading data utility. To summarize, our
contributions in this paper are three-fold.

« We propose a two-way atomic operation switch for tem-
poral perturbation, which inherently eliminates missing,
empty or repeated values in the released time series.

« We design two temporal perturbation mechanisms based
on switch operation, namely the baseline mechanism
RanSwitch and an optimized one StaSwitch. They are
capable of offering full flexibility for users to set any
privacy parameters without degrading data utility.

« We present detailed analysis on the privacy guarantee
and utility cost of RanSwitch and StaSwitch. Through
intensive analytical and empirical studies, we show that
StaSwitch has significantly higher utility for the released
time series than any state-of-the-art temporal-perturbation
or value-perturbation mechanism.

The rest of the paper is organized as follows. Section
formulates the problem of time series release. Section
presents swifch operation, together with our baseline mech-
anism RanSwitch. Section [[V] introduces StaSwitch mech-
anism with theoretical analysis on privacy guarantee and utility
cost. Section |V| presents experimental results and case studies
on both real and synthetic datasets. Finally, we review existing
work in Section [VI| and conclude this paper in Section

II. PROBLEM DEFINITION AND PRELIMINARIES

A. Problem Definition

In this paper, we define a time series as an infinite sequence
of values S = {S1,S59,...,5n,...} in a discrete temporal do-
main T = {¢1, ta, ..., tn, ... }. Our task is to release a sanitized
time series R = {R1, Ro, ..., Ry, ...} out of the original one
S under local differential privacy, and as with [45], our goal
is to minimize the collective cost arising from each value’s
missing, repetition, empty and misaligned between R and
S. Specifically, a missing cost, whose unit is M, occurs
when a value in S is missed in R; a repetition cost, whose
unit is N, occurs when a value is duplicated once in S; an
empty cost, whose unit is F, occurs when a timestamp in
R has not been filled with any value, causing a default; and

finally a misalignment cost [/ occurs when a value is released
at an earlier or delayed timestamp, and one timestamp of
misalignment bears a unit cost of D.

B. Existing Value-Perturbation LDP Mechanisms for Time
Series

A number of solutions have been proposed for time series
release under LDP. Depending on the privacy requirements,
canonical definitions of neighboring time series include user-
level [31], event-level [14], and w-event [24] privacy. Given
a definition of neighboring time series as above, a formal
definition of (¢,d)-LDP on time series is as below.

Definition 2.1: ((€, §)-LDP) Given privacy parameters € and
J, a randomized algorithm A satisfies (¢, d)-LDP, iff for any
two neighboring time series S and S’, and any possible output
R of A, the following inequality holds:

Pr(A(S) = R) < ¢ - Pr(A(S') = R) + 0 (1)

Since (€,0)-LDP is defined on difference in values, all
existing works [4]], [9], [17], [36] adopt value-perturbation
mechanisms, such as Laplace mechanism [13], Gaussian
mechanism [15], and Randomized Response [38[], to inject
noise to released value or statistics of the time series.

C. Local Differential Privacy in Temporal Setting

As opposed to the above value-perturbation LDP model,
we follow the temporal-perturbation LDP model (TLDP) as
in [45]. In TLDP, two (temporally) neighboring time series are
defined as those can be turned into one another by exchanging
the values of two timestamps.

Definition 2.2: (Neighboring Time Series) Two time series
S and S’ are neighbors if there exist two timestamps ¢; # t;
such that

1) i —j| < k, and

2)S; = S; and S; = 5], and

3) for any other timestamp t;(! # 4, j), S; = 5].

In the above definition, & is the length of a time sliding
window, which is an additional privacy parameter. The larger
the k, the longer period the value remains sensitive to the user.
For example, by setting k£ to 24 hours, a smart watch user
can be assured that a released heart rate reading can be from
anytime of that day; but if k is set to 1 hour, this period of
“deniability” is shortened to 1 hour and might not be sufficient
to preserve the user’s privacy. Based on Definition local
differential privacy in the temporal setting, a.k.a. (¢, d)-TLDP,
is defined as follows.

Definition 2.3: ((€,8)-TLDP) Given privacy parameters e
and ¢, a randomized algorithm A satisfies (¢, d)-TLDP, iff for
any two neighboring (in a window of length k) time series
S and S’, and any possible output R of A, the following
inequality holds:

Pr(A(S)=R) <e°-Pr(A(S")=R) +§ 2)
The degree of privacy in TLDP is controlled by e, §, and k.

The delay cost in [45] is a special case of misalignment cost. The latter
also considers the cost when a value is released in advance of the original
timestamp.



III. SWITCH OPERATION AND RANSWITCH MECHANISM

In this section, we first define the swifch operation for
temporal perturbation, based on which we present a baseline
mechanism RanSwitch to satisfy (e, §)-TLDP, together with
its perturbation protocol, and privacy and utility analysis.

A. Switch Operation

To perturb a time series temporally, an intuitive operation is
to probabilistically assign a temporal position for the incoming
value at each timestamp. This is the rationale of the disparch
operation in [45]. However, since the dispatch position is
independently selected at each timestamp, dispatch conflicts
may occur. We argue that the root cause lies in the one-
way nature of dispatch operation. For example, at timestamp
t;, dispatching its value \S; to timestamp ¢; only decides the
destination of S; is ¢;, but it is uncertain which value S,
should fill in ;. In other words, the timestamp ¢;’s “from” and
“to” dispatches (i.e., S; = t;, and S; = t;) always happen
asynchronously and independently, which leads to missing,
empty and repeated Values To address this issue, in this
paper we propose switch as a two-way atomic operation for
temporal perturbation, which is formally defined below.

Definition 3.1: (Switch Operation) Given a sliding window
of length k, a switch operation S; < S; exchanges two values
S; and S; with each other in R, thatis, R; = S; and R; = 5,
where 0 < i — 7 < k.

In essence, a switch operation S; < S; is equivalent to
two simultaneous and correlated dispatch operations \S; = t;
(i.e., “to” dispatch at ¢;) and S; = t; (i.e., “from” dispatch
at t;) in [45]. Therefore, it inherently eliminates missing,
empty or repeated values. In the sequel, to avoid confusion
with “dispatch”, we use term “allocate” for the one-way
perturbation in a switch operation, i.e., .S; is allocated to t;
and S; is allocated to ;.

Another advantage of the switch operation is its inherit
resemblance to neighboring time series in Definition
Recall that two temporally neighboring time series are those
which can be turned into one another by exchanging the values
of two timestamps. Therefore, to satisfy (¢, d)-TLDP becomes
intuitive — at each timestamp we just randomly switch the
current value with another one within the sliding window of
length k. This idea leads to our baseline perturbation mech-
anism RanSwitch for TLDP. In what follows, we will first
present the perturbation protocol of RanSwitch in Sec. [l1I-B}
and then analyze its privacy guarantee in Sec. [[[I-D]and utility
cost in Sec. [II-E

B. RanSwitch: A Baseline Mechanism

For a time series S = {S1, Sa, ..., S, ...}, at each timestamp
t;, RanSwitch randomly selects a timestamp ¢; in the slid-

2According to [45], if the “from” dispatch fails with conflict, then t; has
to report an empty value; if the “to” dispatch fails, then the value S; will be
missed; if two or more values happen to be dispatched to the same timestamp,
or if a value is repeatedly dispatched to more than one timestamp, some values
will be overwritten and thus missed.

ing window {t;,¢;11,...,t;4x—1} according to the following
perturbation probability distribution:

p, if 1=0

3
g, if 1e{1,2,.. k—1} )

and then applies the switch operation to values S; and S;. Here
p denotes the probability of selecting the current timestamp
(i.e., retaining S;), while ¢ is the probability of selecting one of
the other k£ — 1 timestamps, and p+ (k—1)g = 1. The pseudo-
code of RanSwitch mechanism is shown in Algorithm
S; may be finally allocated to one of the £ — 1 backward
timestamps {¢;—g+1,ti—k+2, ..., ti—1}, the current timestamp
t;, or one of the forward timestamps {t; 1, %;12,...}.

Algorithm 1 Perturbation protocol of RanSwitch

Input: Original time series S = {S1, S2, ..., Sn, ...}
Sliding window length &
Perturbation probabilities p and ¢

Output: Released time series R = {R1, Ra, ..., Rn, ...}

1: Initialize the released time series R = ()

2: for each timestamp ¢; (i € {1,2,...,n,...}) do

3:  Randomly select an index j from X = {l|[i <1 <i+k—1}
according to Eq.

4: Switch S; and S;

5.  Set R; = S; and release R;
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Fig. 1. Dispatching probability of RanSwitch mechanism

We show an example of & = 3 in Fig. [[(a). Since there
are 3 timestamps, RanSwitch performs 3 switch operations
M@@), one at each timestamp. At timestamp 1, suppose Sp
switches with S3, then S3 is allocated backward to ¢; and
released. At timestamp to, suppose t- itself is selected, then So
is released at the current timestamp.At timestamp t3, suppose
t3 itself is selected, then the original S; (denoted by S5 now)
is allocated to its forward timestamp ¢3 and then released.

Since RanSwitch (or any TLDP perturbation mechanism)
probabilistically allocates S; to timestamps t;_x4+1, .. tis
wes titk—1,... with probabilities irrespective of i, we can
use {P1—_k,...sP-1,Po, P1,..e; Pi—1, ..., Pn} to denote these
probabilities, where the subscripts are the temporal devi-
ation of the allocated timestamp from the original times-
tamp. Fig. [T[(b) illustrates the allocating probabilities of S3
to timestamps {t1,t2,t3,¢4,t5}. Note that n > k — 1 and
can be as large as infinity, since a value can be repeatedly
allocated to its forward timestamps (although with rapidly
decreasing probabilities)E] In this paper, we collectively call
these probabilities the allocating probability distribution of

3As will be elaborated in Theorem privacy analysis only needs the
first 2k — 1 allocating probabilities, i.e., {P1—k, ---, P—1, Po, P1, -, Pk—1}>
which spans across two adjacent sliding windows.



RanSwitch, the derivation of which lays the foundation of
privacy and utility analysis.

C. Allocating Probability Distribution in RanSwitch

We now derive the allocating probability distribution of
RanSwitch. For each value S;, RanSwitch can allocate it
backward, stationarily, or forward. As such, we derive the three
probabilities separately.

« Backward probability {P;_j, P>, ..., P—1}, when S;
is dispatched to a previous timestamp within a sliding
window. To start with, P;_; denotes the probability
when S;_j41 switches with .S; so that S; is released at
timestamp ¢, 1. Hence P;_j = ¢. The next probability
Po_j is when S; is released at ¢;_j42, which occurs
when S; has not been released at ¢; 1 and is then
selected at timestamp ¢;_j1o. Hence Pa_j = ¢(1 — q).
Similarly, we can derive other backward probabilities as
P; =q(1 —q)* 117 where j € {1 —k,2— —1}.

« Current probablllty Po, when the value S; stays at the
current timestamp. This occurs only when S; has not been
released until ¢; (w.p. (1 —¢)*~1) and is then released at
t; (W.p. p). As such, Py = p(1 — q)*L.

« Forward probability {P;, P, ..., Pr_1}, when the value
S; is released after ¢; within a sliding window. Similar
to the derivation of backward probability, for any j €
{1,2,....k — 1}, we have P; = q(1 — q)*~1+7.

Combining the above three cases, we reach the follow-
ing Theorem [3.2] on allocating probability distribution in
RanSwitch for all the 2k — 1 timestamps.

Theorem 3.2: For 1 — k < j < k — 1, the allocating
probability distribution of RanSwitch mechanism is

b _ {pa —)F

q(]- - Q)k_1+j7

D. Privacy Analysis of RanSwitch

if 7=0
otherwise

“4)

Based on Theorem [3.2] the following theorem proves that
RanSwitch satisfies (€, d)-TLDP.

Theorem 3.3: Given a sliding window of length k£ and the
probabilities p and ¢, the mechanism RanSwitch satisfies

(¢,6)-TLDP, where ¢ =1In Z P(1—q)?* Y

Wandézq.

PROOF. For any two neighboring time series S =
{S]_, 52, ceny Si, ceey Sj, } and S/ = {Sl, SQ, ceey S; . ,S;, },
let t; and ¢; denote the two timestamps when S and S’
differ, and |i — j| < k. As each value may be allocated to
a forward/backward timestamp within a sliding window or
any forward timestamp beyond this window, the difference of
output time series occurs when the value S; in S is allocated

to a forward timestamp which S} in S’ cannot reach. Thus,

o= maX{'Plfk,'ngk, ...77372,7)71} =q

To derive ¢, for any output time series R, e must satisfy
Pr[A(S)=R] -
Pr[A(S") = R]

€= sup In
5,8",R

For any output R by RanSwitch, suppose S; (or S}) is
allocated to timestamp t,, and Sj (or S)) is allocated to
timestamp ¢g. Then, P;,Eﬁf; )R]R] = P;‘Daip" - =y

According to Eq. ] except for the case of j= O the allo-
cating probability decreases as j increases. So P1_p > Pi_1.
Depending on whether they are larger or smaller than Fp, we

derive € separately:
e When ¢ < p(1 —¢)*1, Pr._1 < P1_1 < Po holds. So
Lo Pi-d _pP(l-g?*V —g
Pop - Psa (1 — q)2(—1)
e When ¢ > p(1 — ¢)*~1, P1_j. > P holds. Since p > ¢,

p(1 —¢)F 1 > ¢(1 — ¢)>*~1) always holds. Therefore,
Pr_1 <Py < Pi_i. So

Po-Ps_j— 6

e=1

&)

P26

€ = max{In ,In (6)
{ Pi—j - Pp—i Pa-p 'Pﬁ—a}
Po-P ) 1—q)2(k—D+6-3 _q
As both ZFeni=0 — M@l nl < 0 and
Pi—6 PPl-g* -p

Pos Ps_n < 0 always hold when

¢>p(l—q* ",
to satisfy Eq. [6]
Therefore, Eq. [j] becomes the only requirement of setting

pP(1—q)2
22 (1—q)2(i— 1) . g

any privacy budget € > 0 is sufficient

privacy budget, i.e., ¢ = In

E. Utility Analysis of RanSwitch

In Sec. there are four costs that collectively determine
the utility of a temporal perturbation approach. Fortunately,
RanSwitch mechanism only involves misalignment cost, as
there are no missing, empty or repeated values. As such, the
expectation of the total cost E[C] is

-1 oo
Cl=-D ijl_k jP;+D ijl iPi (D

Note the second term means the count of (forward) misaligned
timestamps j spans from 1 to oco. As the first two sliding
window (i.e., 1 —k < j < k — 1) dominates the total cost, we
can derive a lower bound of it as

BICI <Y | )R+
B (k R - . ®)
=M= +(k-1H=-7))D

where v =1 — (1 — ¢)*.

From Eq. [§] the lower bound of the total cost is approx-
imately proportional to k. As such, if k£ is large enough,
E[C] becomes very close to kD, which means the asymptotic
utility of RanSwitch could be poor with respect to large k.
To illustrate this, in Fig. 2] we plot its allocating probability
distribution in green line for £ = 10 and the privacy budget
€ = 2. We observe that the dispatching probabilities beyond
the sliding window, i.e., Pig, ... P19, ..., are non-negligible.
They form a long tail and dominate E[C], which is around
4.54 E] according to Eq. [7| Furthermore, for those P; within

4We set the maximum misaligned timestamps to 2k in Fig.



the sliding window, the probabilities significantly decrease as j
increases, which pushes up the upper bound of the ratio of any
two allocating probabilities and thus incurs heavy perturbation
to guarantee privacy.

As a comparison, we also plot the allocating probability
distribution of the ideal mechanism in blue line, which splits
the probabilities equally among all timestamps except Py, i.e.,
Pog=Pg=..=P1=DP=. =Pg="7Py =
(1 —Py)/18. As such, E[C] is only around 3.82 according
to Eq. 8] Although this ideal mechanism cannot be designed
in practice, because the perturbation probability distribution is
accumulated throughout an infinite time series, it inspires us
to design a close-to-ideal perturbation mechanism in the next
section, namely StaSwitch, with a more balanced allocating
probability distribution than RanSwitch.

0.27

0.24 A

—o— RanSwitch (E[C]=4.54)
—s—Ideal (E[C]=3.82)
StaSwitch (E[C]=3.89)

=
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Fig. 2. Allocating probability distribution (k = 10 and € = 2)

IV. STASWITCH: A MECHANISM WITH STATEFUL SWITCH

The root cause of RanSwitch’s high misalignment cost
lies in the repeated deferment of a value through multiple
switch operations. For example, a value at timestamp ¢; is
first forward switched to ?;1;, and then switched to #;4;,
so on and so forth. To reduce this cost, in this section we
propose StaSwitch which keeps track of the switch state of
each value and guarantees its final allocated timestamp is still
within the initial sliding window. That is, if a value has never
been delayed, its allocating space can be the whole sliding
window; otherwise, for a value that has already been delayed
for [(I < k) timestamps, its new allocation space is limited to
the first k — [ timestamps of the sliding window.

In what follows, we will first present the perturbation
protocol of StaSwitch in Sec. and then derive its
allocating probability distribution in Sec. followed by

privacy analysis in Sec. and utility analysis in Sec.
A. Perturbation Protocol of StaSwitch

Given a sliding window of length k, for each value
S;, StaSwitch mechanism allows at most k& — 1 times-
tamps delay. To guarantee this, at timestamp t;, StaSwitch
randomly selects a timestamp t; in the sliding window

{ti,tit1, .., titk—1} according to the perturbation probabil-
ity distribution in Eq. [0} and then switches S; and S;.
p+bg, if j=0
Prft;] = { q, if je{l,2,..k—1-b} (9
0, otherwise

TABLE I
PERTURBATION PROBABILITY DISTRIBUTION WHEN k = 4
J=01g=1]3=2|35=3
b=0 P q q q
b=1| p+gq q q 0
b=2 | p+2q q 0 0
b=3 | p+3q 0 0 0

Note that b denotes the timestamps .S; has been delayed. If
the value S; has never been delayed, then b = 0 and Eq. [9]
degrades to Eq. 3| of RanSwitch mechanism. Otherwise, S;
cannot be allocated to the last b timestamps {tx_p, ..., tx—1 } in
the sliding window of ¢;. And their perturbation probabilities,
which is bq, are reclaimed by StaSwitch and allocated to ¢;.
As such, StaSwitch guarantees each value can be delayed up
to k — 1 timestamps. StaSwitch gets its name from stateful
switch, as the perturbation probability distribution depends on
the current state of delayed timestamps b. Table [I| shows an
example under different delayed timestamps b when k = 4,
where each cell shows the perturbation probability of .S; being
allocated to ;.

Algorithm 2 Perturbation protocol of StaSwitch

Input: Original time series S = {S1, Sa, ..., Sn, ...}
Sliding window length k
Perturbation probabilities p and ¢

Output: Released time series R = {R1, Ra, ..., Rn, ...}

1: Initialize a released time series R = ()

2: Initialize a vector of delayed timestamps b = {0}

3: for each timestamp ¢; (i € {1,2,...,n,...}) do

4:  Randomly select an index j from X = {{|i <1 < i+k—1-b;}
according to Eq. 9]

5:  Switch S; and S;

6: bj=bj+j—1

7: R; = S; and release R;

S|

Algorithm [2| shows the pseudo-code of StaSwitch mech-
anism. The procedure is similar to Algorithm |1} except for
vector b, which record the current delayed timestamps of each
value. At each timestamp ¢;, an index j is randomly drawn
from Eq. E] (Line 4), and then the current value S; and the
selected one S; are switched (Line 5). As such, S; is delayed
by j — ¢ timestamps, so b;, the delayed timestamps of S, is
incremented by j — ¢ (Line 6). Finally, the current value S;
(i.e., the original S;) is released (Line 7).

B. Allocating Probability Distribution in StaSwitch

We now derive the allocating probability distribution P =
{P1—ks-.'s P-1,Po, P1, ..., Pr—1} of StaSwitch for privacy
and utility analysis. To start with, we first derive the expected
perturbation probability distribution over all b’s from Eq. [9] as
below.

k— i . P
po =340 Pi(p+iq), ifj=0

0 10
4 =Y2y Pa. if1<j<k-1 10

E[Pr[tj]]Z{

where P} = Pr[b = . Note that, at timestamp ¢; j, P} is the
probability that the current value comes from S; (i.e., with



i timestamps delay) before switching value S ;. Since there
are ¢ such cases, we sum them up as below.

Pb—qz Hlij(l—qz),

where P = Hf;ll (1 — g;) denotes the probability that the
current value has never been delayed.

By substituting Eq. for P} in Eq. we obtain the
expected perturbation probability distribution over py and all
gj. Then we derive the allocating probability distribution as
follows. First, we know P; _j, means S;_1 selects timestamp
t;, s0 S; is released at ¢;_j41. Hence P1_j = qi—1. Similarly,
we can derive other allocating probabilities as follows. For any
1<j<k-1,

—k = k- ]H = ki)

2 H
j—1 11 k——-1 -1

Pi=ay P ((pﬂq [Ta-a)+ Z%H (1- qr+l>
=0 i=1 i=1

To interpret the last equation, P;, the allocating probability
of a value being deviated by j timestamps, is comprised of j
joint probabilities, each first allocating a value with [ (0 <1 <
7 — 1) timestamps deviation (i.e., P,f ) and then allocating the
same value with another j —! timestamps deviation. The latter
probability is further comprised of two terms. The first term,
(p+7q) H7 =11 — ¢;), denotes the probability that a value
with [ tlmestamps deviation is dlrectly switched to timestamp
t;, and the second term, Zf;l HJ _ _1( — Qryi), 1s the
probability that the value first selects a timestamp after ¢; and
then switches it with value S;.

(1)

I_Qk i) 12)

C. Privacy Analysis

This subsection establishes the privacy guarantee of
StaSwitch mechanism. Lemmas [.1] and 4.2 first show the
monotonicity of the probability distribution Pf(1 <i < k—1)
and the allocating probability distribution P;(1 — k < i <
k — 1) respectively, based on which we prove StaSwitch
satisfies (e, )-TLDP in Theorem

Lemma 4.1: For j € {1,2,....k — 1}, the probablhty PJ
monotonously increases with j, i.e., P1 <P?< Pk’

Lemma 4.2: The minimum of StaSwitch’s allocatlng
probabilities {P1_g, ..., P—1,Po, P1, s, P—1} IS Pmin =
min{’Pl_k, P_1,P1 }

Theorem 4.3: The StaSwitch satisfies (e, §)-TLDP, where

2
o — (" —p+2)
e=1In 0 = max{Pi_,Pa—k,---,P-1},
q(”'q k2(<11+2)>q qu) { : S o

parameters defined in Eq. [P

PROOF. Let ¢; and t; denote the two timestamps that
neighboring time series .S and S’ differ. That is, S; = S}, and
S; = S.. In the output R, let t,, and tg denote the timestamps

to which the values of S; and S; are allocated, respectively.
Therefore,
Pr[A(S)=R]-0

€= sup In———— = sup In
S,8',R Pr[A(S')=R] a,B,i,5

Pa—iPs—j—0

PaPii

According to Lemma [4.2] the minimum allocating proba-
bility is Ppin = min{Pi_j, P_1,P1}, where Pi_p = qr_1,
Por=all5 (10— ) and Py = [[;2{ (1 - a)ap+a+
1 —po— qr— 1)

Therefore, Eq. @] is reduced to

2 2
Py —9 < P 1
Pr-Ps PP P
P —a(@®-p+2)
an(p+q+1—po—3%)

e=In

(14)

<In

From the above inequality, to derive an upper bound of e,
we need to have an upper bound of py and a lower bound of
q1 respectively. First we know that

k—2
pPit = qzz . B Hk a) < ¢y P =q—qP"

i=0

and hence,

k-1 .
y=ptaq) P
k-1 k(1 —

(k=1 _,, k1 —p)
2 2(1+4q)

Then we derive a lower bound of g¢.

k—1
Therefore, Py ﬁ ,

k—1

Po = Zi:_o B

k
<p+ qu‘l

(p+iq

For any j €

{1,2,....,k — 2}, according to Eq. [10] and Lemma
k1 T i )
4G — qj+1 = Zi:o Plq— ZZ_:O Pyq=qP; 7" > qP,

Thus, ql—(k—Z)qul > qg—(k—?))qul > > qkfg—qul =
qx—1. The first term ¢q; — (k—2)Pb1 must be greater than the
average of the first k — 2 terms, i.e.,

k—2 k=2 .
@ — (k—2)qP} > Lt i ;_];1 Lzt
_1- 120_—2%_1 _k g qub1
Therefore,
q1 > L=po = geor  k 1qu1 + (k —2)qP;}
k—2 2
(1-p)(A+p+q)(2-p)—q , (k=3)*(1-q)*" _
2(k=2)(1+4)(2-p) 2
Then2 foll;)wing Eq. the upper bound of e becomes
1 1+7 -J ;f)q”) —. The proof for § follows that of Theo-

2(1+q) . 2-p
rem where ¢ must cover the difference between the output

space of any two neighboring time series S and S’, that is,
6= HlaX{'Plf]@?7)27]@7 ceey 'sz, 7)71}. (|

Theorem provides a close-form of ¢, but not §. The
following corollary gives a good estimation on it.



Corollary 4.4: The maximum of the first £ — 1 allocating
probabilities can be approximated by P, Where maxr =

Va2 —4p+8-2
I_T] —(k+1).

PROOF. Accordmg to Eq. l P} = kal
For j € {2,3,.
P! ~ P}, we have ZJ S

(1=pj)g =Py
1} by approximating PJ by P!, ie.,
~ P+ (k— 1)qP0 (2— p)PO

By solving (2 —p) P ~ 1, we know for j € {1,....,k — 1},
1 j q

PP~ — P~ —+— 15

b 2 _p) b 9 —p ( )
By substituting Eq. [13]in Eq. we have
+(k—j—-1)¢*

g~ (k—j—1)q (16)

2-p
Then according to Eq.

Pik—Pj—k—1=0 qr—j — Qr—j+1 — Qh—j * @—j+1=0

o A+ -DgA+(—2)q)

2-p
V@ —4p+8+3q—2

2q

=1

&)=

Therefore, the maximum probability is P,,q,, Where maz =

[3*051*/€f[”q74p+8 21— (k+1). O

D. Utility Analysis

The only cost of StaSwitch is misalignment cost. So the
expectation of the total cost is
Pi—k +Z > (17)

k- 1
E[C] = D (Z}
To derive E[C], we substitute Egs. [15] and [16]in Eq. [12] then

j=1

+(j —1)q 1)¢*
Py~ XU DE J H _p)q )
1 2
Po~pH 27]))(]) (18)
P, ~ LRG0 +¥G,0) ¢ ¥ (20,1 + ¥ 1)
J 27p 27p )
where
. T
<1><j,z>:<p+jq>H7:1 1(1—“( o
k—j—1 . 2J—l—1 k— il 2
r=1

By substituting Eq. [I8]in Eq. we obtain an approxima-
tion of the expected total cost E[C] of StaSwitch mechanism.
For example, we can obtain E[C] = 3.89 in Fig. [2| Compared
with E[C] = 3.82 for the ideal mechanism, StaSwitch
achieves very similar utility.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate and compare RanSwtich and
StaSwitch with state-of-the-art TLDP mechanism, namely
(Extended) Threshold mechanism (TM/ETM) [45]], and value-
perturbation mechanisms for time series such as Randomized
Response [38] and Piecewise mechanism [33].

A. Experimental Setting

Datasets. We conduct experiments on two real and one
synthetic time series datasets.

o US stock [2] consists of historical daily prices of 14,058
trading days. We first extract all daily close price as a
numerical time series Stock-N, and then derive another
binary time series Stock-B by comparing each close price
with its previous day, so each value indicates “up” or
“down” of daily stock price.

o Trajectory |1] consists of 6,307 taxi trajectories, each of
which has GPS coordinates in a 15-second interval and
has at least 300 timestamps.

o SyntheticTS is a generated synthetic time series that
consists of 10° timestamps, whose values are integers
randomly drawn from [0, 100].

Experiment Design. We design two sets of experiments.
The first set evaluates the overall cost of the three TLDP
mechanisms under various datasets and parameters, including
the sliding window length % and privacy budget . The second
set compares their utility in three real-world applications
of popular time series manipulation, namely, simple moving
average, frequency counting, and trajectory clustering.

We implement all mechanisms in Java and conduct experi-
ments on a desktop computer with Intel Core 19-9900K 3.60
GHz CPU, 64G RAM running Windows 10 operating system.

B. Overall Cost Evaluation

This subsection evaluates the total cost of three TLDP
mechanisms, i.e., RanSwitch, StaSwitch and TM/ETM.
According to Sec. the total cost is

C:Dz_li+M~n1+N~n2+E~n3,

where [; denotes each value .S;’s count of timestamps deviated
after perturbation, and ni, ne and n3 are the numbers of
missing, empty and repeated values, respectively. In the ex-
periment, we set the unit cost of misalignment D = 1, and set
unit cost of missing, repetition and empty M = N = F =k,
which means these costs are as worse as allocating a value to
the endpoint of the sliding window.

Fig. [3| plots the total cost of three mechanisms on the dataset
SyntheticTS, by varying the length of sliding window from 10
to 80, and the privacy budget from 1 to SE] Overall, StaSwitch
performs the best and consistently outperforms RanSwitch in
all cases, thanks to its stateful switch operation. The gain of
StaSwitch becomes more eminent with the increasing k, and

SThe privacy parameter § can be derived by Theorems (for
RanSwitch) and (for StaSwitch) according to € and k, so it is not
shown in the figure.
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TABLE II o i ! o
TOTAL COST OF LARGER PRIVACY BUDGETS (k = 10) 00 i o TMIEIM 00 IRl
. 7 3 9 0 T 2 3 4 @ | ——SuSwitch | \\ —+— StaSwitch
TM/ETM | 2.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 = 004 — = 0,004}
- — —
RanSwitch | 196 | 1.34 | 0.89 | 056 | 035 | 0.22 | 0.13 | 0.08 B e S WA 0.002 —
StaSwitch | 1.77 | 1.24 | 083 | 0.54 | 034 | 021 | 0.12 | 0.08 ' — R
0l 2 3 4 5 6 7 8 01 2 3 4 5 6 7 8
Privacy Budget Privacy Budget
. a) k=10, r =10 d) k=10, r =40
exceeds 20% when k = 80. We observe that TM/ETM incurs 1200 @ = L C o~
higher cost than both RanSwitch and StaSwitch in most 800 ——TMETM || 200 ——TM/ETM
. . . 2001 —=— RanSwitch 100k —=— RanSwitch
cases, especially for small privacy budgets. The reason is that o ""[ - ——SuSwich|| g [~ —— StaSwitch
. .. 0.6 = s
TM/ETM has to introduce missing and empty values to fully = “F—— =02
satisfy the privacy guarantee. On the other hand, as we show 02 TN b ==
the results in Table [, when the privacy budget becomes even s s B R o

larger (e.g., € > 8), TM/ETM cannot further benefit from it.
This is because the utility gain of TM/ETM is capped at the
upper limit of the threshold k£ — 1, and is consistent with our
analysis in Sec. [l which motivates this work.

C. Utility Evaluation in Real Applications

To compare the effectiveness of our proposed mechanisms
RanSwitch and StaSwitch against TM/ETM, we measure
their utilities in three real-world time series applications —
simple moving average, frequency counting, and trajectory
clustering. We also compare them with value perturbation
mechanisms in each application. For frequency counting, as
each value is binary, we use Randomized Response (RR) [38]]
which achieves the best performance for binary data [35].
For simple moving average and trajectory clustering, we use
Piecewise mechanism (PM) [33]], the state-of-the-art LDP
solution for numerical value perturbation.

1) Simple Moving Average: We conduct simple moving
average of the stock’s daily close price on Stock-N and calcu-
late the mean square error (MSE) of the estimated results as

S 1 1
VT ), where m = £

and m/, ZHT "R, are the moving averages from the
original time series S and the released one R, with averaging
range 1.

Fig. [ plots the results, where the privacy budget e varies
from 1 to 8, and the length of sliding window %k and the
averaging range r are set to 10 or 40, respectively. To best
accommodate all the results, we re-scale the y-axis in Fig. {]
Under different & and r, PM always has the highest MSE,
1-3 orders of magnitude higher than that of TM/ETM and 3-
5 orders of magnitude higher than that of RanSwitch and
StaSwitch. This demonstrates the superiority of temporal
perturbation over value perturbation for simple moving aver-

Privacy Budget
(a) k=40, r =10

Privacy Budget
(d) k=40, r =40

Fig. 4. Results of simple moving average on Stock-N

age. Both RanSwitch and StaSwitch outperform TM/ETM,
and the gain is more eminent when privacy budget is small.
This is because TM/ETM suffers from missing and empty
values when the given privacy budget is relatively small, while
RanSwitch and StaSwitch are free of missing or empty
values thanks to the two-way nature of swifch operation.
Between RanSwitch and StaSwitch, StaSwitch consis-
tently outperforms RanSwitch in all cases and the average
gain exceeds 20%, as the stateful switch operation adopted
by StaSwitch further reduces the misalignment cost in the
released time series. In addition, when the averaging range r
increases from 10 to 40, the accuracy of all four mechanisms
is improved. For PM, it is because more injected noise is
canceled with each other according to law of large numbers;
for TLDP mechanisms, it is because temporal perturbation
is almost constrained within a sliding window of length k,
but this disadvantage is mitigated when the averaging range
becomes larger, e.g., £ = 10 and r = 40.

2) Frequency Counting: To compare the accuracy of count-
ing the frequency of value “up” on the dataset Stock-B, we
adopt RR, TM/ETM, RanSwitch and StaSwitch respec-
tively to perturb the time series, and measure their devia-
tion from the ground-truth count by calculating the MSE as

| le‘l(clfc) , where ¢; = ijl 1(S; = up) and
C’IL = Z;:l
t;

1(R; = up) are the “up” counts at timestamp
in S and R, respectively.
Fig. ] plots the MSE of these mechanisms, where the time
window length k varies from 10 to 80 and the privacy budget
€ varies from 1 to 8. Overall, StaSwitch performs the best
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TABLE III analysis [20]], [46], [47], high-dimensional data analysis [[10],
NMI ON TRAJECTORY CLUSTERING -
p T 3 3 T 5 5 7 3 [11], and learning problems [27]], [49]].

PM 0.003 [ 0.005 [0.006 [0.007 [0.008 | 0.008 | 0.007 [0.008 Centralized DP for Time Series. Existing works on
TM/ETM 0.572 {0.590 | 0.610 | 0.616 | 0.699 | 0.705 | 0.706 | 0.768 : . : . . .
RanSwitch [ 0.503 0613 [0.609 [0.623 [0.703 [0.713 [0.-726 [o.sa5|  centralized DP for time series focus on differentially private
StaSwitch 0.624 [ 0.650 [ 0.703 {0.725 [ 0.756 [ 0.745 [ 0.858 | 0.928 aggregate statistics, c.g., frequency estimation. Dependlng on

among the four mechanisms, followed by RanSwitch, and
their gap becomes more eminent as the window length %k gets
larger (e.g., RanSwitch reduces 25% of MSE when k = 80).
On the other hand, TM/ETM no longer outperforms RR (a
value perturbation method) for small privacy budget (e.g., € <
3) or large sliding window (e.g., £k = 80). This is because
frequency counting is very sensitive to missing values, as a
missing of “up” decreases all subsequent counts by 1.

3) Trajectory Clustering: Same as [45]], we adopt a classic
clustering algorithm, namely the k-medoids algorithm [29],
to cluster all 6,307 trajectories in the dataset Trajectory into
6 groups. The clustering result over the original dataset is
regarded as the ground truth. Then we perturb all trajectories
by three TLDP mechanisms (i.e., RanSwitch, StaSwitch
and TM/ETM, k = 10) and one value perturbation mecha-
nism, namely PM, and apply the same clustering again. To
measure the similarity between the ground-truth clusters and
those from perturbed trajectories, we adopt a classic metric,
Normalized Mutual Information (NMI) [40], whose range is
[0,1] and a larger NMI means more similarity. Table
shows the results of four mechanisms with privacy budget
from 1 to 8. We observe that PM has much smaller NMI
than those TLDP mechanisms, because value perturbation
heavily damages the utility of the released trajectories. On
the other hand, StaSwitch always achieves the highest NMI,
followed by RanSwitch, which indicates they have more
similar clustering results to the ground truth than TM/ETM.

VI. RELATED WORK

In this section, we review existing works on differential
privacy, with a focus on time series release.

Differential Privacy. Differential privacy was first proposed
in the centralized setting [[13]]. To avoid relying on a trusted
data collector, local differential privacy (LDP) was proposed
to let each user perturb her data locally [[12]f], [25]]. In the liter-
ature, many LDP techniques have been proposed for various
statistical collection tasks, such as frequency of categorical
data [5]], [17], [23]], [35]], and mean of numerical data [9], [26],
[33]]. Recently, the research focus in LDP has been shifted to
more complex tasks, such as itemset mining [37], marginal
release [8], [48]], graph data mining [30]], [44], key-value data

the privacy requirement, a perturbation mechanism can satisty
event-level privacy [7[], [14], user-level privacy [3], [31]], or
w-event privacy [24], [34]. There are also several strategies
proposed to reduce the overall variance in the released statis-
tics, such as Fourier transformation [31f], sampling [18]], clus-
tering [3]], and smoothing techniques [7], [[19]. Another line
of works also consider temporal correlation of continuously
released time series data [6], [41].

LDP for Time Series. More recently, there are a number of
studies on the problem of continual time series analysis under
LDP. A technique based on memoization was first proposed
in the local setting [9]], [[17]]. Besides that, Joseph et al. [22]]
design an approach to track changing statistics by assuming
that user data are sampled from several evolving distributions.
Erlingsson et al. [16] further investigate a shuffle model for
collecting correlated time series data. Wang et al. [36] develop
a framework for estimating the sum of real values over a
time interval, and Bao ef al. [4] propose correlated Gaussian
mechanism to reduce the noise injected to time series. Xue et
al. [42] investigate continuous frequency estimation in the user
population by exploring an optimal privacy budget allocation
scheme to improve estimation accuracy.

The above works are all based on value perturbation. The
most relevant work to this paper is [45], which is the first work
on TLDP privacy model and adopts temporal perturbation to
satisfy TLDP. However, this mechanism suffers from missing,
repetition and empty cost, as well as limitations on settings of
privacy parameters € and k. These issues have been addressed
in this paper.

VII. CONCLUSION

This paper studies the problem of time series release follow-
ing TLDP privacy model. We first define switch as a two-way
atomic operation for the time series perturbation, which inher-
ently eliminates missing, empty or repeated values. Then we
propose a baseline mechanism RanSwitch and an optimized
mechanism StaSwitch, the latter of which adopts stateful
switch to bound each value’s timestamp deviation, and thus
enhances the utility significantly. We compare RanSwitch
and StaSwitch with the existing temporal-perturbation and
value-perturbation mechanisms through extensive analytical
and empirical analysis under various privacy budgets and



time window sizes, and show that the optimized mechanism
StaSwitch always achieves the best performance in various
tasks.

As for future work, we plan to extend this work to more
complicated time series analysis tasks, such as temporally
correlated time series release, time series forecasting, pattern
recognition and curve fitting.
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