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Abstract—The massive MIMO gain for wireless communi-
cation has been greatly hindered by the feedback overhead
of channel state information (CSI) growing linearly with the
number of antennas. Recent efforts leverage the DNN-based
encoder-decoder framework to exploit correlations within the
CSI matrix for better CSI compression. However, existing works
have not fully exploited the unique features of CSI, resulting
in an unsatisfactory performance under high compression ratios
and sensitivity to multipath effects. Instead of treating CSI as
common 2D matrices like images, we reveal the intrinsic stripe-
based correlation across the CSI matrix. Driven by this insight,
we propose CSI-StripeFormer, a stripe-aware encoder-decoder
framework to exploit the unique stripe feature for better CSI
compression. We design a lightweight encoder with asymmetric
convolution kernels to capture various shape features. We further
incorporate novel designs tailored for stripe features, including
a novel hierarchical Transformer backbone in the decoder and
a hybrid attention mechanism to extract and fuse correlations
in angular and delay domains. Our evaluation results show that
our system achieves an over 7dB channel reconstruction gain
under a high compression ratio of 64 in multipath-rich scenarios,
significantly superior to current state-of-the-art approaches. This
gain can be further improved to 17dB given the extended
embedded dimension of our backbone.

I. INTRODUCTION

Massive multiple-input multiple-output (mMIMO) technol-

ogy exploits spatial diversity gain brought about by mas-

sive antennas at the base station (BS) to greatly improve

spectral efficiency. However, the mMIMO gain for wireless

communication systems can be severely compromised by the

bandwidth overhead of feeding back downlink (DL) channel

state information (CSI) measured by user equipment (UE).

The number of DL CSI parameters grows proportionally to

the increase in antennas of BS. Furthermore, as most cellular

systems operate in frequency-division duplexing (FDD) mode,

i.e., uplink (UL) and DL occur at different frequency bands

concurrently, it is hard to eliminate this overhead simply based

on channel reciprocity, i.e., DL and UL CSI are equivalent.

To address this issue, people seek to compress the huge DL

CSI feedback on UE side and reconstruct the original DL CSI

matrix on BS side. Recently, many deep neural network (DNN)

powered approaches [1–6] have made notable progress on the

CSI compression task. They leverage the DNN-based encoder-

decoder framework to exploit the correlation within the DL

CSI matrix in an end-to-end manner. Thus, they implicitly

relax the strict sparsity assumption and have empirically

achieved better channel reconstruction performance than the

compressed-sensing-based counterparts [1].

However, there is still much room for improvement towards

practical CSI compression for mMIMO. Firstly, existing deep

CSI compression systems experience a dramatic increase in

channel reconstruction error with a higher compression ratio

(CR), as summarized in Fig. 1. Unfortunately, the high CR

cases are more critical for the practical scenarios owing to

the limited time budget for CSI feedback constrained by the

channel coherence time, i.e., the interval during which the

channel does not change much. It is significant to improve the

performance under high CR for better scalability in the prac-

tical FDD mMIMO systems. Secondly, existing systems, e.g.,

CSINet [1], CRNet [6], SRNet [3] and so on, have unbalanced

performances across various scenarios, i.e., consistently much

worse on the outdoor dataset than the indoor one generated

from the recognized channel model COST2100 [7] shown in

Fig. 1. It is found that the outdoor dataset features much richer

multipaths than the indoor one as shown in Fig. 2. Further

in-depth investigation (Fig. 3) on the existing works across

different scenarios validates that the richness of multipath

effects can significantly influence the model’s performance. It

is important to ensure the channel reconstruction performance

is robust to multipath issues for stable quality of services.

To further advance this field, we argue that it is crucial

to deeply understand the unique features of our compression

target—CSI matrix, rather than simply treat it as an ordinary

2D matrice like image. Therefore, we delve into the underlying

formation mechanism of the CSI matrix. Unlike images with

apparent patch-based locality, the measured CSI matrix in the

practical setting has intrinsic correlations across channel com-

ponents in the same row and column. Through our analysis,

it is found that the windowing effect due to limited antennas

and sub-carriers diffuses the energy of one signal path in both

horizontal and vertical directions of the CSI matrix. Thus, the

CSI matrix presents stripe features as the sample in Fig. 4.

This observation inspires us to design CSI-StripeFormer, a

stripe-aware encoder-decoder framework to enable better CSI

compression. Since the UE is resource-sensitive, we design

a lightweight encoder, adopting the asymmetric convolution

kernels [8] as the key components to well capture various

shaped features. Then, we further incorporate novel designs

tailored for stripe features of the CSI matrix in the decoder

at the BS side. Firstly, the stripe-based correlation requires

the model with global receptive field, i.e., small convolution



kernels with limited receptive field may not fit. Thus, we

leverage a hierarchical Transformer-based architecture as the

backbone to enable a global receptive field. It includes several

layers, each containing several basic StripeFormer blocks

specialized for the CSI matrix. Secondly, the model is desired

to capture complex stripe-based correlations, where one signal

contributes energy to components across stripes, and compo-

nents in stripes may get superimposed by multiple signals.

Besides, stripes in the angular and delay domains of CSI have

different physical characteristics and a pair of crossed stripes

jointly determine a CSI element. To explicitly incorporate

them into the model, we propose StripeFormer, a Transformer-

based architecture enhanced with a hybrid attention mecha-

nism with both self-attention and cross-attention operations.

The self-attention performs attention on stripes in horizontal

and vertical domains respectively to model the stripe-based

correlations. Meanwhile, the cross-attention dynamically fuses

the representations from both horizontal and vertical attention

to combine the distinct impacts of angular and delay domains.

We conduct extensive experiments on two representative

datasets of indoor and outdoor scenarios generated from the

COST2100 channel model [7]. The evaluation results show

that our model achieves the best performance in both scenarios

with high CRs. Moreover, for the multipath-rich dataset, we

significantly reduce normalized mean squared error (NMSE) at

CR=64 over 7 dB compared with the state-of-the-art (SOTA)

models [3]. This gain can be further improved to 17 dB

by extending the embedded dimension of our backbone. Our

model’s scalability is also validated since our NMSE at CR=64

is even 10 dB smaller than SOTA models at CR=4 in the

multipath-rich scenario. In addition, our model can practically

compress CSI matrix from 64 Kbits to 192 bits, i.e., effective

CR=341 with a low NMSE of -13.65 dB, even with a simple

post-training uniform quantization.

Highlights of our contributions are as follows:

1) We identify the gap towards practical CSI compression:

channel reconstruction performance is degraded under high

CR and not robust to mutlipath issues, and further inves-

tigate the underlying formation mechanism of CSI matrix

to reveal its unique stripe features.

2) We propose CSI-StripeFormer, a stripe-aware encoder-

decoder framework to explicitly and fully exploit the

stripe features. Our model features a novel hierarchi-

cal Transformer-based architecture and a hybrid attention

mechanism to enable better CSI compression.

3) We conduct comprehensive evaluations to verify the ef-

fectiveness of our proposed system. Our proposed system

can reduce the NMSE to -14.89 dB for multipath-rich

scenarios even under high CR=64, much superior to the

SOTA baseline performance of -7.8 dB, i.e., 7 dB gain. This

gain can be further improved to 17 dB given the extended

embedded dimension of our backbone.

II. PRELIMINARIES

In this section, we first introduce our system model and then

elaborate on the physical model of wireless channels.
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Fig. 1: SOTA performance: normalized mean square error (NMSE)
of channel reconstruction for various combinations of compression
ratio (CR) and dataset, i.e., (CR, dataset). A smaller NMSE means
a better reconstruction.

A. System Model

We consider the downlink of an FDD mMIMO system

with Nt ≫ 1 transmitting antennas at the BS and a single

receiving antenna at the UE for brevity. The system adopts

Orthogonal Frequency Division Multiplexing (OFDM) with

Nc subcarriers. Given the transmitted signal x ∈ C
Nc×1, the

received signal y is presented as:

y = HPx+ z, (1)

where H ∈ C
Nc×Nt denotes the downlink wireless channel

matrix, i.e., DL CSI; P ∈ C
Nt×Nc is the precoding matrix

enforced by the BS for beamforming or eliminating user

interference, and z ∈ C
Nc×1 is the additive noise. It requires

obtaining the DL CSI matrix H to design the corresponding

precoding matrix P to get the mMIMO gain. However, it is

unaffordable to directly feed back H ∈ C
Nc×Nt . Thus, we fol-

low the previous efforts to exploit the sparsity of the angular-

delay CSI matrix [1]. Specifically, we convert H ∈ C
Nc×Nt

from the spatial-frequency domain to the angular-delay one by

applying discrete Fourier transform (DFT):

H̃ = FdHFH
a , (2)

where Fd and Fa are DFT matrices, FH
a represents the

conjugate transpose of Fa. Then, we can select the first Na

rows of H̃ as Ha for initial compression, because multipaths

arrive at limited delay intervals and occupy a limited range

in the delay domain [1]. This reduces the size of the channel

matrix from Nc ×Nt to Na ×Nt (Na < Nc).

To further decrease the feedback overhead of DL CSI and

enable accurate CSI recovery at the BS, we apply the typical

DNN-based encoder-decoder framework for CSI compression

and reconstruction. The encoder Eφ compresses the channel

matrix Ha into its compact representation, i.e., codewords v

based on the desired compression ratio:

v = Eφ(Ha). (3)

Once the BS receives the codewords v sent from the UE, a

decoder Gθ tries to reconstruct a channel matrix Ĥa from v:

Ĥa = Gθ(v). (4)

Note that φ and θ denote the transformation functions of

the encoder and decoder. The complete procedure can be

expressed as follows:

Ĥa = Gθ(Eφ(Ha)). (5)



Our goal is to find a pair of encoding and decoding functions

φ and θ to minimize the difference between the original matrix

Ha and the reconstructed one Ĥa:

(θ, φ) = argmin
θ,φ

∥ Ha −Gθ(Eφ(Ha)) ∥ . (6)

B. Physical Model of Wireless Channels

Wireless channels characterize the signal distortion during

its propagation in the physical space. If a signal x is transmit-

ted through a wireless channel h, the received signal y can be

expressed as y = hx + z where z is the additive noise. The

specific distortion depends on the physical attributes of both

the propagation paths and the transmitted signal. Specifically,

the wireless channel of a narrow band signal from a transmitter

to a receiver can be expressed as [9]:

h(f) =

K
∑

i=1

a(f, di)e
−j2π

dif

c +jφ(f,di) (7)

where K denotes the number of propagation paths, f denotes

the signal frequency, di denotes the length of the i-th path,

c denotes the light speed, a(f, di) denotes the amplitude

attenuation, and φ(f, di) denotes an additive phase due to the

scattering or reflection during the propagation.

Given a BS with an array of Nt antennas, the channel of

the n-th antenna can be expressed as [10]:

hn(f) =

K
∑

i=1

(a(f, di)e
−j2π

dif

c +jφ(f,di))e−j2π
nlcosθi

c/f (8)

where θi denotes the angle-of-departure (AoD) of the i-th
propagation path, di denotes the propagation distance of the

i-th path from the first antenna, and l denotes the antenna

separation between antennas as depicted in Fig. 4(b), e.g.,

usually from a quarter of a wavelength to half a wavelength.

III. KEY OBSERVATIONS

In this section, we illustrate our key observations to inspire

a better design for CSI compression and reconstruction.

A. Multipath Effects on CSI Compression

Recent works [1–6] leverage DNN-based encoder-decoder

framework to compress CSI at the UE and then recover it at the

BS. Unfortunately, it is found that SOTA systems encounter

performance degradation in the outdoor scenario as in Fig. 1.

To investigate the reason for consistently worse performance

on the outdoor dataset, we analyze the multipath distributions

of two public datasets utilizing the well-known MUSIC algo-

rithm [11]. Specifically, we calculate the covariance matrix of

CSI matrix, then calculate the eigenvalues of the covariance

matrix. We split the signal and noise subspace by selecting

p largest eigenvalues based on the SNR ratio. Assuming that

the noise part takes up around 2% energy of CSI matrix, i.e.,

17dB SNR, the number of multipaths is then calculated as

the number of eigenvalues contributing 98% energy overall.

It turns out that the outdoor dataset features much richer

multipaths (i.e., ‘multipath-rich’ scenario) than the indoor one

(i.e., ‘multipath-simple’ scenario) as shown in Fig. 2.

Fig. 2: Multipath distributions across various datasets.

To further validate whether the richness of multipath influ-

ences the model’s performance, we split the test set of the

‘multipath-rich’ dataset into four subsets based on the number

of multipaths in each CSI sample: [0, 4], [5, 8], [9, 12] and

[13, 17]. Then, we run the trained SOTA models including

CSINet [1], CRNet [6] and SRNet [3] on all subsets, respec-

tively. As shown in Fig. 3, it is noted that the error of channel

reconstruction increases with the number of multipaths in

the test samples, though these models are already trained on

the ‘multipath-rich’ dataset. Our investigation shows that the

difficulty level of deep CSI compression is highly correlated

with the richness of multipaths.
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Fig. 3: The channel reconstruction performance of SOTA

models degrades with richer multipath effects.

B. CSI Unique Feature: Stripe-based Correlation

Multipath effects on CSI compression encourage us to think

about the formation mechanism of our compression target—

CSI matrix. Many existing works regard them as ordinary 2D

matrice like images and borrow many image-relevant tech-

niques such as convolution operations to build their systems.

However, we argue that it is essential to exploit the unique

CSI matrix features for better CSI compression. The BS in

mMIMO system samples the signal spatially from antennas

and with different frequencies from subcarriers. Assuming the

measured CSI matrix H ∈ C
Nc×Nt in the spatial-frequency

domain carries a signal path at a certain AoD and propagation

delay, we can ideally apply DFT to obtain the angular-delay

version Ha ∈ C
Na×Nt with a corresponding pixel element.

However, the spatial and temporal resolutions are limited by

the window size, i.e., the number of antennas and subcarriers.

This windowing effect will diffuse the energy of an element

in both horizontal and vertical directions of the CSI matrix.

Specifically, the signal would be convolved with sinc functions

due to the windowing effect in DFT. This sinc function leads

to spectral leakage and transforms the peak at a certain AoD
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Fig. 4: Illustration of stripe features in angular-delay CSI.

to a stripe across the whole angular domain and the peak at a

certain delay to a stripe across the whole delay domain.

To intuitively present the formation of the stripe features of

CSI matrix, we simulate a toy setting with two signal paths

shown in Fig. 4(b). There are two DL paths, denoted as (AoD,

propagation delay) from the BS to the UE. One path is (87◦,

348 m), while the other is (37◦, 108 m). They have the same

signal strength for simplicity. Ideally, two paths correspond to

two pixels of the CSI matrix in the angular-delay domain as in

Fig. 4(a). However, due to limited antennas and subcarriers, the

spectral leakage may occur when the AoD and delay are not

exactly the integral multiple of the angular resolution
c/f

Ntlcos(θ)
and the delay resolution c

B , where B is the bandwidth of

subcarriers. This spectral leakage spreads the energy from the

peak across the whole stripes as shown in Fig. 4(c), denoted as

stripe features of the angular-delay CSI in our work. Though

the real sample from the multipath-rich dataset (Fig. 4(d)) is

more complex due to the complicated environmental effects

like scattering, it also presents apparent stripe features.

To sum up, our compression target, the CSI matrix, differs

from images: images have strong correlations in local patch

regions, while CSI matrix presents strong correlations across

the stripe regions. This observation inspires us to tailor the

deep CSI compression system for the stripe-based correlation

rather than the patch-based one.

IV. SYSTEM DESIGN

In this section, we elaborate on our design, CSI-

StripeFormer to exploit the stripe features for better CSI

compression and reconstruction in mMIMO system.

A. Overview of Key Designs

CSI-StripeFormer features a lightweight encoder on the UE

side and a powerful decoder on the BS side, considering their
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Fig. 5: The architecture of CSI-StripeFormer encoder1.

asymmetric capacity and resources. We adopt the asymmetric

convolution kernels [8] as the key components of the encoder

(Fig. 5) to well capture various shaped features. Then, we

incorporate designs tailored for stripe features of the CSI

matrix in the decoder (Fig. 6).

Firstly, the stripe-based correlation requires the model to

have a global receptive field, i.e., small convolution kernels

with a limited receptive field extensively used by previous

works may not be suitable. Thus, we leverage a hierarchical

Transformer-based architecture as the backbone to enable a

stripe-aware global receptive field. Secondly, due to the stripe-

based correlation, a signal contributes energy to other compo-

nents in the same horizontal and vertical stripes, i.e., one ele-

ment is the superimposition of multiple signals. Besides, one

signal in CSI matrix is jointly determined by elements of the

angular and delay domains. However, the two domains have

different physical characteristics like window size, resolution,

and energy distributions. Thus, the model should be equipped

with the capability to extract correlations of the components in

the stripes as well as combine information from both the hori-

zontal and vertical directions. Therefore, we propose to design

StripeFormer, a Transformer-based architecture enhanced with

a hybrid attention mechanism (Fig. 7) in the decoder.

Note that in Fig. 5 and Fig. 6, the configuration of convo-

lution and transposed convolution kernels is denoted as quad-

tuple (input channel, output channel, kernel size, stride). The

configuration of StripeFormer Layer (SFL) in Fig. 6 is denoted

as a quad-tuple (number of StripeFormer Blocks (SFBs), split

size, number of heads, embedded dimension).

B. CSI-StripeFormer Encoder

The encoder acts as the compressor on the UE side. Since

the UE is resource-sensitive, our major design consideration on

the encoder is to balance the complexity and the performance.

Our resultant design is illustrated in Fig. 5, including three

main functional components: real-imaginary fusion block,

feature extraction block, and compression block.

We first utilize the real-imaginary channel fusion block [2]

to handle the complex values of the CSI matrix. Basically,

an element in CSI matrix has both real and imaginary parts,

which determine the signal’s phase and amplitude jointly. This

block takes the real and imaginary input channels as inputs

(R2×Na×Nt ), and fuses them with a point-wise convolution.

It enlarges the input channels from 2 to a higher dimension

(e.g., 32 in our settings) representation fc ∈ R
32×Na×Nt .

1The performance is similar if we replace ReLU as LeakyReLU(0.3).
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Inspired by the stripe observation, regions with high corre-

lations may not be regular rectangles or squares. Therefore,

we adopt asymmetric convolution blocks (ACBlock) [8] in-

stead of conventional convolutional kernels in the subsequent

blocks to well capture various shape features. ACBlock can

preserve features from multiple shapes without introducing

extra computing burdens during the deployment, fulfilling

the lightweight requirement of UE. For example, a 3 × 3
asymmetric kernel is made up of one 3× 3 kernel, one 1× 3
kernel for horizontal features, and one 3×1 kernel for vertical

features during training. Upon deployment, the weights of the

three kernels are fused to form a normal 3 × 3 kernel. For

more details, we refer readers to ACNet [8].

Given the fused feature matrix fc ∈ R
32×Na×Nt , the feature

extraction block with two stacked ACBlocks transforms it into

the informative embeddings. The first ACBlock is a 7 × 7
kernel with a stride of 4 to split the spatial size (Na, Nt) as

(Na

4 , Nt

4 ) patches. The second one is a 5× 5 kernel to expand

feature dimension from 32 to 64 to generate informative

representations pc ∈ R
64×Na

4
×

Nt
4 . Finally, we design the

compression block to compress the high dimension feature

maps pc ∈ R
64×Na

4
×

Nt
4 . It reduces the spatial size using two

5 × 5 ACBlocks with stride = 2 to get vc ∈ R
C′

×
Na
16

×
Nt
16 ,

where C ′ is configurable according to the required CR. The

final output v ∈ R
C′

·
Na
16

·
Nt
16 is the reshaped vector of vc.

Based on Equation 3, the compression ratio of the encoder

can then be calculated as:

CR =
Size(Ha)

Size(v)
=

2 ∗Na ∗Nt

C ′ ∗ Na

16 ∗ Nt

16

=
512

C ′
(9)

C. CSI-StripeFormer Decoder

The decoder aims to recover the original CSI matrix

(R2×Na×Nt ) from the compressed codewords v ∈ R
C′

·
Na
16

·
Nt
16 .

Compared with resource-sensitive UE, the decoder on the BS

side has few computing constraints, leaving us with more

room to design powerful models. The core component of CSI-

StripeFormer decoder is a novel stripe-attention Transformer

block to exploit the stripe-based correlations in CSI matrix in

an end-to-end manner. There are three main components in

the decoder: Upsampler, StripeFormer and Channel Reducer,

as shown in Fig. 6.

1) Upsampler

We firstly reshape the compressed vector v ∈ R
C′

·
Na
16

·
Nt
16

back to R
C′

×
Na
16

×
Nt
16 , and then feed it to the Upsampler block.

The Upsampler block contains four transposed convolution

kernels, each followed by batch normalization [12] and

LeakyReLU [13]. As a coarse recovery, it performs upsam-

pling to generate a matrix md ∈ R
D×Na×Nt with the same

spatial size as the original CSI matrix, where D denotes the

number of feature maps as the embedded dimension.

2) StripeFormer

To fully exploit the stripe-based correlation, we propose

StripeFormer as the backbone of our decoder. Taking an

overview perspective from Fig. 6, StripeFormer consists of

four StripeFormer Layers (SFLs) shown in Fig. 6(a). The key

component of each SFL is the StripeFormer Block (SFB)

shown in Fig. 6(b), while the key component of each SFB

is the hybrid attention block shown in Fig. 7. Next, we will

illustrate the technical details of StripeFormerin a bottom-to-

up manner, i.e., we first elaborate on the mechanism of hybrid

attention, then introduce the SFB design, and finally describe

the design of SFL and the overall StripeFormer.

Hybrid Attention: In SFB, we design a hybrid-attention

mechanism as shown in Fig. 7 to improve the CSI reconstruc-

tion performance via explicitly embedding the unique stripe-

based correlation of the CSI matrix. It extracts stripe-based

correlations in the CSI matrix via two steps: Angular-Delay

Self-Attention and Angular-Delay Cross-Attention.

1. Angular-Delay Self-Attention: The stripes in two domains,



i.e., angular and delay, have different physical characteristics

like window size, resolution, energy/noise distributions etc.

Thus, we adopt CSWin Attention [14] to model stripe-based

correlations separately within two domains. In a nutshell, we

project the D−dimension input feature X ∈ R
D×Na×Nt

linearly into K heads based on multi-head self-attention

mechanism [15]. The first K/2 heads conduct self-attention

for the horizontal stripes, while the remaining K/2 computes

self-attention for the vertical ones.

For the self-attention of the horizontal (angular) domain,

X is evenly split into non-overlapping horizontal stripes

[H1, H2, ..., HM ] with stripe width w in the vertical (delay)

domain. Stripe widths denote the size of the area under con-

sideration. Supposing the dimensions of the projected queries,

keys, and values of the k-th head are dk, the self-attention

output of the horizontal domain is calculated as:
[

H1, H2, ..., HM

]

= Split(X),
[

Qk
i ,K

k
i , V

k
i

]

=
[

HiW
k
Q, HiW

k
K , HiW

k
V

]

,

Ak
i = Softmax

[Qk
i (K

k
i )

T

√
dk

]

,

LePE(V k
i ) = Conv(V k

i ),

Ok
i = Ak

i V
k
i + LePE(V k

i ),

H-Attenk(X) = [Ok
1 , O

k
2 , ..., O

k
M ],

H-Atten(X) = [H-Atten1(X), ...,H-AttenN (X)].

(10)

Here, the query Qk
i , key Kk

i and value V k
i are learn-

able linear embeddings of Hi with the projection matrices

W k
Q ∈ R

C×dk ,W k
K ∈ R

C×dk ,W k
V ∈ R

C×dk , respectively.

Ak
i is the attention map calculated from the correlations of

the query and key with a softmax function. Then we can

calculate the features Ok
i from the production of attention

maps AK
i and values V k

i . Note that the attention mechanism

is permutation-invariant, it may ignore important positional

information within the CSI matrix. Thus, we add a local

positional encoding computed by a convolutional kernel [14]

to compensate for this positional information. The attention

outputs of horizontal (angular) stripes H-Attenk(X) are a

concatenation of [Ok
1 , O

k
2 , ..., O

k
M ], representing the k-th head

results. The final result of H-Atten(X) is the concatenation

of M heads where N = K/2. Self-attention for the vertical

(delay) domain can be derived similarly. We denote the self-

attention output of the vertical stripe as V-Atten(X).

2. Angular-Delay Cross-Attention: Based on Equation (8) and

the stripe-based correlation illustrated in Section III-B, an

element in the angular-delay CSI matrix is determined by other

angular and delay components in the same stripes. Considering

the varying wireless channels, we utilize a residual cross-

attention module [16] to dynamically capture the correla-

tion features between two single-domain attention outputs,

H-Atten(X) and V-Atten(X).

The major difference between self-attention and cross-

attention is: the former calculates the query Q, key K, and

value V from the same domain, while the latter derives the

query, key and value from different domains. Formally, the

Concat

𝑘
𝑘/2

𝑘/2

𝑘/2

𝑘/2
𝑘

Step1: Self-Attention 
in Stripes 

Step2: Cross-Attention 
between Stripes

Fig. 7: Hybrid Attention in StripeFormer Block.

cross-attention output CrossAtten(X1, X2) is defined as:
[

QX2
,KX2

, VX1

]

=
[

X2WQ, X2WK , X1WV

]

,

CrxAtten(X1, X2) = [Softmax(QX2
KT

X2
)]VX1

+X1.
(11)

In our design, we fuse the correlations of angular and delay

domains by using one single domain as (query, key), and the

other domain as value. The final output Y of hybrid attention

block is the concatenation of the fused attention features:

H-V Atten = CrxAtten(H-Atten(X), V-Atten(X)),

V-H Atten = CrxAtten(V-Atten(X), H-Atten(X)),

Y = Concat
[

H-V Atten,V-H Atten
]

WO,

(12)

where WO ∈ R
D×D is the commonly used projection ma-

trix to project the attention results to the target dimension.

StripeFormer Block (SFB): As shown in Fig. 6(b), SFB

consists of hybrid attention block, layer normalization (LN)

block [17] and multilayer perceptron (MLP) block. The formal

specification of SFB is as follows:

X̂ l = Hybrid-Attention(LN(X l−1)) +X l−1,

X l = MLP(LN(X̂ l)) + X̂ l.
(13)

Here, X l is the output of the l-th StripeFormer block or the

output of the convolutional embeddings.

StripeFormer Layer (SFL) and StripeFormer: Besides the

major stripe-based correlations, the elements in the CSI matrix

with adjacent delays or AoDs may have correlations. Thus,

we design the SFL as a two-branch structure (Fig. 6(a)) to

jointly consider stripe features and potential patch features.

One branch consists of a series of SFBs to capture stripe

features, while the other utilizes a convolution kernel for local

features. Since the computational cost of attention mechanism

grows as O(n2) with the input size n. In the stripe branch, we

first adopt a convolution kernel to embed the input into patches

for computation reduction and a transposed convolution kernel

to recover the output of SFBs back to the original input size.

The final output of SFL is the sum of the two branches.

Several stacked SFLs with different split sizes construct the

final hierarchical architecture of StripeFormer. We denote the

output of StripeFormer as sd ∈ R
D×Na×Nt , where D is the

embedded dimension of StripeFormer.

3) Channel Reducer

We adopt three convolution kernels as Channel Reducer

to reduce the high dimensional output of StripeFormer. It

gradually reduces sd from R
D×Na×Nt to R

2×Na×Nt , i.e., the

size of the original angular-delay CSI matrix.



V. EVALUATION

A. Evaluation Methodology

1) Dataset and Metric

To ensure a fair comparison, we adopt a public benchmark

dataset [18] used by many channel compression works [1–

6]. The CSI samples are generated by the widely-recognized

COST2100 channel model [7]. The BS has Nt = 32 uniform

linear array antennas, and each UE has Nr = 1 antennas.

There are Nc = 1024 subcarriers with 20 MHz bandwidth.

The dataset contains two typical scenarios. One is the indoor

picocellular scenario at the 5.3 GHz band, while the other

is the outdoor rural scenario at the 300 MHz band. BS is

positioned at the center of 20 m square area in the indoor

case and 400 m square area in the outdoor case. UEs are

randomly positioned in the area. The initial ‘cut-off’ com-

pression is set as Na = 32 to keep the first 32 rows of

the original 1024-subcarriers CSI matrix. DFT is applied to

transform the spatial-frequency CSI into the angular-delay one

Ha ∈ R
2×32×32. Each scenario contains 150K CSI samples,

100K for training, 30K for validation, and 20K for testing.

To evaluate model effectiveness, we measure the accuracy

of the CSI reconstruction via evaluating Normalized Mean

Square Error (NMSE) as the quantitative metric.

NMSE = E

[∥ Ha − Ĥa ∥2
∥ Ha ∥2

]

. (14)

2) Training Scheme and Model Hyper-parameters

We implement our system with PyTorch on a server with

one NVIDIA GPU 3090 card. We use the Mean Squared

Error as the loss function to optimize the model towards

the objective in Equation 6. We train the model with Adam

Optimizer [19] for 1000 epochs with a batch size of 200 for

the outdoor dataset and a batch size of 400 for the indoor

dataset. The learning rate is warmed up to 1e−4 in 30 epochs

and reduced to 5e−6 with the cosine decay scheme used by

CRNet [6] for the outdoor dataset, while warmed up to 2e−4

for the indoor dataset. For multipath-simple indoor dataset, we

adopt data augmentation including adding noise, flipping over

vertical and horizontal axes, mixing up with other samples [20]

and phase rotation [21] to mitigate the potential overfitting

issues during training without extra burdens in deployment.

We denote the hyper-parameter configuration of the con-

volution kernel and transposed convolution kernel as tuple

[cin, cout, k, s, p], indicating the input channels size, output

channels size, kernel size, stride, and patch size. All transposed

convolution kernels are set with output padding = 1.

Encoder: The configuration of the real-imaginary fusion, fea-

ture extraction, and compression blocks are {[2, 32, 1, 1, 0]},

{[32, 32, 7, 4, 3], [32, 64, 5, 1, 2]} and {[64, 32, 5, 2, 2],
[32, C ′, 5, 2, 2]}. C ′= 512

CR
is set according to the required

compression ratio CR (Equation 9).

Decoder: The Upsampler consists of four transposed

convolution kernels: {[C ′, 512, 3, 2, 1], [512, 256, 3, 2, 1],
[256, 128, 3, 2, 1] and [128, D , 3, 2, 1]}, where D=128
is the default embedded dimension of StripeFormer.

StripeFormer splits the input with a (2, 2) patch size

for the outdoor dataset and (4, 4) for the indoor dataset.

StripeFormer contains 4 SFLs. The four layers are equipped

with 2, 2, 6, and 2 SFBs respectively. The numbers of heads

and the split widths for computing attention in four SFLs

are (2, 4, 8, 16) and (1, 2, 4, 8), respectively. The Channel

Reducer has three convolution kernels with parameters of

{[D,D/2, 3, 1, 1], [D/2, 8, 3, 1, 1], and [8, 2, 3, 1, 1]}.

3) Baselines

We compare our model against the following baselines.

(a) Deep Neural Network (DNN) Based: The first channel

compression model CSINet [1] has proved that DNN-

based methods outperform compressed-sensing based so-

lutions. CSI-StripeFormer also belongs to this category.

We mainly compare our model against several SOTA

DNN-based models, including CSINet [1], CRNet [6],

TransNet [22] and ACCsiNet [23].

(b) Hybrid Model (HM) Based: They first extract important

components from sparse CSI, then use DNN models to

further compress the extracted parts. Thus, they require

extra position information to guide the DNN models.

We compare our model with two SOTA hybrid models:

SRNet[3] and IdasNet [4].

B. Overall Performance

As shown in Table I, CSI-StripeFormer achieves SOTA

performance under high compression ratios. Our model can

significantly reduce NMSE by over 7dB compared with the

best baseline SRNet [3]. We further find that our model’s

performance under CR=64 is even comparable with that of

SRNet under CR=4 in the multipath-rich outdoor scenario.

This improvement proves that our design pushes the limits

of channel reconstruction under multipath-rich scenarios with

high CRs. It is noticed that the gain on the indoor dataset is

not as significant as the outdoor, probably because the outdoor

case features richer multipaths (Fig. 2) and thus benefits more

from our model.

C. Multipath Effects on CSI-StripeFormer

To evaluate the robustness of our model against multipath

effects, we evaluate CSI-StripeFormer with different multipath

conditions in the ‘multipath-rich’ outdoor dataset. As shown

in Fig. 3, our model is more robust to various conditions than

the best baseline SRNet [3].

D. Validation of Hybrid Attention

We compare the SFB with two other Transformer blocks

widely adopted in computer vision to validate the effectiveness

of the hybrid attention. We evaluate both Transformer blocks

on the multipath-rich outdoor dataset with CR=64. The first

is CSWin Transformer [14], computing the attention from

horizontal and vertical stripes separately without fusing. The

second is Swin Transformer [24], computing the local window

attention with shifted windows to extract local features. For

a fair comparison, we keep the remaining parts the same and

only replace SFB with these two blocks. We set the parameters

of CSWin Transformer the same as SFB and set the shifted



Category Model
CR=4 CR=8 CR=16 CR=32 CR=64

Indoor Outdoor Indoor Outdoor Indoor Outdoor Indoor Outdoor Indoor Outdoor

HM
SRNet -24.23 -15.43 -19.26 -13.47 -15.26 -11.31 -11.61 -9.17 -8.27 -7.80

IdasNet / / -18.87 -10.34 -13.51 -6.15 -10.13 -5.03 -9.34 -3.63

DNN

CSINet -17.36 -8.75 -12.70 -7.61 -8.65 -4.51 -6.24 -2.81 -5.84 -1.93

CRNet -26.99 -12.71 -16.01 -8.04 -11.35 -5.44 -8.93 -3.51 -6.49 -2.22

ACCsiNet / / / / -14.81 -11.76 -11.00 -9.14 -7.46 -7.11

TransNet -32.38 -14.86 -22.91 -9.99 -15.00 -7.82 -10.49 -4.13 -6.08 -2.62

Ours -26.24 -22.50 -22.29 -20.35 -16.80 -18.86 -12.48 -16.86 -9.37 -14.89

TABLE I: NMSE(dB) of channel reconstruction across various compression ratios (CR) and datasets.
(“Bold” represents the best performance, “Underline” represents the second best performance, and ”/” means no reported performance.)

window size to 4 for Swin block. As shown in Table II,

the SFB with hybrid attention achieves the best performance,

validating the effectiveness of the proposed hybrid attention

mechanism. It is also noticed that CSWin performs better than

Swin. This implicitly supports our insights on exploiting the

stripe-based correlation to tailor the model design for learning

a better representation of the CSI matrix.

Transformer Block Type NMSE↓ (dB)

None -4.73

CSWin [14] -12.19

Swin [24] -11.66

Our SFB -14.89

TABLE II: Comparison with other Transformer blocks.

“↓” indicates the lower NMSE the better performance.

E. Quantization Influence on CSI-StripeFormer

In practical FDD mMIMO systems, we can transmit quan-

tized values with fewer bits instead of 32-bit floats. This

quantization brings extra compression gain but may degrade

the channel reconstruction performance. We adopt uniform

quantization on the trained model to evaluate the quantization

effect. We compare our model mainly with the best baseline,

SRNet [3]. It is worth mentioning that our model is trained

without quantization for a fair comparison. As shown in Fig. 8,

our model shows little degradation when there are only 6

quantization bits. This evaluation validates that our model

can tolerate the quantization error, and still outperforms the

baselines even when they adopt 32-bit floats. The NMSE of

our model at 6 quantization bits is -13.65 dB, much lower than

SRNet’s -7.80 dB at 32 quantization bits. Thus, our model can

practically compress the CSI matrix from 64 Kbits to 192 bits

with a low reconstruction error.

F. Ablation Study

We evaluate the effects of key hyper-parameters of our

model. The ablation study is conducted under the ‘multipath-

rich’ outdoor scenario with a compression ratio of 64.

1) Impact of Embedded Dimension

The embedded dimension determines the feature space of

the model. We vary the dimension D from 32 to 256 to
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-12
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-8
-6
-4
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N
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Fig. 8: Quantization effects on the multipath-rich dataset.

evaluate its effect on our model. As shown in Table III, our

model has good scalability, e.g., NMSE can be further reduced

to -25.11 dB for CR=64. Given extended embedded dimension

D=256, our model’s reconstruction error at CR=64 is much

lower (around 10 dB) than the baselines at CR=4.

D 32 64 128 256

NMSE↓ (dB) -6.07 -7.62 -14.89 -25.11

TABLE III: Impact of embedded dimension D

2) Impact of StripeFormer Layer Configuration

The default layer setting is four layers equipped with [2,

2, 6, 2] blocks separately. To evaluate the influence of layers,

we compare the default setting with four other configurations

(CFG) under the outdoor scenario with CR=64. Each con-

figuration is trained for 1000 epochs. Table IV presents the

comparison results. Comparing CFG 1 and 3, it is found that

adding more Transformer blocks with the same layers can

improve the performance. Comparing CFG 1 and 2, different

block distributions for the same block and layer numbers have

little influence. A comparison between CFG 3 and CFG 4

indicates that adding more layers with the same block number

can reduce the NMSE. This is because adding more layers can

extract different resolution features, while blocks in the same

layer only focus on the same resolution. For CFG 4 and 5, a

deeper model with more layers and blocks can perform better.

G. Network Complexity

In this part, we present the number of FLOPs (floating-

point operations per second) and parameters of our encoder



CFG Layers Split Width NMSE↓ (dB)

1 [2, 2, 6, 2] [1, 2, 4, 8] -14.89

2 [3, 3, 3, 3] [1, 2, 4, 8] -14.99

3 [1, 1, 3, 1] [1, 2, 4, 8] -13.65

4 [2, 2, 2] [1, 2, 4] -12.12

5 [2, 2] [1, 2] -9.85

TABLE IV: Impact of SFL configurations

and decoder separately. We select one Transformer-based

baseline TransNet [22], one high-performance baseline SRNet

[3] and one lightweight baseline CRNet [6] for comparison.

The results are shown in Table V. Basically, we offload the

computing burden from UE to BS since BS has sufficient

computing resources. From Table V, our encoder is relatively

lightweight compared with TransNet [22] but has a much

better performance. Our decoder is heavier in exchange for

significantly better channel reconstruction performance.

Model CR
UE BS

NMSE↓ (dB)
Params FLOPs Params FLOPs

CRNet 32 131K 383K 136K 3.23M -3.51

TransNet 32 271K 16.91M 276K 16.97M -4.13

SRNet 32 58K 238K 2.07M 658M -9.17

Ours 32 165K 7.50M 11.38M 5.76G -16.86

TABLE V: Model parameters and FLOPs

VI. DISCUSSION AND FUTURE WORK

1) Model Compression

We currently exchange model complexity for significantly

better channel reconstruction performance via a heavier but

more powerful decoder in the resource-rich BS. Nevertheless,

it is desirable to have the best of both worlds: a lightweight yet

powerful design. It is expected that the promising progress on

techniques including model compression [25], pruning [26]

and distillation [27] could be integrated to make the design

more lightweight while preserving much of its capability.

2) Scenario Adaptation

As the indoor/outdoor distribution shift shown in Fig. 2, cur-

rent deep CSI compression systems including ours train a ded-

icated model for each scenario, which may cause performance

differences. It is envisioned that they can be deployed to indoor

microcells and outdoor BSs respectively. However, it is worth

pursuing a universal model across various scenarios (domains).

We think this problem falls in the scope of domain adaption

widely discussed in the ML community [28]. In our future

work, we plan to integrate relevant domain generalization

techniques [29–31] to design unified CSI compression models

easily adapted to various scenarios. This will also reduce the

data collection burden and speed up practical deployment.

3) Real-World Deployment

Our work is currently evaluated on the public dataset used

by most existing works to facilitate comparison. Towards real-

world deployment, we plan to build a prototype platform and

conduct further evaluation on the CSI collected in real envi-

ronments like [32] to investigate the model robustness against

practical factors, e.g., the impact of hardware imperfections

on CSI in our future work.

VII. RELATED WORKS

There are two lines of research for CSI feedback reduction

related to our work: 1) leverage known UL CSI to infer DL

CSI; 2) compress the DL CSI at UE and reconstruct at BS.

For the former, existing works [10, 33, 34] transform the UL

channel to the DL channel since both signals experience the

same physical paths. However, the performance may degrade

under increased DL and UL frequency difference [32] due

to partial reciprocity [35]. Our work belongs to the second

category and is immune to this issue.

For the latter, compressed sensing (CS)-based methods [36–

38] utilize the sparsity of the CSI matrix to project it into a

low-dimension space. However, CSI matrix is not always low-

ranking or sparse under complicated wireless environments.

Thus, DNNs have been adopted to relax the sparsity assump-

tion. CSINet [1] is the first to explore CNN for CSI compres-

sion, outperforming the CS-based methods under various CRs.

Motivated by this performance gain, many follow-up works,

including CLNet [2], SRNet [3], IdasNet [4], CSINet-LSTM

[5], CRNet [6], ACCsiNet [23] and so on, have been proposed

to improve CSI compression. However, most of them treat

CSI as images without considering the uniqueness of CSI.

TransNet [22] also uses the Transformer [15] as the backbone.

However, it just applies the Transformer without considering

CSI domain information. Our work reveals the intrinsic stripe-

based correlation across channel components of CSI matrix,

and design a stripe-aware encoder-decoder framework to en-

able better CSI compression under high compression ratios.

VIII. CONCLUDING REMARKS

In this work, we identify the multipath effects on channel

compression and present a unique observation on stripe-based

correlation of the angular-delay CSI matrix. We then exploit

this insight to design a stripe-aware encoder-decoder frame-

work, CSI-StripeFormer to enable better CSI compression.

We propose to explicitly incorporate stripe features into the

model design with a novel hybrid attention module and a

hierarchical Transformer-based architecture. It is believed that

CSI-StripeFormer advances the field of channel compression

towards practical usage in massive MIMO systems.
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