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Abstract—In this paper, we consider an M/M/1 status update
system consisting of two independent sources, one server, and
one sink. We consider the following last-come first-served (LCFS)
prioritized packet management policy. When the system is empty,
any arriving packet immediately enters the server; when the
server is busy, a packet of a source waiting in the queue is
replaced if a new packet of the same source arrives and the fresh
packet goes at the head of the queue. We derive the average
age of information (AoI) of the considered M/M/1 queueing
model by using the stochastic hybrid systems (SHS) technique.
Numerical results illustrate the effectiveness of the proposed
packet management policy compared to several baseline policies.

I. INTRODUCTION

In many applications of Internet of things and cyber-
physical control systems, freshness of the status information at
receivers is a critical factor. Recently, the age of information
(AoI) was proposed as a destination-centric metric to measure
the information freshness in status update systems [1]–[3].
A status update packet contains the measured value of a
monitored process and a time stamp representing the time
when the sample was generated. Due to wireless channel
access, channel errors, and fading, etc., communicating a
status update packet through the network experiences a random
delay. If at a time instant t, the most recently received status
update packet contains the time stamp U(t), AoI is defined as
the random process ∆(t) = t−U(t). Thus, the AoI measures
for each sensor the time elapsed since the last received status
update packet was generated at the sensor. The average AoI is
the most commonly used metric to evaluate the AoI [1]–[14].

The first queueing theoretic work on AoI is [2] where the
authors derived the average AoI for a single-source M/M/1
first-come first-served (FCFS) queueing model. The average
AoI for an M/M/1 last-come first-served (LCFS) queueing
model with preemption was analyzed in [3]. The average
AoI for different packet management policies in a single-
source M/M/1 queueing model were derived in [8]. The
work [11] was the first to investigate the average AoI in a
multi-source setup. The authors of [11] derived the average
AoI for a multi-source M/M/1 FCFS queueing model. The
closed-form expressions for the average AoI and average peak
AoI in a multi-source M/G/1/1 preemptive queueing model

were derived in [12]. The authors of [13] derived an exact
expression for the average AoI for a multi-source M/M/1 FCFS
queueing model and an approximate expression for the average
AoI for a multi-source M/G/1 FCFS queueing model having
a general service time distribution.

The most related works to our paper are [1] and [14].
In [1], the authors introduced a powerful technique based
on stochastic hybrid systems (SHS) to evaluate the AoI in
continuous-time queueing systems. They considered a multi-
source queueing model in which the packets of different
sources are generated according to the Poisson process and
are served according to an exponentially distributed service
time. The authors derived the average AoI for two packet
management policies: 1) LCFS with preemption under service
(LCFS-S), and 2) LCFS with preemption only in waiting
(LCFS-W). Under the LCFS-S policy, a new arriving packet
preempts any packet that is currently under service (regardless
of the source index). Under the LCFS-W policy, a new
arriving packet replaces any older packet waiting in the queue
(regardless of the source index); however, the new packet
has to wait for any update packet that is currently under
service to finish. In [14], the authors studied a different packet
management policy without considering priority of serving
based on the arrivals.

In this paper, we consider a status update system in which
two independent sources generate packets according to the
Poisson process and the packets are served according to an
exponentially distributed service time. We consider an LCFS
prioritized packet management policy as follows. When the
system is empty, any arriving packet immediately enters the
server. Differently from the policies studied in [1] and [14],
when the server is busy at an arrival of a packet, the possible
packet of the same source waiting in the queue is replaced by
the arriving packet and this fresh packet goes at the head of
the queue. We derive the average AoI for each source in the
considered queueing model using the SHS technique.

II. SYSTEM MODEL

We consider a status update system consisting of two
independent sources, one server, and one sink, as depicted
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Fig. 1: The considered status update system.

in Fig. 1. Each source observes a random process at random
time instants. The sink is interested in timely information
about the status of these random processes. Status updates
are transmitted as packets, containing the measured value of
the monitored process and a time stamp representing the time
when the sample was generated. We assume that the packets
of sources 1 and 2 are generated according to the Poisson
process with rates λ1 and λ2, respectively, and the packets are
served according to an exponentially distributed service time
with mean 1/µ. Let ρ1 = λ1/µ and ρ2 = λ2/µ be the load of
source 1 and 2, respectively. Since packets of the sources are
generated according to the Poisson process and the sources
are independent, the packet generation in the system follows
the Poisson process with rate λ = λ1 + λ2. The overall load
in the system is ρ = ρ1 + ρ2 = λ/µ.

We consider the following LCFS prioritized packet manage-
ment policy. The queue can contain at most two packets at the
same time, one packet of source 1 and one packet of source 2.
When the system is empty, any arriving packet immediately
enters the server. When the server is busy, a packet of a source
c ∈ {1, 2} waiting in the queue is replaced if a new packet of
the same source arrives, and the fresh packet goes at the head
of the queue.

For each source, the AoI at the sink is defined as the
time elapsed since the last successfully received packet was
generated. Next, we present the formal definition of the AoI.

Definition 1 (AoI). Let tc,i denote the time instant at which
the ith status update packet of source c was generated, and t′c,i
denote the time instant at which this packet arrives at the sink.
At a time instant τ , the index of the most recently received
packet of source c is given by Nc(τ) = max{i′|t′c,i′ ≤ τ}, and
the time stamp of the most recently received packet of source
c is Uc(τ) = tc,Nc(τ). The AoI of source c at the destination
is defined as the random process ∆c(t) = t−Uc(t). Let (0, τ)
denote an observation interval. Accordingly, the time average
AoI of the source c at the sink, denoted as ∆τ,c, is defined as

∆τ,c =
1

τ

∫ τ
0

∆c(t)dt. The average AoI of source c, denoted
by ∆c, is defined as

∆c = lim
τ→∞

∆τ,c. (1)

III. AOI ANALYSIS USING THE SHS TECHNIQUE

Next, we use the SHS technique introduced in [1] to
calculate the average AoI in (1) of each source in the system.
In the following, we briefly present the main idea behind the
SHS technique. We refer the readers to [1] for more details.

A. SHS Technique

The SHS technique models a queueing system through
the states (q(t),x(t)), where q(t) ∈ Q = {0, 1, . . . ,m}
is a continuous-time finite-state Markov chain
that describes the occupancy of the system and
x(t) = [x0(t) x1(t) · · ·xn(t)] ∈ R1×(n+1) is a continuous
process that describes the evolution of age-related processes
at the sink. Following the approach in [1], we label the source
of interest as source 1 and employ the continuous process
x(t) to track the age of source 1 status updates at the sink.

The Markov chain q(t) can be presented as a graph (Q,L)
where each discrete state q(t) ∈ Q is a node of the chain and
a (directed) link l ∈ L from node ql to node q′l indicates a
transition from state ql ∈ Q to state q′l ∈ Q. Note that unlike
in a typical continuous-time Markov chain, a transition from
a state to itself (i.e., a self-transition) is possible in the chain
q(t) ∈ Q. Through a self-transition, a reset of the continuous
state x takes place, but the discrete state remains the same (for
more details, see [1, Section III]).

A transition occurs when a packet arrives or departs in
the system. Since the time elapsed between departures and
arrivals is exponentially distributed, the transition l ∈ L from
state ql to state q′l occurs with the exponential rate λ(l)δql,q(t),
where the Kronecker delta function δql,q(t) ensures that the
transition l occurs only when the discrete state q(t) is equal
to ql. When a transition l occurs, the discrete state ql jumps
to state q′l, and the continuous state x is reset to x′ according
to a binary transition reset map matrix Al ∈ R(n+1)×(n+1)

as x′ = xAl. In addition, at each state q(t) = q ∈ Q, the
continuous state x evolves as a piece-wise linear function

through the differential equation ẋ(t) =
∂x(t)

∂t
= bq , where

bq = [bq,0 bq,1 · · · bq,n] is a vector with binary elements, i.e.,
bq,j ∈ {0, 1},∀j ∈ {0, . . . , n}, q ∈ Q. If the age process xj(t)
increases at a unit rate, we have bq,j = 1; otherwise, bq,j = 0.

To calculate the average AoI by using the SHS technique,
the state probabilities of the Markov chain and the correlation
vector between the discrete state q(t) and the continuous state
x(t) need to be calculated. Let πq(t) denote the probability
of being in state q of the Markov chain and vq(t) denote
the correlation vector between the discrete state q(t) and the
continuous state x(t). Accordingly, we have

πq(t) = E[δq,q(t)] = Pr(q(t) = q), (2)

vq(t) = E[x(t)δq,q(t)] = [vq0(t) · · · vqn(t)]. (3)

Let L′q denote the set of incoming transitions and Lq denote
the set of outgoing transitions for state q, defined as

L′q = {l ∈ L : q′l = q}, Lq = {l ∈ L : ql = q}.

Following the ergodicity assumption of the Markov chain
q(t) in the AoI analysis [1], [15], the state probability vector
π(t) = [π0(t) · · ·πm(t)] converges uniquely to the stationary
vector π̄ = [π̄0 · · · π̄m] satisfying [1]

π̄q
∑
l∈Lq

λ(l) =
∑
l∈L′

q
λ(l)π̄ql , ∀q ∈ Q, (4)



TABLE I: SHS Markov chain states

State
Source index of
the second packet
in the queue

Source index of
the first packet in
the queue

Source index of
the packet under
service

0 - - -
1 - - 1
2 - - 2
3 - 1 1
4 - 2 1
5 2 1 1
6 1 2 1
7 - 1 2
8 - 2 2
9 2 1 2

10 1 2 2

∑
q∈Q π̄q = 1. (5)

As it has been shown in [1, Theorem 4], under the er-
godicity assumption of the Markov chain q(t), the cor-
relation vector vq(t) converges to a nonnegative limit
v̄q = [v̄q0 · · · v̄qn],∀q ∈ Q, as t→∞ such that

v̄q
∑
l∈Lq

λ(l) = bqπ̄q +
∑
l∈L′

q
λ(l)v̄qlAl, ∀q ∈ Q. (6)

Finally, the average AoI of source 1 is calculated by [1,
Theorem 4]

∆1 =
∑
q∈Q v̄q0. (7)

As it can be observed in (7), calculating the average AoI using
the SHS technique boils down to deriving v̄q0, ∀q ∈ Q.

B. Average AoI Calculation

In the considered system model, the state space of the
Markov chain is Q = {0, 1, . . . , 10}; the different states are
presented in Table I. For example, q = 0 indicates that the
server is idle, i.e., the system is empty; q = 1 indicates that
a source 1 packet is under service and the queue is empty;
q = 5 indicates that a source 1 packet is under service, the
first packet in the queue (i.e., the packet that is at the head of
the queue as depicted in Fig. 1) is a source 1 packet, and the
second packet in the queue is a source 2 packet.

In our queueing model, the continuous process is
x(t) = [x0(t) x1(t) x2(t) x3(t)], where x0(t) is the current
AoI of source 1 at time instant t, ∆1(t); x1(t) encodes what
∆1(t) would become if the packet that is under service is
delivered to the sink at time instant t; x2(t) encodes what
∆1(t) would become if the first packet in the queue is
delivered to the sink at time instant t; x3(t) encodes what
∆1(t) would become if the second packet in the queue is
delivered to the sink at time instant t. The transitions between
the discrete states ql → q′l, ∀l ∈ L, and their effects on
the continuous state x(t) are summarized in Table II. In the
following, we explain the transitions presented in Table II:
• l = 1: A source 1 packet arrives at an empty system.

With this arrival/transition, the AoI of source 1 does not
change, i.e., x′0 = x0 (recall that the continuous state x is
reset to x′ when a transition occurs). This is because the
arrival of source 1 packet does not yield an age reduction

TABLE II: Transition rates for the Markov chain

l ql → q′l λ(l) xAl vqlAl

1 0 → 1 λ1 [x0 0 0 0] [v00 0 0 0]
2 0 → 2 λ2 [x0 0 0 0] [v00 0 0 0]
3 1 → 3 λ1 [x0 x1 0 0] [v10 v11 0 0]
4 1 → 4 λ2 [x0 x1 0 0] [v10 v11 0 0]
5 2 → 7 λ1 [x0 0 0 0] [v20 0 0 0]
6 2 → 8 λ2 [x0 0 0 0] [v20 0 0 0]
7 1 → 0 µ [x1 0 0 0] [v11 0 0 0]
8 2 → 0 µ [x0 0 0 0] [v20 0 0 0]
9 3 → 3 λ1 [x0 x1 0 0] [v30 v31 0 0]
10 4 → 4 λ2 [x0 x1 0 0] [v40 v41 0 0]
11 3 → 6 λ2 [x0 x1 0 x2] [v30 v31 0 v32]
12 4 → 5 λ1 [x0 x1 0 0] [v40 v41 0 0]
13 5 → 5 λ1 [x0 x1 0 0] [v50 v51 0 0]
14 5 → 6 λ2 [x0 x1 0 x2] [v50 v51 0 v52]
15 6 → 6 λ2 [x0 x1 0 x3] [v60 v61 0 v63]
16 6 → 5 λ1 [x0 x1 0 0] [v60 v61 0 0]
17 7 → 7 λ1 [x0 0 0 0] [v70 0 0 0]
18 7 → 10 λ2 [x0 0 0 x2] [v70 0 0 v72]
19 8 → 8 λ2 [x0 0 0 0] [v80 0 0 0]
20 8 → 9 λ1 [x0 0 0 0] [v80 0 0 0]
21 9 → 9 λ1 [x0 0 0 0] [v90 0 0 0]
22 9 → 10 λ2 [x0 0 0 x2] [v90 0 0 v92]
23 10 → 10 λ2 [x0 0 0 x3] [v100 0 0 v103]
24 10 → 9 λ1 [x0 0 0 0] [v100 0 0 0]
25 3 → 1 µ [x1 x2 0 0] [v31 v32 0 0]
26 4 → 2 µ [x1 0 0 0] [v41 0 0 0]
27 5 → 4 µ [x1 x2 0 0] [v51 v52 0 0]
28 6 → 7 µ [x1 0 x3 0] [v61 0 v63 0]
29 7 → 1 µ [x0 x2 0 0] [v70 v72 0 0]
30 8 → 2 µ [x0 0 0 0] [v80 0 0 0]
31 9 → 4 µ [x0 x2 0 0] [v90 v92 0 0]
32 10 → 7 µ [x0 0 x3 0] [v100 0 v103 0]

until it is delivered to the sink. However, since the arriving
source 1 packet is fresh and its age is zero, we have
x′1 = 0. In addition, since with this arrival the queue is
still empty, x2 and x3 become irrelevant to the AoI of
source 1, and thus, x′2 = 0 and x′3 = 0. Finally, we have

x′ = [x0 x1 x2 x3]A1 = [x0 0 0 0]. (8)

According to (8), it can be shown that A1 is given by

A1 =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 . (9)

Then, by using (9), v0A1 is calculated as

v0A1=[v00 v01 v02 v03]A1 =[v00 0 0 0] . (10)

It can be seen from (8)-(10) that when we have x′ for a
transition l ∈ L, it is easy to calculate vqlAl. Thus, for
the rest of the transitions, we just explain the calculation
of x′ and present the final expression of vqlAl.

• l = 2: A source 2 packet arrives at an empty system. We
have x′0 = x0, because this arrival does not change the
AoI of source 1 at the sink. Since the arriving packet is
a source 2 packet, x1 is irrelevant and we have x′1 = 0.
Moreover, since the queue is empty, x2 and x3 become
irrelevant, and we have x′2 = 0 and x′3 = 0.



• l = 3: A source 1 packet is under service and a source
1 packet arrives. In this transition, we have x′0 = x0
because there is no departure. The delivery of the packet
under service reduces the AoI to x1 and thus, we have
x′1 = x1. Since the arriving source 1 packet is fresh and
its age is zero, we have x′2 = 0. Since there is only one
packet in the queue, x3 becomes irrelevant, and we have
x′3 = 0. The reset map of transition l = 4 can be derived
similarly.

• l = 5: A source 2 packet is under service and a source
1 packet arrives. In this transition, we have x′0 = x0
because there is no departure. Since the packet under
service is a source 2 packet, x1 is irrelevant, and thus,
we have x′1 = 0. Since the arriving source 1 packet is
fresh and its age is zero, we have x′2 = 0. Since there is
only one packet in the queue, x3 becomes irrelevant, and
we have x′3 = 0. The reset map of transition l = 6 can
be derived similarly.

• l = 7: A source 1 packet completes service and is
delivered to the sink. With this transition, the AoI is reset
to the age of the source 1 packet that just completed
service, and thus, x′0 = x1. Since the system enters state
q = 0, x1, x2, and x3 become irrelevant, and thus, we
have x′1 = 0, x′2 = 0, and x′3 = 0. The reset map of
transition l = 8 can be derived similarly.

• l = 9: A source 1 packet is under service, a source 1
packet is in the queue, and a source 1 packet arrives.
The source 1 packet in the queue is replaced by the fresh
source 1 packet. In this transition, we have x′0 = x0
because there is no departure. The delivery of the packet
under service reduces the AoI to x1, and thus, we have
x′1 = x1. Since the arriving source 1 packet is fresh and
its age is zero, we have x2 = 0. Since there is only one
packet in the queue, x3 becomes irrelevant, and we have
x′3 = 0. The reset maps of transitions l = 10, l = 17,
and l = 19 can be derived similarly.

• l = 11: A source 1 packet is under service, a source 1
packet is in the queue, and a source 2 packet arrives.
In this transition, we have x′0 = x0 because there is
no departure. The delivery of the packet under service
reduces the AoI to x1, and thus, we have x′1 = x1.
According to the packet management policy, the arriving
packet of source 2 goes at the head of the queue while
the source 1 packet waiting in the queue moves as the
second packet in the queue. Consequently, the first packet
in the queue is a source 2 packet, and we have x′2 = 0.
The delivery of the second packet in the queue, which
due to the packet management is now a source 1 packet,
reduces the AoI to x2, and thus, we have x′3 = x2. The
reset maps of transitions l = 12, l = 18, and l = 20 can
be derived similarly.

• l = 13: A source 1 packet is under service, the first packet
in the queue is a source 1 packet, the second packet in the
queue is a source 2 packet, and a source 1 packet arrives.
According to the packet management policy, the source 1
packet that is at the head of the queue is replaced by the

fresh source 1 packet. In this transition, we have x′0 = x0
because there is no departure. The delivery of the packet
under service reduces the AoI to x1, and thus, we have
x′1 = x1. Since the arriving source 1 packet is fresh and
its age is zero, we have x′2 = 0. Since the second packet
in the queue is a source 2 packet, x3 is irrelevant, and
we have x′3 = 0. The reset maps of transitions l = 15,
l = 21, and l = 23 can be derived similarly.

• l = 14: A source 1 packet is under service, the first packet
in the queue is a source 1 packet, the second packet in the
queue is a source 2 packet, and a source 2 packet arrives.
According to the packet management policy, the source
2 packet in the queue is replaced by the arriving source
2 packet and this fresh packet goes at the head of the
queue. In this transition, we have x′0 = x0 because there
is no departure. The delivery of the packet under service
reduces the AoI to x1, and thus, we have x′1 = x1. Due
to the packet management policy, the arriving packet of
source 2 goes at the head of the queue while the source
1 packet which was at head of the queue moves as the
second packet in the queue. Thus, we have x′2 = 0 and
x′3 = x2. The reset maps of transitions l = 16, l = 22,
and l = 24 can be derived similarly.

• l = 25: A source 1 packet is in the queue, and a source
1 packet completes service and is delivered to the sink.
With this transition, the AoI is reset to the age of the
source 1 packet that just completed service, and thus,
x′0 = x1. Since the source 1 packet in the queue goes to
the server, we have, x′1 = x2. Since the source 1 packet in
the queue goes to the server, the queue becomes empty,
and thus, we have x′2 = 0 and x′3 = 0. The reset maps
of transitions l = 26, l = 29, and l = 30 can be derived
similarly.

• l = 27: The first packet in the queue is a source 1 packet,
the second packet in the queue is a source 2 packet, and
the source 1 packet completes service and is delivered to
the sink. With this transition, the AoI is reset to the age
of the source 1 packet that just completed service, i.e.,
x′0 = x1. Since the first packet in the queue goes to the
server, we have x′1 = x2. Finally, since the queue holds
only one source 2 packet, we have x′2 = 0 and x′3 = 0.
The reset maps of transitions l = 28, l = 31, and l = 32
can be derived similarly.

Recall that our goal is to find v̄q0,∀q ∈ Q, to calculate
the average AoI of source 1 in (7). In this regard, first we
determine bq,∀q ∈ Q, and the stationary probability vector
π̄. Then, by solving the linear equations in (6), we calculate
v̄q0,∀q ∈ Q.

The evolution of x(t) at each discrete state q(t) = q is
determined by bq , i.e., ẋ = bq . Thus, the first element of bq
is equal to 1 in all discrete states, bq,1 = 1, ∀q ∈ Q. This is
because the AoI of source 1, ∆1(t) = x0(t), increases at a
unit rate with time in all discrete states. The second element
of bq is equal to 1 if there is a relevant packet (i.e., a packet
of source 1) under service at state q(t) = q. The third element
of bq is equal to 1 if the first packet in the queue is a relevant



packet at state q(t) = q. The fourth element of bq is equal
to 1 if the second packet in the queue is a relevant packet at
state q(t) = q. Thus, bq for different states are determined by

bq=



[1 0 0 0] , q = 0,

[1 1 0 0] , q = 1,

[1 0 0 0] , q = 2,

[1 1 1 0] , q = 3,

[1 1 0 0] , q = 4,

[1 1 1 0] , q = 5,

bq=



[1 1 0 1] , q = 6,

[1 0 1 0] , q = 7,

[1 0 0 0] , q = 8,

[1 0 1 0] , q = 9,

[1 0 0 1] , q = 10.

(11)

To calculate the stationary probabilities, we use (4) and (5).
Using (4) and the transition rates of the different states
presented in Table II, it can be shown that the stationary
probability vector π̄ satisfies π̄D = π̄Q with

D =diag[λ, λ+ µ, λ+ µ, λ+ µ, λ+ µ, λ+ µ, λ+ µ, λ+ µ,

λ+ µ, λ+ µ, λ+ µ],

Q=



0 λ1 λ2 0 0 0 0 0 0 0 0
µ 0 0 λ1 λ2 0 0 0 0 0 0
µ 0 0 0 0 0 0 λ1 λ2 0 0
0 µ 0 λ1 0 0 λ2 0 0 0 0
0 0 µ 0 λ2 λ1 0 0 0 0 0
0 0 0 0 µ λ1 λ2 0 0 0 0
0 0 0 0 0 λ1 λ2 µ 0 0 0
0 µ 0 0 0 0 0 λ1 0 0 λ2
0 0 µ 0 0 0 0 0 λ2 λ1 0
0 0 0 0 µ 0 0 0 0 λ1 λ2
0 0 0 0 0 0 0 µ 0 λ1 λ2


.

Applying (5), we derive the stationary vector π̄. Consequently,
the stationary probabilities π̄0 and π̄1 are calculated as

π̄0 =
ρ+ 2ρ1ρ2 + 1

ε
, (12)

π̄1 =
ρ1
(
ρ1ρ2(ρ+ 4) + (ρ1 + 1)2 + (ρ+ 1)ρ22 + 2ρ2

)
(ρ+ 1)ε

,

where

ε = ρ41ρ2 + 3ρ21ρ
2
2ρ+ ρ31 + 2ρ+ ρ1ρ2(4ρ2 + 7ρ+ 2)

+ ρ1ρ
4
2 + ρ32 + 2ρ2 + 1.

For known π̄0 and π̄1 in (12), the probabilities {π̄2, π̄3, π̄4, π̄5}
are given as

π̄2 = ρπ̄0 − π̄1, π̄3 =
ρ1π̄1

1 + ρ2
, (13)

π̄4 =
ρ1(ρ+ 2) + 1

1 + ρ1
(ρπ̄0 − π̄1), π̄5 =

ρρ1(ρ1(ρ+ 2) + 1)

1 + ρ
π̄0

+

(
ρ21ρ2

(1 + ρ)(1 + ρ2)
− ρ1(ρ1(ρ+ 2) + 1)

1 + ρ

)
π̄1.

For known {π̄0, π̄1, π̄2, π̄3, π̄4, π̄5} in (12) and (13), the prob-
abilities {π̄6, π̄7, π̄8, π̄9, π̄10} are given as

π̄6 =
ρ2(π̄3 + π̄5)

1 + ρ1
, π̄7 = (1 + ρ)π̄1 − ρ1π̄0 − π̄3, (14)

π̄8 =
ρ2π̄2

1 + ρ1
, π̄9 = (1 + ρ1)π̄4 − ρ2π̄1 − π̄5,

π̄10 =
ρ2

1 + ρ1

(
(1 + ρ1) (π̄4 + π̄1)− ρ1π̄0 − π̄3 − π̄5

)
.

By substituting the stationary probability vector π̄ de-
fined through (12)-(14) and bq in (11) into (6) and solving
the corresponding system of linear equations, the values of
v̄q0, ∀q ∈ Q, are calculated. Finally, by substituting these
obtained values into (7), the average AoI of source 1 in the
considered queueing model is given as

∆1 =

∑13
i=0 ρ

i
1ψi

µρ1 (1 + ρ1)
(∑11

j=0 ρ
j
1ξj

) , (15)

ψ0 = ρ72 + 5ρ62 + 12ρ52 + 18ρ42 + 18ρ32 + 12ρ22 + 5ρ2 + 1,

ψ1 = 3ρ82 + 22ρ72 + 76ρ62 + 159ρ52 + 222ρ42 + 213ρ32 + 138ρ22

+ 56ρ2 + 11,

ψ2 = 3ρ92 + 31ρ82 + 155ρ72 + 465ρ62 + 917ρ52 + 1240ρ42

+ 1162ρ32 + 737ρ22 + 292ρ2 + 56,

ψ3 = ρ102 + 14ρ92 + 108ρ82 + 506ρ72 + 1512ρ62 + 3015ρ52

+ 4123ρ42 + 3878ρ32 + 2440ρ22 + 974ρ2 + 176,

ψ4 = ρ102 + 21ρ92 + 179ρ82 + 900ρ72 + 2910ρ62 + 6228ρ52

+ 8994ρ42 + 8764ρ32 + 5590ρ22 + 2446ρ2 + 385,

ψ5 = 10ρ92 + 142ρ82 + 910ρ72 + 3458ρ62 + 8401ρ52 + 13379ρ42

+ 13983ρ32 + 9294ρ22 + 3594ρ2 + 625,

ψ6 = 44ρ82 + 493ρ72 + 2507ρ62 + 7428ρ52 + 13704ρ42

+ 15958ρ32 + 11403ρ22 + 4553ρ2 + 777,

ψ7 = 112ρ72 + 1025ρ62 + 4167ρ52 + 9536ρ42 + 12961ρ32

+ 10313ρ22 + 4372ρ2 + 743,

ψ8 = 182ρ62 + 1356ρ52 + 4319ρ42 + 7324ρ32 + 6780ρ22

+ 3144ρ2 + 536,

ψ9 = 196ρ52 + 1156ρ42 + 2744ρ32 + 3151ρ22 + 1656ρ2 + 280,

ψ10 = 140ρ42 + 617ρ32985ρ22 + 619ρ2 + 99,

ψ11 = 64ρ32 + 188ρ22 + 157ρ2 + 21,

ψ12 = 17ρ22 + 25ρ2 + 2, ψ13 = 2ρ2,

ξ0 = ψ0, ξ1 = 2ρ82 + 13ρ72 + 46ρ62 + 102ρ52 + 151ρ42 + 153ρ32

+ 104ρ22 + 44ρ2 + 9,

ξ2 = ρ92 + 8ρ82 + 45ρ72 + 158ρ62 + 363ρ52 + 562ρ42 + 592ρ32

+ 415ρ22 + 179ρ2 + 37,

ξ3 = 9ρ82 + 67ρ72 + 275ρ62 + 711ρ52 + 1207ρ42 + 1364ρ32

+ 1003ρ22 + 444ρ2 + 92,

ξ4 = ρ82 + 42ρ72 + 258ρ62 + 830ρ52 + 1637ρ42 + 2056ρ32

+ 1623ρ22 + 745ρ2 + 154,

ξ5 = 7ρ72 + 121ρ62 + 577ρ52 + 1433ρ42 + 2099ρ32 + 1833ρ22

+ 886ρ2 + 182,

ξ6 =21ρ62+220ρ52+790ρ42+1449ρ32+146ρ22+760ρ2+154,

ξ7 = 35ρ52 + 251ρ42 + 652ρ32 + 809ρ22 + 469ρ2 + 92,

ξ8 = 35ρ42 + 174ρ32 + 299ρ22 + 204ρ2 + 37,

ξ9 =21ρ32+67ρ22+60ρ2+9, ξ10 =7ρ22+11ρ2 + 1, ξ11 =ρ2.



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

8

9

10

11

12

13

14

15

16

17

18

S
u

m
 A

v
er

ag
e 

A
o

I
LCFS-S, =0.5

LCFS prioritized packet management, =0.5

LCFS-W, =0.5

LCFS prioritized packet management, =1

LCFS-S, =1

LCFS-W, =1

Fig. 2: Sum average AoI for different values of ρ under different
management policies with µ = 1.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

0.75

0.8

0.85

0.9

0.95

1

Ja
in

's
 I

n
d
ex LCFS prioritized packet management, =0.5

LCFS-W, =0.5

LCFS-S, =0.5

LCFS prioritized packet management, =1

LCFS-W, =1

LCFS-S, =1

Fig. 3: Sum average AoI for different values of ρ under different
management policies with µ = 1.

IV. NUMERICAL RESULTS

In this section, we show the effectiveness of the proposed
packet management policy in terms of the sum average AoI
and fairness between different sources in the system. The fair-
ness is assessed by the Jain’s fairness index which is defined

as J(∆1,∆2) =
(∆1 + ∆2)2

2(∆2
1 + ∆2

2)
[16, Section. 3]. J(∆1,∆2) is

continuous and lies in [0.5, 1], where J(∆1,∆2) = 1 indicates
the fairest situation in the system.

Fig. 2 illustrates the average AoI of sources 1 and 2
for different values of ρ under different packet management
policies. From this figure, we observe that when the system can
not choose λ1 and λ2, the best policy to achieve a low value of
the sum average AoI depends on the system parameters. Fig. 3
depicts the Jain’s fairness index for the average AoI of sources
1 and 2 as a function of λ1 under different packet management
policies. From this figure, we observe that the proposed policy
outperforms the existing policies from the fairness perspective.

V. CONCLUSIONS

We considered an M/M/1 status update system consisting
of two independent sources, one server, and one sink. We
proposed the LCFS prioritized packet management policy in
which when a new packet of a source arrives, the possible
packet of the same source waiting in the queue is replaced
by the arriving packet and this fresh packet goes at the head
of the queue. We derived the average AoI for each source
using the SHS technique. The numerical results illustrated the

effectiveness of the proposed policy compared to the LCFS-S
and LCFS-W policies in terms of fairness and sum average
AoI.
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