
AutoManager: a Meta-Learning Model for
Network Management from Intertwined Forecasts

Alan Collet∗†, Antonio Bazco-Nogueras∗, Albert Banchs∗† and Marco Fiore∗
∗IMDEA Networks Institute, Spain, †Universidad Carlos III de Madrid, Spain

{alan.collet, antonio.bazco, albert.banchs, marco.fiore}@imdea.org

This is the author’s accepted version of the article. The final version published by IEEE is Alan Collet, Antonio Bazco-Nogueras, Albert Banchs, Marco
Fiore, “AutoManager: a Meta-Learning Model for Network Management from Intertwined Forecasts” IEEE INFOCOM 2023 - IEEE Conference on Computer
Communications, 2023, pp. TBD, doi: TBD.

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Abstract—A variety of network management and orchestration
(MANO) tasks take advantage of predictions to support antici-
patory decisions. In many practical scenarios, such predictions
entail two largely overlooked challenges: (i) the exact relationship
between the predicted values (e.g., reserved resources) and the
performance objective (e.g., quality of experience of end users)
is often tangled and cannot be known a priori, and (ii) the
objective is linked in many cases to multiple predictions that
contribute to it in an intertwined way (e.g., resources to reserved
are limited and must be shared among competing flows). We
present AutoManager, a novel meta-learning model that can
support complex MANO tasks by addressing these two challenges.
Our solution learns how multiple intertwined predictions affect a
common performance goal, and steers them so as to attain the
correct operation point under a-priori unknown loss functions.
We demonstrate AutoManager in practical, complex use cases
based on real-world traffic measurements; our experiments show
that the model produces forecasts that are accurate and tailored
to the MANO task in a fully automated way.

I. INTRODUCTION

The automation of network management plays a core role
in the vision for 6G [1]. The increasing softwarization and
programmability of mobile networks, and the redesign of
network functions for cloud-native operation lay the foundations
to automation paradigms like zero-touch networking and
service management (ZSM) [2] and intent-based networking
(IBN) [3]. Data-driven models will be important enablers in
this ecosystem, and standard-defining organizations (SDO) are
integrating machine learning operations (MLOps) into network
management and orchestration (MANO) frameworks [4]–[6].

Limits of legacy traffic prediction. Data-driven machine
learning models are expected to support in particular antici-
patory operations, which are ostensibly more effective than
reactive policing and unlock the full benefits of automation [7].

As discussed in Section II, forecasting for MANO is almost
invariably tackled with supervised regression models that either
(i) ignore the relationship between the prediction output and the
performance objective, or (ii) assume that perfect knowledge
of such a relationship is available at model design time. Yet, in
practical cases, the relationship between predictions and final
performance is not known a priori, and cannot be neglected as
it is paramount to an effective anticipatory decision. Examples
abound: for instance, forecasts of computing resources allocated
to specific network slices affect the Quality of Experience (QoE)
of the end users in ways that are hard to estimate in advance [8];
anticipatory associations of Distributed Units (DUs) to Central
Units (CUs) in virtualized Radio Access Networks (vRANs)
are linked to performance and energy consumption in tangled
ways that are best observed only after deployment in real-world
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Fig. 1: Performance of (a) LossLeaP and (b) AutoManager
in the toy use case of mean value forecasting. Left: predictions
and target average. Right: forecasting error over train epochs.

systems [9]; or, all IBN use cases inherently require translation
of high-level intents into objectives whose relation to the actual
MANO decisions are unknown a priori [10].

Learning to predict for MANO. In cases like those above,
the data-driven forecasting model shall learn at once (i) how
its predictions affect the performance goal, and (ii) how to
optimize such predictions so that the goal is met. In machine
learning terminology, this corresponds to the problem of meta-
learning the loss function that shall drive the training of the
model. As detailed in Section II, loss meta-learning is a very
recent and active field of study, and no ultimate solution exists
for regression tasks such as forecasting.

A challenging and open problem in loss meta-learning that
is particularly relevant in the context of MANO is handling
intertwined predictions, i.e., cases where multiple forecasts
contribute to a same goal. Essentially any multiple-input
MANO problem falls in this category, including the predictive
scheduling of limited capacity across users, the proactive
admission control of multiple requesting traffic flows to a
network service, the anticipatory allocation of shared resources,
or the forecasting of anomalies from joint analysis of different
Key Performance Indicator (KPI) streams, just to name a few.

Intertwined predictions are problematic for current solutions
for loss meta-learning regressors. We demonstrate the issue via
a toy example, where two predictors a and b are fed with past



values of traffic time series ya and yb up to time t, and they
have to forecast the mean of the two next traffic values, i.e.,
(yat+1 + ybt+1)/2. While fictional, this is a naive case where
the two predictions are intertwined, as their output depends
on both flows ya and yb. Abiding by the principles above, the
expression of the prediction target is not known a priori, and
the model must (i) meta-learn that the averaging function is
the right loss for the task, and (ii) use it to train the predictors.

Figure 1a shows the performance in the simple task above
of a predictor implementing LossLeaP [11], a recent solution
that laid the foundations for loss meta-learning in MANO, and
which represents the current state of the art. The forecast is
clearly misaligned with respect to the mean traffic target (left),
and results in a poorly converged error (right). The reasons for
such poor performance are detailed in Section IV.

Contributions. In this paper, we present AutoManager, a
forecasting model that supports loss meta-learning in inter-
twined predictions. As such, and without any prior information
about the system, AutoManager can learn how multiple predic-
tions affect a common performance goal, and steer them to the
correct operation point. Figure 1b shows the performance of our
solution for the traffic averaging toy example: now the forecast
matches the target, and the error convergence is substantially
improved. Overall, the development of AutoManager yields
the following main contributions.

• We identify significant limitations of the state-of-the-art
models for network forecasting, including recent solutions
with tailored or meta-learned loss functions, in Section II.

• We propose a new neural network architecture that
addresses such limitations via a combination of parallel
and cascaded blocks, in Section III. The new model
enjoys (i) improved modularity and scalability, and (ii)
capability to learn the intertwined relationship between
the performance goal and multi-dimensional inputs, as
shown in controlled experiments in Section IV.

• We implement and demonstrate our solution with real-
world traffic measurements in two practical use cases,
i.e., (i) joint anticipatory admission control and resource
allocation of network slices, in Section V, and (ii) joint
proactive functional split and virtual machine reservation
in virtualized radio access networks, in Section VI.

These contributions let AutoManager set a new standard
in data-driven forecasting for automated MANO, closing
important design gaps and contributing to pave the road towards
the deployment of machine learning in production networks.

II. BACKGROUND AND RELATED WORK

Our study relates to and advances proposals for traffic and
capacity forecasting, as well as loss meta-learning approaches
from the machine learning and networking communities. We
next discuss each such class of prior work separately.

Traditional traffic forecasting. Traditional models for traffic
forecasting are agnostic to the network management goal,
and completely ignore the relationship between the prediction
output and the performance objective. These models aim at
estimating as accurately as possible the future evolution of the

target demand or KPIs that are considered useful to the MANO
task, by minimizing legacy error functions such as the Mean
Squared Error (MSE) or Mean Absolute Error (MAE). While
these models represent the vast majority of the literature [12],
they only provide an input to the decision process, which is
entirely delegated to a different entity, as shown in Figure 2a.

Loss function customization. Making predictors aware of
the management goal is in fact very beneficial to MANO. By
coupling prediction and decision phases, inherent properties
of the forecast (e.g., different accuracy levels of the prediction
that depend on the specific input pattern) become available to
decision-making, which can then adapt to them.

The integration of the two phases is achieved in machine-
learning models via the customization of the loss function used
during training. By tuning the shape of the loss in a way that
it reflects the MANO objective, the predictor is optimized to
produce forecasts that align with the actual management goal.
The concept is illustrated in Figure 2b, and results in a model
that directly outputs anticipatory MANO decisions, rather than
simple traffic predictions. Proposals like DeepCog [13] and
CATP [14] design custom losses that capture monetary costs
or that embed domain knowledge as regularization terms. By
coupling forecast and decisions, such models yield performance
gains above 50% in practical MANO use cases [13], [14].

Loss function meta-learning Approaches based on custom
loss functions assume that the relation between the prediction
and the ultimate performance goal of the MANO task is
fully known and can be described through a suitable (e.g.,
differentiable and relatively simple) expression. Such perfect
knowledge is often not available in practice: to make additional
examples to those in Section I, the relation may depend on the
many and varied hardware and software solutions deployed in
the infrastructure; on information that is only available to the
service provider and transparent to the network operator; or, on
complex multi-domain interactions that cannot be characterized
in advance, even with significant expert knowledge.

In these situations, the loss function can still be tailored to
the MANO objective, but not at design time. Instead, the
forecasting model shall be able to meta-learn the correct
loss during training, along with the usual parameters of the
predictor, as exemplified in Figure 2c. Loss meta-learning is
an active research topic in the machine learning community.
Most solutions aim at inferring a suitable configuration of a
predefined, parametrizable loss function [15]–[17], possibly
starting from primitive mathematical operators [18]. Yet, in
all these cases, the initial loss or its components must still
be designed manually, which is not just feasible in MANO
settings where the prediction-decision relationship is unknown.

Clean-slate loss meta-learning. What is needed in our case
is a strategy that can meta-learn a clean-slate loss. Closer to
this requirement, the meta-critic model [19], [20] employs
a trainable task-parametrized loss generator, which however
only operates on discrete-space classification or ranking tasks;
instead, forecasting is intrinsically a regression problem in
MANO tasks, where capacity and resources are very granular
and decisions need to be taken on a continuous space.
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Fig. 2: Different approaches to forecasting for MANO. (a) Traditional traffic forecasting that minimizes a MSE or MAE in the
prediction of future traffic. (b) Forecasting based on a custom loss that is manually designed to mimic the decision-making
problem, so that the output of the model is directly the MANO decision. (c) Forecasting with a meta-learned loss, which is
optimized during training so as to represent the decision-making problem, and used in turn to train the predictor.

The only solution for loss-meta learning in regression
tasks has been precisely proposed in the context of MANO:
LossLeaP [11] jointly trains a loss-learning block and the
actual predictor so as to output forecasts that abide by the
performance goal, which is not known in advance but learned
over time. Yet, as illustrated via a toy example in Section I,
LossLeaP cannot handle intertwined predictions: this is a
major limitation in practical network automation cases, where
distributed predictions concur to a joint objective. Our solution
overcomes this limit, among other advantages.

III. THE AUTOMANAGER MODEL

The proposed model, AutoManager, is a multiple-output
loss-function-agnostic regressor that performs a twofold learn-
ing. As set out in the previous sections, (i) it aims at learning
to forecast the values of multiple actions that will concurrently
optimize a certain global objective. However, as it is oblivious
to the objective to optimize, (ii) it must also learn which is
the loss function that correctly represents the said objective
according to a-posteriori system measurements.

A. Problem Formulation

Formally, let us denote the input space of the predictor
as X and the output space as Y, such that the predictor can
be modeled as fWp : X → Y, and the multi-dimensional
decision taken at time t by the predictor for time t+ 1 can be
written as ŷt+1 = fWp(Xt). Here, Xt = {xt−T , . . . ,xt} ∈ X
includes observations of the input space for the past T time
steps, and Wp represents the parameters of the predictor. Let
us denote by nin = |xt| and by nout = |ŷt+1| the number
of input and output variables, respectively. Note that ŷt+1 =

{ŷ(1)t+1, . . . , ŷ
(nout)
t+1 } is a vector, and hence the predictor must

solve a generic multidimensional forecasting problem. Also,
we remark that ŷt+1 ̸= xt+1 in general, i.e., the output is not
a direct prediction of the input as in traditional traffic forecasts;
instead, each decision ŷt+1 is a compound function dependent
on the whole set of input variables Xt.

The MANO performance cost resulting from the decision
taken at time t is denoted by Mt+1 = fM(ŷt+1,vt+1), which
depends on the prediction ŷt+1 itself, and on system variables
vt+1 that may impact the performance at t+1. It is important
to recall that the expression of fM(·) is unknown a priori, as it
is too complex to characterize or it depends on information not
available at model design time. Yet, performance is measurable

Fig. 3: Architecture and training of the AutoManager model.

at time t + 1, and samples of fM(·) can be obtained by
observing the outcome of ŷt+1 on the system.

In order to make correct decisions that align with the MANO
objective, the initially uncharted fM(·) must be first discovered.
This means solving the optimization problem

min
Wℓ

L2
(
fWℓ(ŷt+1,vt+1), fM(ŷt+1,vt+1)

)
, (1)

i.e., identifying an estimator M̃t+1 = fWℓ(ŷt+1,vt+1) whose
parameters Wℓ minimize the L2 loss1 with respect to the actual
cost Mt+1. The performance cost estimator from (1) can then
be used to steer predictions towards the performance objective,
by embedding it into a second optimization problem

min
Wp

fWℓ(fWp(Xt),vt+1

)
. (2)

The solution to (2) is the predictor fWp that we seek, which
produces a forecast minimizing the expected MANO cost fWℓ

at time t+ 1 from the input Xt at time t.

B. Model overview

In order to jointly solve the optimization problems in (1)
and (2), AutoManager adopts a data-driven deep-learning
approach that follows the general design for loss meta-learning
outlined in Figure 2c. Therefore, similarly to LossLeaP [11],
our solution models the decision-making part of the MANO task
with a dedicated neural network, which is trained to solve the
cost estimation problem using observations of the outcome of
the predictive decisions. A second neural network implements
instead the actual predictor, and it is trained to minimize the

1The goal of the estimator is to mimic as closely as possible fM(·): any
loss minimizing the error between fWℓ (·) and fM(·) suits well the purpose.



cost estimated by the first network. AutoManager differs from
earlier proposals in the implementation of the general two-stage
design above, as portrayed in Figure 3 and detailed next.

The predictor receives the input Xt and generates the
anticipatory decisions ŷt+1, thus realizing fWp . Internally, the
predictor is in fact organized into multiple individual processing
units (IPU), each receiving past values for one of the variables
that compose the input: denoting by xt = {x(1)

t , . . . , x
(nin)
t }

the input space at time t, then the i-th IPU is fed with a time
series {x(i)

t−T , . . . , x
(i)
t }. The individual processing units are

not connected to each other, and their task is learning the
unique temporal correlations that characterize each time series
and that are useful to the anticipatory MANO decisions.

The output of all individual processing units is then gathered
by a single aggregator, which is an integral part of the predictor.
The aggregator models how the time patterns of each input
variable are intertwined to produce a given performance, and
how to exploit such temporal information to produce predictions
ŷt+1 that optimize the MANO objective.

Finally, the performance cost estimator receives the decision
ŷt+1 as well as the relevant system state vt+1 observed at
time t + 1, and outputs the approximate cost determined by
the application of such a decision in the system. Hence, the
estimator implements fWℓ : its sole purpose is to meta-learn the
loss to train the predictor, and it is not used during inference.

The organization of the predictor represents the main novelty
of AutoManager, and yields a number of advantages over
previous solutions and alternative approaches, as follows.

• The configuration into individual processing units plus
one aggregator gives a logical structure to the predictor,
breaking down the whole problem of optimizing fWp into
simpler learning tasks. The IPUs and aggregator, trained
via the same gradient descent as explained in Section III-C,
improve the efficiency and scalability of the model, e.g.,
with respect to a large monolithic predictor that receives
xt and outputs ŷt+1, as demonstrated in Section IV.

• Individual processing units also grant a higher modularity
to the model. In particular, they enable the pre-training of
each unit on historical data about their target input variable,
as explained in Section III-C, so as to cut training times.

• The AutoManager predictor supports multiple-output
forecasts optimizing a single compound metric. This
allows solving MANO problems with intertwined antici-
patory decisions, unlike prior solutions, as mentioned in
Section I and later proven in Section IV.

• The proposed model also works with non-time-correlated
input variables, which is not the case with other neural
architectural constructs, as we will show in Section IV.

Overall, AutoManager lets the model converge toward a
global shared benefit, rather than having each predictor converg-
ing to their own local minimum as in previous solutions [11].
Interestingly, this is a comparable advantage as having a game
theory model converge to the global minimum instead of a
Nash Equilibrium where each player seeks a local minimum.

C. Detailed implementation
Let us explain the detailed implementation of the proposed

model, where we will also distinguish our contributions from
the aspects that were already proposed in the literature.

a) Structure adapted to compound relationships: One of
the main limitations of previous approaches tackling clean-
slate loss meta-learning is their inability to learn involved and
intertwined relationships among different variables. Our main
contribution to the state of the art in loss meta-learning is
the neural architecture in Figure 3, which is able to capture
these connections and achieve high performance even in
complex MANO use cases such as those in Sections V and VI.
Specifically, the parallel architecture of the IPUs allows for
improved modularity and scalability, and can accommodate
different architectures at each IPU that adapt to the particular
variable that the IPU handles. Moreover, the presence of the
aggregator block allows us to functionally separate the learning
of single-variable predictions and inter-variable correlations.

b) Pre-training of Individual Processing Units: Another
main limitation of previous approaches is the lack of op-
timization for reducing the learning time, which can be
naturally higher than in the scenarios in which we know the
loss function. To tackle this problem, the neural architecture
of AutoManager allows to individually pre-train each IPU
to minimize L2(x̂

(i)
t+1, x

(i)
t+1) from {x(i)

t−T , . . . , x
(i)
t }. This is

equivalent to pre-train offline each IPU as a regular time-series
predictor, e.g., using historical data about xt. While this pre-
training is done with a legacy loss function not aligned with
the objective, we find it to speed up learning in actual systems.

c) Joint training: The structure of the model in Fig. 3
allows for simultaneous training of all the blocks (IPUs,
aggregator, and performance cost estimator). In other words,
we can use the same gradient descent iteration to train both
the metric learner and the predictor. This approach has been
recently proposed in the literature [11], although its application
for AutoManager is more elaborate: previous works had a
cascaded sequence of two blocks (predictor → performance
cost estimator), whereas we have both cascaded and parallel
structures, since we have the sequences IPU → aggregator →
performance cost estimator, but the IPUs are also implemented
in parallel and each IPU only receives a subset of the input
variables. While this structure makes the joint training far from
straightforward, our experiments show that the approach works
even in complex use cases, where it drives the model towards
correct high-performance operation points.

d) Noise exploration: During training, we incorporate a
random zero-mean noise to the output of the aggregator ŷt+1

before introducing ŷt+1 to the performance cost estimator. This
idea, introduced by LossLeaP [11] for loss-learning problems
and inspired by the common Reinforcement Learning (RL)
practice of occasionally taking random decisions to explore
unseen states, allows the performance cost estimator to explore
the whole domain of the loss, hence better map the continuous
input-output relationship. In fact, LossLeaP treats the variance
of this noise as a hyper-parameter that needs to be manually
tuned. We improve this by following an Automated Machine



(a) bm-monolithic (b) bm-split (c) bm-merged

Fig. 4: Detailed architectures of the (a) bm-monolithic, (b) bm-split and (c) bm-merged benchmarks.

Learning (AutoML) approach [21]: we let the noise variance
automatically vary as the training advances. Specifically, the
variance decays exponentially, so as to balance exploration and
exploitation as per RL best practices. Note that the same noise
is also input to the IPUs, so that they can learn its impact on
the predicted values at training time, and preserve the correct
correlations with Xt. After training, when AutoManager is
only used for inference, the noise input is set to zero.

e) Internal design of components: While the size of the
input (nin) and output (nout) vary according to the target use
case, we maintain the following specifications for all the results
presented hereinafter. Each IPU consists of a neural network
composed of multiple LSTM layers,whereas the aggregator is
implemented through a fully connected Multi-Layer Perceptron
(MLP) of multiple layers. The exact number of layers and
neurons varies depending on the dimensionality of the input
and output. These choices follow from the fact that the IPUs
take care mostly of characterizing the temporal correlations
for each one of the temporal variables, while the aggregator
maps the correlation between variables. The performance cost
estimator also employs an MLP architecture, as this is the most
general model one can adopt to learn completely unknown
correlations like those linking yt+1 and Mt+1.

IV. CONTROLLED EXPERIMENTS

Before deploying AutoManager in practical MANO use
cases, we investigate the performance of the model in a
controlled environment. The purpose is to show the advantages
of the approach adopted by AutoManager over previous
proposals for loss meta-learning for MANO tasks, as well
as alternative architectures to that presented in Section III.

We consider the three representative benchmarks below.
• The bm-monolithic approach, shown in Figure 4a, is

an obvious way to extend the LossLeaP model to operate
with intertwined predictions. It uses a single block with
LSTM and MLP layers to implement the predictor, which
gets the whole input Xt and outputs all forecasts ŷt+1.
Thus, the model generalizes the single-input single-output
predictor of LossLeaP to a multi-input multi-output one.

• The bm-split design decomposes the multi-dimensional
prediction problem along single input and output variables.
As illustrated in Figure 4b, this corresponds to running
a number nin = nout of LossLeaP instances in parallel,
which is the other naive way to generalize that model to
intertwined predictions.

TABLE I: Results for the controlled experiments in terms of
average MAE, for our model and all benchmarks.
nin AutoManager bm-merged bm-split bm-monolithic

2 0.024±0.012 0.101±0.081 0.119±0.094 0.067±0.042
4 0.023±0.010 0.095±0.073 0.116±0.089 0.047±0.026
6 0.021±0.007 0.098±0.076 0.090±0.073 0.043±0.026

12 0.012±0.003 0.093±0.079 0.088±0.096 0.038±0.024

• The bm-merged architecture is an intermediate solution
in between the previous two benchmarks. As depicted in
Figure 4c, it employs multiple parallel predictors that feed
a single performance cost estimator during training.

The benchmarks above cover different strategies to extend
the state-of-the-art LossLeaP model to multi-dimensional
settings. In addition, they can be seen as simplified versions of
AutoManager: indeed, bm-monolithic collapses the internal
IPU structure of the predictor in Figure 3 into gathered LSTM
layers; bm-merged removes instead the aggregator. Hence,
the analysis of these approaches provides an ablation study
for our model. Finally, we remark that both bm-split and
bm-merged implicitly assume that nin = nout and that ỹt+1

can be inferred from xt only; both models lose generality with
respect to AutoManager, which removes such assumptions.

We test all models with the simple toy example introduced in
Section I, where the unknown objective is producing an average
of all inputs in the next time slot. Formally, using the notation
introduced in Section III, the predictor shall output a scalar2

ỹt+1 = 1
nin

∑nin

i=1 x
(i)
t+1. This is an unsophisticated problem

where predictions are intertwined3, as the output depends on
forecasts of all inputs. While it does not resonate with any
practical MANO task, this use case offers a way to experiment
with the different models in straightforward settings.

Results are summarized in Table II. The decoupling of each
output ỹ(i)t+1 from all inputs Xt in bm-split and bm-merged

creates a clear problem with both models, with errors that are
around 4× higher than those attained by AutoManager. This
proves, in particular, the key role of the aggregator in combining
the contribution of each input and making sure that each IPU
is informed of its role towards achieving the objective. For the
bm-monolithic model, treating all the input time series as
a single vector reduces a lot performances from the LSTM
layers. The MAE in the toy use case is more than doubled

2The prediction of bm-split and bm-merged is nin-dimensional, hence
each ỹit+1 shall match the same expression in the main text.

3We pay attention to input uncorrelated time series, so that their mean
cannot be simplified as yt+1 = KXt, which would artificially ease the task.



with bm-monolithic with respect to our model, showcasing
the importance of parallel IPUs to manage independently the
input time series that are not naively correlated.

Overall, AutoManager yields largely superior performance
over the state of the art and competitor architectures even in a
simple toy example. In the remainder of the paper, we explore
how AutoManager scales to more complex MANO use cases.

V. USE CASE I: OVERBOOKING OF NETWORK SLICES

Multi-tenancy is a defining paradigm in 5G systems, which
are expected to fully support network slicing providing flexible
policing and strong guarantees to heterogeneous services run
by different tenants. The anticipatory allocation of isolated and
customized resources to individual slices is a key functionality
to ensure that the Quality of Experience (QoE) that each tenant
request is met. This functionality also offers new opportunities
for operators to optimize their revenues: for instance, slice
overbooking takes advantage of slice demand multiplexing to
reduce resource utilization while fulfilling (a priori unknown)
QoEs [22]. Inspired by the overbooking approach, we consider
a case where anticipatory admission control (AC) and resource
reservation (RR) of network slices must be steered to optimize
QoE-based revenues for the network operator.

A. MANO objective

We consider that the QoE level determines certain monetary
revenues and costs for the network operator, as follows. A
Service-Level Agreements (SLA) sets the performance target
of a given network slice in terms of the requested end-user QoE,
and specifies the amount offered by the tenant for implementing
the slice. The SLA also defines how such an amount is reduced
for lower QoE levels, including an economic fee for the operator
in case the QoE falls below a minimum acceptable threshold.

Formally, let us denote the traffic demand generated by slice
s ∈ S at time t as ds(t) and its peak traffic demand as Ds, and
let cs(t) be the amount of resources that the operator allocates
to such a slice. We further denote the normalized demand and
allocation as d̄s(t) ≜

ds(t)
Ds

and c̄s(t) ≜
cs(t)
Ds

, respectively.
In case the slice is accepted, the tenant pays for the

implementation of the slice an amount Rs(t) = γds(t), which
is proportional to the traffic to be accommodated by some
constant γ factor (in $/byte). However, the amount Rs(t) is
paid in full only if a target end-user QoE level is attained;
if instead the end users suffer from lower QoE, the operator
incurs into a proportionally reduced payment by the tenant.

In our experiments, we assume that the QoE requirement
is met if δs(t) ≜ d̄s(t)− c̄s(t) ≤ 0, i.e., enough resources are
reserved by the operator to serve the whole traffic demand of the
slice. Otherwise, the QoE (hence the revenues for the operator)
drop according to a sigmoid function of δs(t), as recommended
by standard models [23] in revenue management and prospect
theory [24]. Below a threshold QoE, the sigmoid becomes
negative, meaning that the operator receives no payment but
must start paying a fee to the tenant. If then the QoE further
falls below a minimum acceptable value, the fee jumps to
a large amount Ks(t) = βRs(t) that is proportional to the

requested resources for the slice. The resulting QoE-based cost
of the accepted slice for the operator is

QoE(δs(t)) ≜
(

Ks(t)
2

(
tanh(αδs(t) + β) + 1

)
−Rs(t)

)
, (3)

where α, β are constant that determine how the sigmoid func-
tion exactly scales with the underprovisioning δS(t). Besides
the revenue from the SLA, the total economic advantage of the
operator is affected by two other elements. On the one hand,
the overprovisioning of the reserved resources determines an
increase of operating expenses (OPEX): therefore, whenever
δs(t) < 0, the operator incurs an OPEX penalty −γδs(t) that
grows linearly with the quantity of unnecessarily reserved
resources. On the other hand, committing to allocate more
resources than those available in the network infrastructure
leads to a global performance drop and possible service outages,
with a huge cost M in terms of, e.g., customer churn.

The final performance cost associated to the slice MANO is

µ =
∑
s∈S

(
1
(
c̄s(t)

)
·QoE(δs(t))− 1

(
− δs(t)

)
· γδs(t)

)
+M · 1

((∑
s∈S

cs(t)
)
− C

)
, (4)

where C is the total capacity of the system, and 1(·) is the
step function that takes value one if the argument is less than
0, and value one otherwise: thus, 1 (c̄s(t)) takes value one
only if the slice is admitted and resources are allocated to it.

B. Solution based on AutoManager

A key observation is that, in practice, the network operator
cannot analytically know the relation between the slice resource
allocation and the QoE of end users of the specific tenant. This
is a very complex function that depends on many operational
parameters and whose characterization depends on application-
level data (e.g., user feedback) that the operator does not
have. Therefore, (3) is not known a priori, in both its whole
formulation and specific parametrization of α and β. In turn,
this makes it impossible for the operator to model the whole
performance cost in (4) in advance.

In this scenario, the operator can apply AutoManager to
address the MANO task of deciding (i) which slices to accept
and (ii) how many resources to reserve to accepted slices at
the start of each orchestration interval. Indeed, once deployed
in the system, AutoManager can learn the expression of the
performance cost in (4), and optimize the prediction of c̄s(t)
to minimize such cost. Note that the value of c̄s(t) determines
both the slice admission control, via 1

(
c̄s(t)

)
, and the allocation

of resources, which match its value if positive.
The detailed integration of AutoManager in the network

architecture for this use case is outlined in Figure 5a. Our
model sits in the Network Function Virtualization Orchestrator
(NFVO) of the MANO framework, as proposed by current
standards [6]. It can then leverage the Management Data
Analytics Function (MDAF) [25] to access information exposed
via the Application Function (AF) [26]: based on the operator-
tenant agreement, such information can include live QoE
measurements and slice revenue data, which let AutoManager
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observe the results of its decisions on the QoE and costs. Our
model is then in a position to learn from experience the overall
cost in (4), and forecast c̄s(t),∀s ∈ S to minimize it.

The meta-learning task is in fact not trivial. We provide
an intuition of the complexity of the problem in Figure 5b,
which illustrates the expression in (4), in the naive case of
a single slice. Despite the fact that we are considering the
simplest version possible of the cost, and the only one that
can be represented in only three dimensions, the shape of the
relationship between the MANO objective and the prediction
is tangled and also highly sensitive to the value of the input
traffic demand. Scaling to realistic. multidimensional versions
of the cost thus implies very strong meta-learning capabilities.

C. Benchmark

We compare our solution against the only existing solu-
tion to date for loss-meta learning in regression tasks, i.e.,
LossLeaP [11]. However, as shown in Section IV, direct
extensions of LossLeaP to multi-dimensional cases do not
perform well even in toy intertwined prediction scenarios. Thus,
our benchmark is built upon LossLeaP but incorporates an
optimization program to assist it in the MANO task.

In particular, we consider that each slice s ∈ S is handled
separately by one LossLeaP instance, which is responsible for
the forecast of the resources to be reserved for a specific slice s
in case it is accepted, denoted by c′s(t). The admission control
is instead handled apart, and formulated as an optimization
problem solved starting from all c′s(t) predictions. The problem
aims thus at setting the binary admission control variables,
xs(t), which take value one if slice s is accepted. Formally,

max
xs(t)

∑
s∈S

Rs(t)xs(t) s.t.
∑

s∈S
c′s(t)xs(t) ≤ C. (5)

This is in fact the well-known and NP-hard Knapsack problem
(KP). Hence, we name the benchmark LossLeaP-KP. The
individual LossLeaP instances are then trained in a similar
way as presented in Section V-B, but using observations of
the QoE and costs for the relevant slice s only. Clearly, in this
case the meta-learning model takes care only of the resource

reservation part of the whole MANO task, and it is thus less
general and flexible than the solution based on AutoManager.

D. Results

We run experiments with real-world mobile traffic of
12 different applications that span video streaming, social
networking, cloud and web browsing service categories. The
data was recorded at the level of over 400 base stations in a
production infrastructure, and described the demands generated
by several millions of subscribers in a large urban region. We
aggregate the measurements over clusters of 30 base stations
computed using the KaFFPa heuristic [27], so as to simulate
the traffic experienced at an Edge datacenter. The joint AC-RR
task is then solved at each Edge datacenter separately, assuming
that each application is requesting a dedicated slice s.

A qualitative illustration of the output of AutoManager in
this use case is in Figure 5c. The top plot shows how the total
demand of all slices (dotted red) exceeds the capacity of the
Edge datacenter (gold) at some moments in time: there, our
model learns to keep the overall reserved capacity for accepted
slices (gray) below the limit. Otherwise, AutoManager offers
a very precise forecast of the resources to be reserved to
accommodate the whole demand. The bottom plot focuses
instead on two slices (gray and red), showing their requested
capacity (solid) and the allocated resources by our solution
(dotted). During periods of low demand, after hour 72, both
requests are precisely predicted and fully served. When capacity
is scarce, before hour 72, the gray slice is often rejected (with
zero reserved resources). Also, the resources allocated to the
red slice to not match anymore the request, but are slightly
lower: here, AutoManager learns and exploits the sigmoid
function in (3), which entails a small penalty if the QoE of the
end users is reduced only slightly. Indeed, it is more profitable
for the operator to gain a bit less on the red slice, and free up
space for additional tenants.

It is by precisely by learning the metric accurately and
then playing with the impact of the reserved resources on
the QoE and monetary costs that AutoManager helps the
operator benefit from overbooking and maximize its revenues.
A quantitative demonstration is in Table II, which reports the



TABLE II: Performance summary for use case I. We report
the final Gain with Percent increase over the benchmark, and
average number of slices Admitted. Slices vary from 2 to 12.

AutoManager LossLeaP-KP

Slices Gain Percent Admitted Gain Admitted
2 0.0549 (27.67%) 1.00 0.0430 1.00
4 0.1816 (12.09%) 3.18 0.1620 2.60
6 0.3363 (26.38%) 5.71 0.2661 4.36
8 0.3725 (6.55%) 6.41 0.3496 4.83

12 0.4621 (36.96%) 10.99 0.3374 8.94

final performance figures for our solution and the benchmark,
when increasing the number of slices in the system. We focus
on non-trivial periods where the MANO task plays a role,
i.e., when the slice demands exceed the capacity available at
each Edge datacenter. Overall, AutoManager lets the operator
effectively use slice overbooking to increase its revenues by
up to 36% when all 12 slices are present, and to admit 2 slices
more than the benchmark on average. We recall that it does so
without any prior knowledge of the system or of the objective,
which shows its meta-learning capabilities, and the practical
advantages entailed by that in solving the MANO task.

VI. USE CASE II: ENERGY-PRUDENT VRAN MANAGEMENT

In the second use case, we focus on virtualized RAN (vRAN)
management, where the operator must decide on the functional
split of the PHY/MAC function pipeline between Distributed
Units (DU) residing closer to the radio access, and more
powerful Central Units (CU) towards the Edge [28]. We assume
that the primary goal of the operator is ensuring the RAN
sustainability, by maximizing its energy efficiency [29].

A. MANO objective

Let us assume a specific scenario where N DUs handle the
aggregated traffic generated from a set of Remote Units (RU)
each. The DUs are associated to a single CU through high-speed
mid-haul connectivity. Processing each PHY/MAC function
has a different energy cost at the DUs and CU. The energy
consumption at each DU is directly proportional to the traffic
volume that it has to handle at a given time, since the equipment
must be always active. Conversely, the CU runs a number of
physical machines (PMs) that can be dynamically turned on/off
based on the incoming demand by the DUs [29]. All PMs are
identical, and thus have the same energy model [30]: activating
a new PM incurs a start-up cost, then the energy consumption
increases proportionally to the computing load of the PM4.

Given the traffic demand at one DU, different functional
splits entail diverse computational loads at the DU and CU,
as they move PHY/MAC functions from the former to the
latter. The MANO objective is then deciding, for each DU and
decision time, what functional split shall be used to minimize
the total energy cost of the vRAN system. It is important to
stress that, since this is a preemptive decision, it must be based
on a forecast of the mobile data traffic that the DU will observe
during the next decision interval.

4We assume that the increment of energy per traffic unit is lower at PMs
than at DUs, as the CU feature more expensive and scalable equipment.
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Once those decisions have been taken, the CU will only
activate the minimum required number of PMs to serve the
total incoming demand from all DUs. For that, at the start of
each decision time, the CU receives the estimated traffic and
functional split per DU, and applies a bin-packing [31] near-
optimal heuristic algorithm to calculate the minimum amount
of PMs required and the associated assignment of PMs to DUs.

B. Solution based on AutoManager

We first remark that, in practice, the network operator does
not know the policy on PM activation decided by the cloud
provider hosting the CU, or the exact power consumption
behavior of the PMs and DUs equipment. Still, the operator
must take functional split decisions and reserve compute
capacity in the CU without such information. In addition,
the fact that the PM activation decision depends on all DUs
sets the stage for a clear instance of intertwined predictions
under unknown objective.

In this use case, we can use AutoManager to implement
the network function that takes care of both (i) deciding on the
functional split at each DU, and (ii) forecasting the traffic at
each DU used to request compute capacity at the CU. We can
see in Figure 6 how the detailed model of AutoManager from
Figure 3 is integrated in the control plane. In this case, the
input to AutoManager is composed of N different traffic flows,
one for each one of the DUs. AutoManager receives the past
samples of these flows, and it outputs two sets of values: the
first set is a variable per DU that states the specific functional
split that is selected, and the second set contains the amount
of processing from each DU required at the CU as result of
the selected functional split and predicted load. This decision
is then implemented and the energy consumption is measured
a posteriori, so that it can be fed back to AutoManager to
train the algorithm and learn the appropriate loss function.

C. Benchmarks

We compare the performance of AutoManager in the use
case above versus that of two benchmarks. The first one, named
fullDU, consists in selecting the functional split that makes
the DUs handle all the processing of their corresponding RUs;
the second benchmark, named fullCU, is the case in which all



TABLE III: Performance summary for use case II. Mean power
consumption (W) at all DUs and the CU, and increase incurred
by the benchmarks with respect to AutoManager.

fullDU fullCU

DUs AutoManager Power Increase Power Increase
2 138.4 180.3 (30.3%) 162.1 (17.1%)
4 339.2 365.6 (7.8%) 415.2 (22.4%)
6 496.8 542.7 (9.2%) 566.8 (14.1%)
8 624.4 663.7 (6.3%) 682.4 (9.3%)

10 824.7 861.9 (4.5%) 886.6 (7.5%)

the processing load allowed by the lowest functional possible
is transferred to the CU. These two extreme policies must
be fed with forecasts of the traffic load at each DU. Since
these are traditional predictions of mobile traffic, we employ
individual legacy LSTM neural networks [32] to anticipate the
load of each DU in the next decision interval. The use of more
complex models, such as meta-learning ones, is not necessary
for such an obvious prediction task.

We choose these simple approaches because deriving the
optimal functional split is not feasible: we would need to solve
an extremely complex optimization problem, where the bin-
packing algorithm running at the CU, which is itself a NP-hard
problem [31], is only a subset of the overall MANO objective.

D. Results

We run tests based on the same measurement data presented
in Section V-D. In this case, we assume that a variable number
of DUs, from 2 to 10 are deployed in the region, and are
assigned to a single CU. Each DU aggregates the total traffic
generated by all applications at a disjoint subset of RUs, which
we map to base stations. The operator predicts the upcoming
traffic at each DU and recomputes the associated functional
split at every 5 minutes. The energy consumption of each PM
is based on real-world server specifications [33], such that a
PM has an energy consumption is 80 W when idle, which
linearly grows to 200 W at full load of 200 Mbps.

A view of the overall results of the experiment is provided
in Table III, where we list the mean power consumption in
W, aggregated over all DUs and the CU. The figures clearly
show how AutoManager learns the energy cost of different
functional splits, unravelling the complex relationship between
the anticipatory decision variables and the power consumption
at the CU. As a result, AutoManager takes MANO decisions
on the split and requested resources at the CU that yield a
reduction of the mean power consumption in the 4%–30% range
with respect to the two benchmarks. It is worth noting that
the fact that the performance gain of our solution diminishes
with the number of DUs is not a sign that AutoManager

is not scalable; rather, it is due to the maximum gain being
bounded between the power consumption of the PMs used by
the fullDU model and that one PM less. Then, a larger set of
DUs implies that more PMs are required at the CU, and that
the maximum gain is inherently reduced.

We also provide details on the temporal variance of such
results in the top plot of Figure 7. The lower power consumption
granted by our solution is steady over the wide fluctuations of
mobile demands over consecutive days. Also, the performance

Fig. 7: Temporal detail of the performance of AutoManager
and the fullDU and fullCU benchmarks in use case II.

of AutoManager is more stable: e.g., the fullCU approach
determines jumps in the power consumption, as minimum
traffic variations can trigger the (de-)activation of an extra PM
for a very short amount of time.

The bottom plot in Figure 7 illustrates instead the evolution of
the CU resource reservation requests issued by AutoManager

over time, for a sample of 4 DUs. The abscissa represents
the percentage of the total computing load arriving at the i-th
DU that is moved to the CU for processing. We observe how
AutoManager redistributes the load of the DUs to a different
extent over time, dynamically adapting the traffic fluctuations.
In particular, the model acts on the decision at DU 3 to reach
the optimal operation point; when more demand is moved from
DU 3 to the CU, the PM resources requested by the other three
DUs are slightly reduced to ensure the load of the CU stays
at the correct level that minimizes the power consumption.

VII. CONCLUSIONS

We have proposed a loss meta-learning approach for time
series forecasting that handles complex MANO tasks where
multi-dimensional decisions affect a performance objective in a
way that cannot be characterized a priori. Our model is general
and sets a new standard for data-driven anticipatory prediction
that can find application in many MANO use cases, two of
which have been demonstrated in the paper.

The authors have provided public access to their code and/or
data at https://github.com/nds-group/AutoManager.
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