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Abstract—Research testbed fabrics have potential to support
long-lived, evolving, interdomain experiments, including opt-in
application traffic across multiple campuses and edge sites. We
propose abstractions and security infrastructure to facilitate
multi-domain networking, and a reusable controller toolkit (Ex-
oPlex) for network service providers (NSPs) running in testbed-
hosted virtual network slices. We demonstrate the idea on
the ExoGENI testbed, which allows slices to interconnect and
exchange traffic over peering links by mutual consent.

Each ExoPlex NSP runs a peering controller that manages
its interactions with its linked peers and controls the NSP’s
dataplane network via SDN. Our approach expresses policies
for secure peering and routing in a declarative language—
logical peering. The prototype uses logic rules to verify IP prefix
ownership, filter and validate route advertisements, and imple-
ment user-specified policies for connectivity and path control in
networks with multiple transit NSPs.

Index Terms—Networks, Testbeds, SDN, Policy Based Routing,
Secure Routing, Internet Security

I. INTRODUCTION

Advanced network testbeds can serve as platforms to pilot
new network transit services in testbed slices, and evolve
them under real usage experience. This paper proposes an
approach to secure inter-domain networking among testbed-
hosted slices, and reports on experiments using ExoGENI [/1]]
and the Internet-2/AL2S L2 circuit service. Our software and
results generalize to testbeds with these enabling capabilities:

o Dynamic slices with virtual dataplanes. ExoGENI
defines TaaS APIs to provision network topologies and
program them with software-defined networking (SDN).
In our model, slices may act as Network Service Providers
(NSPs) that offer transit service for IP trafﬁcE]

e NSP peering. ExoGENI slices may declare stitchports
and interconnect (stitch) them by mutual consent [2], e.g.,
at an exchange site or by AL2S circuits. Testbed support
for cross-slice stitching enables NSP slices to peer at L2
programmatically, even if they have different owners.

o Customer opt-in. A slice may peer with an NSP provider
and exchange IP traffic over the link. In addition, campus
networks increasingly support SDN bypass services for
authorized subnets to route/accept selected traffic through
a dynamic L2 network circuit, which may link to a
testbed-hosted NSP. In this way a subnet owner may “opt
in” to use an NSP as an alternate Internet Service Provider
for selected prefixes.

'We program NSP dataplanes with OpenFlow SDN, which is limited to IP.

These capabilities enable experimental NSP services that
can carry real user traffic across research fabrics. For example,
we envision that NSPs can offer security-managed connectiv-
ity with policy controls to enable or disable flows; impose
security scanning or other NFV service chains on specified
flows; protect against spoofing, hijacking, and DDoS attacks;
or configure other defenses that are lacking in the public
Internet. This paper extends our previous work toward that
goal [2], [3]] with support for secure policy-based inter-domain
routing among transit NSPs. It leads us to a vision of inter-
domain traffic control within a network of NSPs, which may
be experimental (e.g., user-managed), elastic, dynamic, and/or
restricted to certain classes of traffic, e.g., high-priority data for
a specific project. It could enable advanced network services
as NSPs that weave into the fabric of the Internet over time
through cycles of innovation and adoption.

This paper proposes and demonstrates policy-based inter-
domain NSP networking in the ExoPlex toolkit—software
elements that run within testbed slices and their controllers—
to build NSPs and interconnect them securely. ExoPlex ad-
dresses common security needs for experimental interdomain
networking (§I), including route security (§III) with custom
policies for peering, route filtering, and path control, expressed
in a logical trust language. presents experiments.

The contributions of this paper are to: (1) expose security
control abstractions for interdomain experiments with pro-
grammable security policy (a “testbed for trust”); (2) show
how to support them in a reusable toolkit using a logical
trust model; and (3) demonstrate them in proof-of-concept
experiments with multiple testbed-hosted transit providers and
custom policies for path control.

Note. This paper is an extended version of a workshop paper
at the International Workshop on Computer and Networking
Experimental Research Using TestBeds (CNERT), May 2020.
The original content is unchanged. It is extended with marked
sections containing additional implementation and algorithmic
detail, and additional experimental results.

II. LOoGICAL PEERING IN EXOPLEX

ExoPlex combines logical trust with functions for NSPs
to manage an elastic network topology, control traffic in
their dataplanes with SDN, and peer by stitching. Together,
these functions enable a powerful platform for policy-driven
interdomain networking with a compact implementation.

The players (principals). Each participating network do-
main (NSP or edge subnet) is controlled by a security principal
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Fig. 1: An exemplary inter-domain network used in our experiments. Each of the participating NSPs is instantiated as a separate ExoGENI slice with
an NSP controller and a principal keypair. The control plane comprises NSP controller APIs to establish peering links and to announce or propagate
routes and security policies. Each customer edge subnet (stub) stitches to an edge provider (SDX) and specifies policies to control connectivity with
other subnets and rules for packet transit, including path control policies that limit their traffic to qualifying NSPs endorsed with specified tags. For
example, traffic transit between subnet A and subnet C is limited to only NSPs compatible with tag0. Similarly, B-D traffic is restricted by tagl;
A-D traffic is restricted by tag2. As a result, certain flows take different paths in order to comply with each customer’s traffic policies.

with a keypair. Interacting network domains are necessarily
embedded within some governance structure with additional
principals, e.g., to assign addresses within a common space.
For example, communicating subnets must own compatible
IP prefixes delegated to them from common trust roots, and
policies may rely on security tags (attributes) of principals or
networks asserted by various endorsing authorities. Principals
use their keypairs to sign their requests, delegations, policies,
endorsements, and/or advertised routes.

Governance. ExoPlex supports an open governance model
for flexible experimentation. Each party specifies the trust
roots and governance rules that it subscribes to using logic.
Parties may interact only to the extent that their structures
and rules are compatible. The experiments in this paper use a
simple governance model in which common trust anchors—
accepted by all participants—delegate IP prefix ownership and
endorse/certify NSPs with security attributes (tags). Exoplex
builds its secure control network over the existing public
Internet, e.g., so that NSP controllers can invoke one another’s
APIs for peering.

Security model for peering. NSP controllers expose APIs
to negotiate link stitching. An NSP’s policies may limit the
customers or peers that it accepts. Once a peering link is
established, either side may advertise routes for subnet prefixes
to the other. Secure interdomain routing requires that NSPs
validate prefix ownership (origin authentication) and transitive
route advertisements end-to-end (route validation), similarly to
Internet security standards such as RPKI [4] and S-BGP [5] or
BGPsec [6]. In this paper we add customer-specified policies
for off-by-default connectivity and path control, which limit
traffic and constrain eligible routes based on security attributes
of the NSPs and subnets.

As an exemplary demonstration, we deploy an inter-domain
network with ten ExoGENI slices representing edge providers
(SDX), transit NSPs, and customer domains (Figure |I[) In
the demo scenario, customers specify path control policies
that confine their traffic to compliant paths through qualified
carriers—NSPs endorsed with specified tags anchored in trust
roots that the customer accepts. For example, an endorsing
authority might issue a signed assertion tagging the NSP with
public key K as “production-grade safe” or “classified secure”.

Standards and interoperability. Networks base routing
and security functions on well-specified protocol standards
that allow for multiple interoperable implementations. In this
work we take a first step by defining a common software
platform—ExoPlex—that NSP controller software may use to
manage their interactions and program their internal dataplane
networks accordingly. Logical peering in the control plane
offers alternatives to relevant Internet standards (e.g, BGPsec
and RPKI), but with a simpler deployment for SDN-enabled
testbeds, no dataplane entanglements, flexible governance,
and extended policy options (e.g., path control as in our
experiments). Because security metadata propagates through
the control plane APIs over the public Internet, all crypto
operations occur off of the dataplane.

Logical trust. We use a logical trust language (datalog) to
represent all security metadata, including endorsements, prefix
delegations, routes, and policies. The SAFE [7] logical trust
framework defines a certificate format for signed logic pay-
loads, and a validation engine for policy checks incorporating
an off-the-shelf datalog engine (Styla). The logic vocabulary
is extensible and enables a wide range of policies and trust
structures without changing the certificate format or platform
implementation. Our approach is inspired by earlier work on
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Fig. 2: An exemplary ExoPlex Network Service Provider (NSP) slice. The NSP dataplane comprises network circuits—allocated from a circuit
provider such as I12-AL2S—that link one or more sites or points-of-presence (PoPs); each site runs optional NFV appliances and OpenVSwitch
routers controlled via OpenFlow. The NSP controller is a server program that invokes: testbed APIs to orchestrate the slice; OpenFlow controller(s)
to manage traffic flow within the slice; and a local SAFE engine to produce, consume, and validate logical certificates and check compliance with
logical policy rules. The NSP controller exposes a northbound API for permissioned peering, permissioned flows, and policy-based path control.

networking using datalog, e.g., [8[], [9].

The logical trust approach is a rapid prototyping vehicle
for experimental approaches to secure peering. Although the
power and flexibility of trust logic imposes substantial costs
as prototyped, they are off of the dataplane and accrue only
on changes to the network (e.g., peer link stitching, new
prefix announcements) or its security policies. Importantly,
the logic approach permits but does not require participants
to write logic code: they can delegate their policies to others,
take prepackaged policy off the shelf (e.g., from federation
authorities), or use packaged logic for common structures and
access control abstractions.

Threat model. We use logical peering to express rules
that defend against IP spoofing, route hijacking, and unau-
thorized traffic. We provide standard logic rules for origin
authentication and transitive route validation, modeling RPKI
and BGPsec. We use path control to illustrate the potential
for custom policies for logical peering. With path control, the
transit path for each flow is compliant end-to-end with rules
specified by the endpoints: the endpoints trust each NSP along
the path to be faithful to the policies and to forward and accept
traffic only along the trusted path, providing deep defenses
against spoofing.

III. DESIGN OVERVIEW

Figure [2| depicts an ExoPlex NSP and its controller, which
is layered above its SDN controller(s), the SAFE logical trust
engine, and a testbed-specific IaaS plugin (slice controller).
For ExoGENI, the TaaS plugin uses the Ahab library to build
and maintain the NSP’s topology by invoking ExoGENI’s
API for dynamic slices. ExoPlex includes OpenFlow SDN
controller software to program the NSP dataplane, based on an
extended Ryu rest-router module. NSP controllers may
control an elastic topology or incorporate NFV and SDN-based

traffic engineering. These elements are outside the scope of
this paper’s focus on logical peering.

ExoPlex extends to testbeds other than ExoGENI. NSPs
may replace the IaaS plugin for another dynamic slice API, or
run without one over any static SDN-programmable dataplane
topology. We have deployed ExoPlex NSPs over Corsa switch
VECs (virtual forwarding contexts) in the Chameleon [[10] and
ESnet testbeds.

An NSP controller exposes northbound control plane APIs
(as shown in Table for its customers and peers to request
peering links and notify the NSP of new policies and routes.
Calls to these APIs drive all control plane interactions to
propagate routes and policies across the interdomain network.
The handler for an incoming call invokes a local SAFE
engine to perform various validation checks, then optionally
modifies its network state and propagates notifications to peers.
Outgoing route advertisements are signed under the NSP’s
keypair. NSP controllers are assumed to be reachable to one
another, e.g., on the public Internet.

ExoPlex includes a standard set of controller API handlers
and SAFE trust scripts, which together determine when and
how to install or withdraw routes and filtering rules in the NSP
dataplane via the SDN controller APIs. We extend the SDN
controller for ingress filtering and source-specific routes to
support policies for path control and anti-spoofing defenses.
The trust scripts define logic templates, standard validation
rules for incoming routes; hooks for custom authorization
rules for peer requests and permissioned flows [3]]; and custom
policy rules to filter outgoing routes. We extended these rules
to validate multi-hop paths through multiple transit NSPs.

A. Logical Policy

A logical policy is expressed as a set of logical facts
and rules to govern and authorize routes and traffic. NSPs
subscribe to standard rules to validate routes and authenticate



IP origin prefixes. In addition, customer subnets may specify
policies that guard connectivity to their prefixes and/or con-
strain the paths for inbound and/or outbound flows. Associated
NSPs receive those policies and evaluate compliance. For
example, a subnet’s direct provider (labeled SDX in Figure
receives connectivity policy from the subnet and blocks traffic
from unauthorized senders on the last hop before delivery.

Policy rules may query statements and security attributes
of other relevant parties. For example, connectivity rules may
query attributes of the source. The policy also defines which
authorities may assert/endorse these attributes. The standard
route validation rules authenticate the origin as the owner of
the prefix according to the NSP’s governance rules.

The logical trust approach makes it easy to express and
share governance policy in logic, independent of other el-
ements of the implementation. A policy might express a
federation structure or, alternatively, a set of ad hoc trust
agreements among the interacting parties. For example, the
prefix ownership rules in our prototype express a structure
similar to the public Internet, in which prefixes are delegated
transitively through a hierarchy of owners, with range contain-
ment checked at each level. The participants must agree on the
roots of authority, as in RPKI.

NSP controllers check policy compliance by issuing scripted
queries to a local SAFE logic engine, passing a logic context—
a set of certified facts and rules in datalog. The trust scripts
construct each logic context and incorporate relevant assertions
and policy rules extracted from signed SAFE certificates, and
selected local logic. SAFE certificates may be passed by
reference via a link, and a certificate may embed links to
other certificates. Trust scripts retrieve and follow these links
to construct the context for a compliance check. In particular,
ExoPlex NSPs propagate links to customer-specified path
control policies along with routes, and index them by prefix
pairs in an Area-based Quad Tree (AQT) [11]].

The logic approach allows any participant to check com-
pliance with another’s policy on its behalf. For example,
customers trust their edge providers (SDX) to enforce their
connectivity policies. NSPs along a valid path cooperate to
enforce customer-specified path control policies; the customer
trusts these NSPs to be faithful to the policy.

B. Secure Routing and Prefix Ownership

ExoPlex includes off-the-shelf trust logic scripts for secure
routing, including certified route advertisements modeled on
BGPsec and prefix ownership modeled on RPKI.

Route validation. An NSP controller invokes a trust script
to sign its route advertisements and to validate advertised
routes. Each hop of a route is a logical assertion advertising
to a peer NSP a route for a specified destination prefix,
along with an ordered list of predecessors (PrincipallDs) in
the path: advertise (?DstPrefix, ?Path, ?Peer).
The issuing NSP invokes a script to encode the advertisement
in a logical certificate and sign it under the issuer’s keypair.
The certificate links to the next hop in the chain of predecessor
advertisements.

Prefix ownership. The origin of a valid route must own the
destination prefix. The origin links its initial advertisement to
a certificate set with evidence that it owns the prefix. As the
route propagates, each NSP in turn applies local policy rules
to this logic set to validate the origin’s ownership of the prefix.
ExoPlex includes a trust script to delegate a prefix to a named
principal, linked to a predecessor as evidence that the issuer
owns the containing prefix.

C. Path Control

Path control. For this paper, we added support for cus-
tomers (subnet owners) to express logical policy rules for
path control. These rules qualify which NSPs are eligible to
carry their traffic, e.g., based on secure attributes of the NSPs.
Interdomain routing in ExoPlex finds the least-cost paths that
are compliant with registered policies of both the source and
destination subnets, if such paths exist. A path (route) is
compliant with the policy iff it traverses only qualified NSPs.

The subnet owner issues a path control policy as a cer-
tificate, and notifies its provider, passing the policy link. A
policy notification associates each policy with a prefix pair
(source, dest), which may be wildcarded. The route
for a packet is governed by the policy with the most specific
enclosing prefix pair, if any, for the packet’s source, dest
addresses. If both source and destination assert a policy, then
a compliant route complies with both.

Inbound path control. An inbound policy qualifies NSPs
to carry traffic to a destination prefix, and originates from
the owner of the prefix. The subnet owner trusts the qualified
NSPs, for example, to block any traffic to the destination from
spoofed source addresses. Inbound path control policies are
attached to a route advertisement and propagate with the route
advertisement. Each NSP propagates routes only to peer NSPs
that are compliant with the route’s policy.

Outbound path control. An outbound policy qualifies
NSPs to carry traffic from the source prefix S (whose owner
specifies the policy) to the destination prefix D. A customer
passes outbound path control policies to the provider in a
separate API call, which it may invoke at any time.

Upon receiving an outbound policy event, an NSP N
validates its default route for (S, D) (if any) for compliance
with the new policy. If the route is not compliant, then /N must
find an alternative compliant route, even if it is longer than the
current route, and then propagate it.

To do this, N considers other cached routes to D. Consider
a cached route R. N received R previously from a peer, but
N did not select or propagate R because N instead selected
a shorter route (e.g., the current route). If R is the shortest
known compliant route, then N selects R for (S, D), replacing
the current route for any flows that are within the scope of
the new policy. If N knows no compliant route R, then it
propagates the policy to at least all compliant peers that have
advertised a valid route to D, indicating that the peer is also
compliant with D’s inbound policy. These peers handle the
event similarly.



Eventually, if a compliant path exists, some compliant NSP
identifies a compliant R and advertises it as described above.
The route propagates in the usual fashion and eventually the
SDX for S receives it. Along the way, each NSP on the path
chooses and installs a compliant sub-route R for matching
flows. If an NSP later learns of a shorter compliant route it
replaces the old route in the usual way.

Policy conflicts. A route must comply with both the out-
bound policy of the source and the inbound policy of the
destination. Conflicts are not a concern, although restrictive
policies might block traffic entirely. If one subnet owner
publishes conflicting policies for different prefix pairs, then the
longest prefix match takes priority. By convention, the source
prefix dominates for an outbound policy and the destination
prefix dominates for an inbound policy.

Proof sketch for liveness. The following conditions assure
discovery of a compliant path, if one exists. First, each NSP
that receives the outbound policy and has no compliant R
propagates the policy to all compliant peers. Second, all NSPs
advertise each locally selected route to all compliant peers.
Lastly, an NSP that has received the policy and knows a
compliant route selects the route, and therefore propagates it to
all compliant peers. Since a compliant path can never traverse
a non-compliant peer, it is sufficient to propagate the policies
and routes only among compliant NSPs. The liveness property
can be proven by contradiction.

Prototype source code. The source code for ExoPlex and
its SDN controller (in Python) is available at https://github.
com/RENCI-NRIG/CICI-SAFE, which links to a separate
repository for SAFE logical trust. The core modules of the
ExoPlex NSP controller toolkit comprise about 6K lines of
Java code and a few hundred lines of SAFE trust scripts.

D. Policy Composition and Priority

Extended content. ExoPlex routes and policies are specified
to match prefixes or source-destination (S, D) prefix pairs;
arbitrary ranges are not supported. Because it enables policies
based on source address, it requires source-specific routing
in the dataplane, and the NSP controller tracks policies and
routes by (S, D) prefix pairs, with optional wildcarding in
either dimension. For any given set of routes and policies, the
NSP must select a minimal set of source-specific routes to
install in its SDN dataplane. Each installed route matches an
(S, D) prefix pair, and complies with policies applicable to S
and D. Thus a route may correspond to a region of overlap
among multiple controlling policies. This section summarizes
policy scope, overlap, and priority.

Figure [3] shows how two prefix pairs can overlap. A prefix
pair (S, D) corresponds to a rectangle (a region) in the
2-dimensional source-destination IP address space. In each
dimension of two (S, D) prefix pairs, the prefix of one prefix
pair is either a subset or a superset of the corresponding prefix
in the other pair. Thus the regions either cover or intersect as
shown in Figure 3]

Containment and priority For simplicity, we require that
prefix holders specify clear priority for policies that conflict.
For this reason, the only permitted form of overlap for policies
of the same type (inbound or outbound) is containment—or
equality. For example, Figure {4 (discussed below) presents
a scenario in which an endpoint subnet specifies an out-
bound policy, overriding a policy for the containing network.
Additionally, an endpoint’s inbound policies must match its
advertised routes: an inbound policy’s destination prefix must
be the same or smaller (more specific) than the prefix for some
advertised route. These restrictions do not constrain the policy,
only its specification.
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Fig. 3: Cases for two overlapping prefix pairs: they intersect, one pair
contains the other, or they are equal.

These containment properties simplify policy handling.
Containment offers a clear priority rule: the more specific
policy dominates. If an inbound or outbound policy is the
highest priority of its type for some region, we say that
the policy controls the region. Each point has exactly one
controlling policy of each type; if no policy is specified, then
the default is to accept any valid route. An NSP controller
installs SDN (OpenFlow) routing rules matching each policy
region, specifying the rule’s priority as the area of the matching
region. In this way the most specific policy applicable to a
given packet determines its route.

Policy priority does not limit the flexibility of the policies. A
network owner might limit its subnets to comply with parent
policies, so that more specific policies are more restrictive.
However, ExoPlex does not enforce such constraints. We
leave it to network authorities to enforce compliance by their
delegates at their discretion.

Composing inbound and outbound policies Policy com-
position occurs when an inbound policy and outbound policy
match overlapping regions. Suppose a region R is an area of
overlap between an inbound policy and an outbound policy
that both control R. Then compliance may require the NSP to
select and propagate a different route for traffic matching R
than it selects for the other regions that these policies control.
Specifically, a route for packets matching R must comply
with both the inbound and outbound policies that control the
region. We refer to a pair of inbound and outbound policies
that control the same region as a policy pair. Each point is
governed by exactly one policy pair.

E. Processing Advertised Routes and Policies

Extended content. This section outlines data structures and
algorithms to manage policies indexed by (S, D) region in the
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NSP controller. Each NSP maintains a catalog containing all
of the routes and policies that it knows, indexed by region in
an AQT. When it receives a new route or policy, it queries
its catalog to determine adjustments to its current routes, and
how to propagate the policy and affected routes to its peers.
For simplicity, we discuss propagation of policies and routes
separately.

inbound AQT store for inbound policies indexed by region.

outbound AQT store for outbound policies indexed by region.

match AQT store for overlapping regions of controlling
policy pairs.

routes Store of all accepted routes from neighbors.

forwardMap | Map of current chosen routes and their regions. It
is similar to forwarding information base (FIB), but
at NSP level.

exports Set of routes exported to compliant neighbors.

TABLE I: NSP controller data structures used by Algorithm |1| and
Algorithm [2}

Route and policy matching. Area-based Quad Tree
(AQT) [11] supports efficient indexing of regions specified
by prefix pairs. The root of the AQT represents the entire
2-D address space. Each AQT node has four children that
equally split the parent’s address space, adding one address
bit in each dimension. Thus the nodes of the AQT correspond
to progressively finer-grained squares in the 2-D space. In [[11]]
a region or prefix pair stored in the AQT is also called a filter.
The AQT stores each filter in the highest-level node (closest
to the root) that shares the same source or destination prefix,
whichever dimension of the region is larger (less specific). As
the paper explains, each region is a crossing filter for the node
it occupies: the region is either identical to the node’s square
in the 2-D space, or the region exactly crosses the square in
exactly one dimension. The filters stored at a node are the
node’s crossing filter set.

Each populated node of the AQT has two collections to
index its crossing filter set, one for each dimension. It stores
crossing filters in the collection that indexes the smaller (less
specific) dimension of the filter. We choose a binary tree to
represent each collection, where each node in the binary tree
represents a prefix. To insert or remove a filter, the AQT walks
from the root to the target node and updates the node. To query
a prefix pair, the AQT returns all stored filters that overlap with
the pair’s region, leaving any conflict resolution to the routing
management module.

For N prefix pairs, AQT requires O(N) space, O(W)
update (insert/delete) time, and O(K) query time, where W
is the maximum prefix length—32 for IPv4 prefixes, and K
is the size of the result.

Algorithm overview: new policy. At any given time there
is a set P of filters of a first type (inbound or outbound), a set
R of filters of the other type, and a set M of match regions.
Each set P, IR, M is indexed in its own AQT.

Different policy pairs may match on the same region, but
each match is controlled by exactly one most specific policy
pair: Ym e M, Ip,, € P, Ir, € R, m=p,, N1y, AVP €

{peP|mCp},pm CpAVre{reR|mCr},r, Cr.
Proof. Let X be the set of all points in 2-D address space.
Because of the containment property, there is a most specific
filter p, in P and a most specific filter 7, in R that control
each point x. The most specific filter may be the default
filter. The most specific policy pair that controls = is then
(pz, 7). The corresponding match region m, = p, N7, is
the minimal match region that controls z: Vo € X, A Vm €
{meM|zem}, m, Cm.

Consider addition of a new filter p of the first type. Existing
matches m € M that do not overlap p (m N p is empty) are
unaffected. If p € P then for each r € R that overlaps p the
algorithm must visit the existing match m = pNr to determine
if it should use the new policy. If p ¢ P then each such rr € R
may create a new match region m = pNr to add to M.

Whether or not p € P, there may exist one or more matches
m that overlap: m = p; Nr; with p; € P,r; € R,p; # p,
m € M, and non-empty p N m. Because of the containment
property, for any such m, there are exactly two cases. Case 1:
p; C p. Then p; dominates p, so the new p does not affect this
m. Case 2: p C p;. Then the new p introduces a match filter
m’ = pNr; C m that dominates m for sub-region m'. Filter
m is unaffected and remains in place to control the rest of its
region. It is possible that m’ = m if r; itself is more specific
than p; in at least one dimension, but p updates policy for m’
regardless.

The algorithm handles all of these cases by considering m =
pNr for each overlapping » € R in priority order where such
order exists. If m ¢ M, then add m to M controlled by policy
pair (p,r). Else m € M and m = p; Nr; for unique p; and r;
as described above. If p; C p then there is no change for this
m because p; dominates the new p in this region. If p; = p
or p C p;, then the new policy supersedes the old one in m.
However, if r; C r then there is no need to update m: r; has
higher priority than r, so the algorithm has already considered
pNr; and so has already added or updated m for p.

Example: new outbound policy. Algorithm [I| shows the
NSP procedure to process a received outbound policy policy,p
with the specified region and policy certificate. The NSP stores
the outbound policy in outbound AQT indexed by its region.
Then it runs a query to the inbound AQT to retrieve a list of
all applicable inbound policies that overlap with policy,, (line
3), in descending order of policy priority (ascending order of
region area). Then for each inbound policy policy;, in the list,
it computes the overlapped region of the inbound policy and
the new outbound policy. It then queries the match AQT for
this region (line 6).

If the region is not present in match, then add it for this
policy pair: the matched inbound policy policy;, and the new
policy policy,p control the region. Suppose instead that there
exists a policy pair in match with the same overlapped region.
If policy;, is the same inbound policy as in the pair that
is most specific for the region, and policy,, has equal or
higher priority (more specific) than the outbound policy of
that pair, then the new policy policy,, controls: update the
policy pair for the region (lines 7-8). Otherwise, at least one



of policy,y, or policy;, is of lower priority (less specific) than
the corresponding policy of the pair. If it is policy,p, then we
do not update the region because the previous outbound policy
dominates in this region. If it is policy;;, but not policy,p, then
we have already processed a more specific inbound policy
dominating the overlapped region.

If the new policy,, controls any region, then find a (new)
compliant route for the region. The NSP retrieves all accepted
routes whose destination prefixes fully cover the destination
prefix of the overlapped region in order of preference; cur-
rently the preference order is by path length, but the NSPs are
free to prefer routes by other attributes. If a route is the most
preferred among compliant routes to the policy pair of the
region, the NSP chooses the route for traffic in the overlapped
region and exports the route if it has not done so already (line
11-19). If there is no compliant route for the pair, the NSP
drops any matching traffic in the overlapped region.

Algorithm 1 Process a new outbound policy. See Table [I|
for notation. The query method of the AQT returns a list
of objects whose regions overlap with the queried region.

1: event policy,p(region, cert) :

2: outbound.put(policy,p.region, policy,p)

3: ibPolicies = inbound.query(policy,p.region)

4: for policy;, < ordered(ibPolicies) do

5: region, = policysp.region N policy;.region

6: (policy®, <", policyt, <) = match.get(region,;)

7: if regiony ¢ match or
(prio(policyop) > prio(policy, ") and
policy;, == policyt, ") then

match.put(regiony;, (policyop, policy;p))
: orderedRoutes = routes. filter(r —

regiong.dst C r.dst)

10: best Route = null

11: for route <— orderedRoutes do

12: if compliant(route, policy;,, policy.,) then

13: best Route = route

14: if route ¢ exports then

15: exports.add(route)

16: end if

17: break

18: end if

19: end for

20: forwardM ap.put(region,;, best Route)

21: end if

22: end for

Figure [4] shows an example scenario in which NSP 5
processes a new outbound policies from NSP 6, which requires
a different path for the specified region. Suppose that NSP
5 have learned all routes and policies except the outbound
policy from 6 at the beginning. Then 6 advertises its outbound
policy o; and NSP 5 chooses a different path for the region
accordingly. Table [[I| shows the states of NSP 5 at different
stages.

O NSP w/ “secure”

) .. Advertise outbound policy

Q NSP w/o “secure”

Fig. 4: An example scenario in which policy overlap forces selection of
an alternate route for the intersection. NSP 5 processes a new outbound
policy o; from 6 that requires NSPs with attribute ‘“secure” for its
outbound traffic, forcing matching traffic to the longer path (in blue).

New inbound policy. The procedure to process a new
inbound policy is similar to Algorithm [T}

New route. Algorithm [2] shows the procedure to process
a new route that the NSP accepts. First, the NSP retrieves
all policy pairs for overlapped regions by the destination
prefix. We use the route only if the destination prefix of the
overlapped region is covered by the advertised destination
prefix in the route. If the new route is compliant to the policy
pair and is preferred over the existing best route (which may
be empty), the NSP chooses the new route for traffic matching
the overlapped region and exports the route to its neighbors.

Algorithm 2 Process a new accepted route.

. event route(dst, path) :

. routes.add(route)

: policyPairs = match.query((x, dst))

: for (policyep, policy;p) + policyPairs do
region, = policyp-region N policy;.region
if region,;.dst C route.dst then

routeP™ = forwardM ap.get(region,)
if compliant(route, policy;, policy.py) and
pref(route) > pref(routeP™") then
0: forwardMap.put(regiony, route)

10: exports.add(route)

11: end if

12: end if

13: end for

A o e

The forwarding path of the highest-priority (most-specific)
OpenFlow entry for a packet in dataplane must comply with
the most specific policy pair (match region) that controls its
source and destination IP address. Algorithm [I] ensures this
property because: (1) it considers every possible match region
by processing every inbound policy that overlaps with the
new outbound policy; (2) it always identifies the most specific
match by ordering inbound policies in descending priority;
(3) it updates the policy for a match region only if the new
policy is more specific than the existing policy. Given that
property, routing is correct because: (1) the controller installs
an OpenFlow entry for each match region; (2) it assigns the
priority of the entry as the area of the corresponding region.
Thus OpenFlow entries that match on more specific (smaller)



event | routes inbound outbound match forwardMap exports
stare | 70 LLLOR2AL I AT 1 0 0094, ang) | oo ¢ (%, % ang) (%, 1.1.1.0/24) — (i, 00) (%, 1.1.1.0/24) — 70 70
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o1 71 1.1.1.0/24,[2, 1] i+ (6 L1LLO/24 any) | 07019"9 5.0/16, x, “secure”) | (2.2.0.0/16,1.1.1.0/24) — (i, 01) | (2.2.0.0/16,1.1.1.0/24) = r1 | r1

TABLE II: The states of NSP 5 before and after processing the outbound policy from 6 in Figure EI}

regions have higher priority in the dataplane.

F. Source-specific routing with SDN-enabled dataplane

To support inbound and outbound path control policies, we
need to implement source-specfic routing that match on both
source and destination IP address in SDN-enabled dataplane.
We can run OVS in ExoGENI slice to support SDN. Testbeds
like Chameleon and ESnet also deployed hardware switches
(Corsa DP2000 series) that support SDN and virtualization.
They allow users to manage isolated networks with OpenFlow-
enabled virtual forwarding contexts (VFC) and their own
OpenFlow controllers.

Source-specific routing requires more matching fields in
OpenFlow entries and potentially more OpenFlow entries.
We evaluate the overhead of source-specific routing in OVS
in The matching fields and the number of OpenFlow
entries in hardware flow table do not affect the performance of
hardware switches [12]], as they can match different OpenFlow
entries in parallel with TCAM (ternary content-addressable
memory). However, hardware switches come at higher eco-
nomic cost and have limited hardware flow table capacities.

IV. IMPLEMENTATION

Extended content. This section presents an extended treat-
ment of the ExoPlex prototype. We focus on how it uses
logical trust to implement a trust plane for secure interdomain
networking.

ExoPlex is designed to operate across inter-connected SDN
networks (dataplanes), including virtual SDN networks hosted
on testbeds. We make minimal assumptions about the capabil-
ities of their switch infrastructure or virtual hosting services.
Each ExoPlex NSP is under the control of a domain. The
NSPs correspond to autonomous systems (AS) in Internet
BGP routing protocols. We use a different term to avoid
confusion with those protocols, since ExoPlex does not use
BGP or assume any support for BGP. Instead, it implements
secure routing and security policy using authenticated logic
exchanges in the control plane, as described below.

Thus ExoPlex is compatible with a range of testbeds and
SDN systems. Its control plane and trust plane are entirely
decoupled from the protocols used to operate the SDN data-
planes: it operates above the SDN networks and is unknown
to them. It is also transparent to the hosting providers (e.g.,
testbeds), because NSPs use the providers’ native APIs to
manage virtual infrastructure for the NSP dataplane. For
example, on ExoGENI, an NSP may use APIs in the Ahab
toolkit to provision its nodes and links [2], and APIs for
cross-slice peering to stitch NSP dataplane networks at L2 via
the stitchport abstraction or via direct peering at a common

hosting site [13]]. Customer networks may be campus subnets
that connect to supported transport fabrics (e.g., 12-AL2S,
ESnet) and can attach to stitchports.

A. Control Plane

The ExoPlex control plane operates at the level of the
per-domain NSP controllers. An NSP controller is a server,
operated on behalf of an NSP, that speaks for the NSP
and commands its network. The controllers interact with one
another and with other servers operated on behalf of their
customers. Additionally, an NSP controller commands the
NSP’s dataplane—its network of SDN switches—through the
northbound APIs of its SDN controller(s). It may also call
virtual hosting APIs to add or remove virtual switches or
links. We assume a separate control network for all of these
control-plane interactions. The control network is operated
by infrastructure providers—campuses, cloud providers, and
network testbeds—and is accessed via the public Internet.

The NSP controllers export RPC APIs (e.g., REST/HTTP)
to control inter-domain peering and networking. Table
summarizes selected northbound control plane APIs for an
NSP controller. The customers and peers invoke these APIs
to attach (stitch) an L2 link and to enable specified IP traffic
to flow over the link. These calls propagate the routes and
policies that govern traffic flow, which are encoded in logical
certificates.

stitchRequest(slice
ID, sliver ID, secret,
stitch properties)

Stitch a sliver (node) in a customer or peer
slice to an NSP edge node at the same site.
ExoGENI supports such cross-slice L2 stitches
guarded by a secret, as in [2].

Discard a stitched L2 link between the peer/-

undoStitch(slice 1D,

sliver ID) customer sliver and the NSP slice.
stitchportRequest( Stitch a science network outside of GENI to
stitchportURL, vlan, | the NSP slice at a static stitchport [2].

stitch properties)

advertiseRoute(route, | Advertise a route, with a link to the signed
route cert) certificate of the route.

advertisePolicy(src, Advertise a path control policy for traffic from

dst, policy cert) the source prefix to the destination prefix, with

a link to the signed policy certificate.

TABLE III: Control plane APIs of an NSP controller. Customers and
peers invoke these REST APIs to attach (stitch) a node to the NSP, and
to notify it of routes for a peering link and of policy rules governing the
use of those routes. These requests are authenticated and authorized as
described in §IV}

B. Logical Trust

The NSP controllers include trust modules to check policy
compliance (§IV-E) as they handle API calls in Table
All trust metadata for compliance checks and other trust
decisions is encoded in logical certificates passed through



the calls in Table More precisely, the parameters include
tokens that reference certificates and certificate chains. The
certificates reside in a shared repository indexed by these
tokens. Certificates may also include tokens that link to other
certificates. Thus issuers may link certificates together to form
DAGs and chains.

Each principal in the system possesses a keypair to sign
its certificates, and a principal ID (PID) that is the hash of its
public key. In general, principals may mint their own keypairs:
there is no designated PKI hierarchy. Instead, participants use
the logic to specify a governance structure to endorse keypairs
(PIDs) to the extent required (e.g., see §IV-C). For example, a
certificate may contain a logical assertion that endorses another
PID for a specified attribute or role, or delegates specified
authority or ownership to it. Each principal stores its full public
key in the repository indexed by PID; thus, knowing another
principal’s PID is sufficient to authenticate it. A principal may
link its PID to other certificates issued by other parties, as
proof of its identity, attributes, and/or privileges.

SAFE. These logical trust features are implemented in the
SAFE platform. ExoPlex is an application of SAFE. SAFE
is programmable at two levels. Each participant in a SAFE
application installs and runs trust scripts written in a simple
interpreted scripting language. Operators choose the trust
scripts to install as part of a principal’s trusted computing base.
The SAFE certificates are also programmable: they contain as-
sertions (such as endorsements and delegations) and/or policy
rules in a datalog logic language. Thus SAFE certificates are
essentially fragments of logic programs. Participants exchange
certificate data through the store and interpret the logic in one
another’s certificates.

The trust scripts run under an interpreter in a local SAFE
instance. Operationally, the SAFE instance resides in a local
process under some principal’s control, running with access to
its keypair. The instance also includes an off-the-shelf datalog
inference engine (Styla) for querying logic assembled from
local policies and imported certificates. Logic queries are safe
and sound: they complete in bounded time, track attribution
for each statement or belief, and consider only assertions by
principals that are properly trusted for their content according
to policy.

Trust scripts. Trust scripts running within a SAFE instance
have no contact with the outside world except puts and gets on
the certificate repository (store). Calls to these scripts might
originate from administrative commands entered by a human
or from event handlers within some application or service.

Trust scripts include issuer scripts, which construct certifi-
cates and post them on the store, and guard scripts, which
gather sets of certificates from the store and run logical
queries against them to check compliance with logical policies.
An issuer may embed arbitrary logic into its certificates,
generated according to parameterized logic templates in its
issuer scripts. When running a guard, a SAFE instance fetches
linked certificate DAGs from the store, checks signatures and
other criteria (e.g., TTLs) to validate individual certificates,
extracts and caches the logical payloads, assembles cached

logic into a logic program context, and invokes logical queries
on the context.

Certificate repository. SAFE’s certificate store is suitable
for decentralized operation with the trust properties of a
permissioned blockchain deployment, but with a more scalable
implementation. Specifically, it is intended to run as a Byzan-
tine quorum system (BQS) following Phalanx [14]]. These
systems scale more easily than blockchains because they allow
sharding, in which each operation executes on only a subset of
replicas. They are sufficient for logical trust because the logic
programming model does not depend on a linear sequence of
operations as imposed by blockchains, in which all operations
execute on all replicas in a strict linear order for state-machine
consensus. Thus “unchained logic” offers a scalable alternative
to blockchains as a foundation for decentralized trust; ExoPlex
shows how to use it for secure internetworking. However, the
current ExoPlex prototype uses an enterprise key-value store
(Riak) operated by a trusted party.

C. Example Scenario: FabNet

We consider an example ExoPlex scenario: FabNet, a hy-
pothetical secure internetwork for a community of scientists.
It comprises an assemblage of network resources spanning
multiple campuses and research fabrics. These resources are
allocated and programmed for use by researchers in some
field. FabNet traffic crosses multiple network providers (NSPs)
resident on those fabrics, as well as the campus networks
at the edges. A FabNet consortium approves and endorses
participating campuses and NSPs.

Traffic traverses FabNet by agreement of the sender and re-
ceiver of the traffic. The endpoints are subnets on the attached
campuses. Suppose a campus network authority (CNA) assigns
an IP prefix to a secure subnet and delegates ownership and
limited control of the subnet to a research group. The research
group leader issues a request to enable connectivity with a
collaborator’s subnet on a peer campus. The endpoints agree
that traffic between them shall traverse FabNet.

The campuses and FabNet NSPs cooperate to direct selected
IP traffic through FabNet. To attach to FabNet, a campus
network operator establishes circuit connectivity to a selected
FabNet NSP edge site. They cooperate to validate all prefixes
and routes to ensure that the traffic is authorized for FabNet,
and that it transits only approved FabNet NSPs.

FabNet governance. This example features multiple gov-
ernance authorities and other identities interoperating with the
NSPs. The governance structure defines a natural PKI hierar-
chy via logical trust. For example, the FabNet consortium root
acts as a shared trust anchor whose PID is known to all partici-
pants. It endorses the PIDs of the CNAs and NSPs. The CNAs
also endorse campus subnets, assert attributes of subnets, and
delegate selected management authority to researchers that
control those subnets. Ownership of the containing prefixes
is certified by a delegation hierarchy rooted in FabNet or
some other authority, e.g., ICANN. Section discusses
governance in more detail.



D. Secure Routing with Logical Trust

The ExoPlex prototype includes SAFE trust scripts used by
all participants in an ExoPlex network. The scripts embody
sample logic for the secure routing mechanisms and policies
in this paper. Specifically, they include standard datalog logic
rules to secure all routing with origin authentication (following
RPKI) and route authentication (following BGPsec).

The prototype also includes exemplary policy logic rules
and certificate templates that endpoints may use to authorize
peering, connectivity, routing (path control), and governance.
The exemplary policies are sufficiently powerful to implement
FabNet and other protected networks over a set of NSPs.
Crucially, these elements do not affect the NSP controllers
or their API in Table Instead, various principals invoke
issuer scripts to issue linked certificates and policy rules to
validate them. The endpoints may define new policy types
by programming new assertion types and validation rules into
their trust scripts. The NSP controllers invoke standard guard
scripts that import the certificate DAGs and query them for
compliance under the applicable rules. Our approach can also
accommodate NSP routing policies, e.g., to prefer certain
routes or exclude unauthorized traffic, but we do not discuss
NSP policies in this paper.

The exemplary policy logic is based on Attribute-Based
Access Control (ABAC). Authorities use a common logic
package for ABAC to generate attributes, assign or delegate
them to other principals, and check that specified attributes
are present. The implementation represents attributes as fags.
A tag is a string name that represents a permission, role,
group, or attribute. A logic policy may state that a principal
is authorized if and only it wields or possesses the tag, or
perhaps a conjunction or disjunction of tags. For example, a
subnet owner may express policies that restrict the set of NSPs
that can carry its traffic, based on their tags.

Each tag has a controlling authority—a principal who
creates the tag and defines the rules for delegating the tag. Any
principal may create tags and act as a tag authority. The tag
authority (or root) has sole power to specify which principals
wield the tag. In the implementation, tags are self-certifying:
the tag name is a concatenation of its root’s PID and a name
(such as a UUID) chosen by the tag root. An authorizer accepts
a tag delegation as valid only if the tag’s root asserts it or
accepts it under its rules.

E. Authorization for the NSP API

The NSP APIs in Table invoke guard scripts to check
authorization before completing each call. Clients pass tokens
for certificate chains that contain applicable policy rules and
any relevant credentials, endorsements, or delegations granted
to them by other parties. The guard rules may consider any
of this information in deciding whether to grant access. Guard
queries apply logical rules that are satisfied only if all required
certifications are present and valid. These include certificates
from various authorities endorsing principals and objects and
asserting their attributes.
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Stitching. A stitch request from another slice passes the
sliceI D of the requester. The SlicelD can serve as a token
for a certificate chain that identifies the slice, including any
attributes and a binding to a project group, e.g., following the
SAFE instantiation of the GENI trust structure [15]], [16]]. A
hierarchy of testbed federation authorities govern the slices and
projects, and assign security attributes to them. Each slice is
associated with one or more owners (PIDs). The exemplary
stitch policy maintains a set of authorized PIDs (a logical
ACL) and approves a stitch request from any slice controlled
by an authorized PID. The ExoGENI provider API requires
the “hard-to-guess” secret as a one-time passcode to validate
mutual consent for cross-slice stitch requests [2]. A customer
network (e.g., a campus) can also request a stitch at a named
static stitchport with a named VLAN (network segment), if
the NSP exposes static stitchports.

Connectivity. Connectivity is off by default, and all flows
are permissioned by policies of the endpoints. We view edge
NSPs as virtual software-defined exchanges (SDX) because
they act as intermediaries to enforce declared policies of their
customers. Transit across an SDX is enabled only for flows
that comply with applicable customer policies. On the first
packet of a previously unapproved source-destination pair, the
SDX invokes a guard to authorize connectivity before in-
stalling SDN rules to pass traffic for the flow. Exemplary con-
nectivity policies are discussed in [3]]. The customer network
is responsible to route outbound packets of a permissioned
flow into the L2 link to the SDX. The SDX ensures that any
inbound packets it routes onto the link are from permissioned
flows. The campus network simply delivers these packets to
the destination subnet.

Routing. Traffic is also subject to origin authentication and
route validation for secure routing, and endpoint path control
policies to qualify all NSPs in the path. NSPs apply related
guard checks on both sides of API calls to propagate routes
and routing policies. The remaining subsections focus on these
aspects.

F. Origin Authentication

Origin authentication ensures that the first advertisement
of a prefix issues from a principal that is duly authorized to
control routing to the prefix. The origin must be valid accord-
ing to statements issued by authority principals according to
some trust structure. The authority structure and logical checks
ensure that endpoints communicate using non-conflicting 1P
prefixes and are prevented from stealing or controlling one
another’s traffic.

Our approach is analogous to the RFC 6480 architecture
(RPKI), but implemented using SAFE. The profiles for re-
source certificates are given by a logical vocabulary within
the standard SAFE certificate format, validated by the logical
rules in Listing 2} We do not use special end-entity or Route
Origination Authorization (ROA) certificates as RPKI does;
instead, any owner of a prefix may originate a route for the
prefix to a provider network (e.g., an edge NSP or SDX). The
SAFE certificate store acts as the distributed repository system,



but linked using SAFE’s general hashed tokens. In contrast,
RPKI organizes stored certificates in a hierarchy, which is
restrictive but also allows filesystem-like naming.

The governance policy for prefix ownership identifies a set
of one or more roots of authority for the address space, via
local policy statements at each participating NSP that those
principals are considered authoritative for specified prefixes
and have the right to allocate sub-ranges from them. One
option models current IP governance as reflected in RPKI
deployments: the local policy of each participant states that
a root namespace authority (e.g., IANA/ICANN and its In-
ternet Registries) controls all IP address space and allocates
sub-ranges (prefixes) to owning principals hierarchically and
transitively. Participants must agree on the root authority and
the form of the certified delegations, or else they fail to
validate one another’s prefixes. An alternative is to ground
prefix ownership in a forest of a priori anchors for disjoint
segments of the IP address space. This alternative is more
practical for inter-domain networking on testbeds in that it
does not rely on global authority deployment.

Listing [I] shows the issuer script with the template for a
resource certificate. The certificate contains a logic statement
to allocate an IP prefix, i.e., to declare that a subject
principal $Holder holds the prefix. It also links to another
certificate for support: the token $Cert is the head of a
chain of resource certificates grounded in some authority, and
proving that the issuer owns an IP prefix containing the more
specific $Prefix that it sub-allocates in this new resource
certificate. Anyone with this certificate may invoke a guard
that fetches the chained certificates and validates the prefix
ownership and that the chain is grounded in some locally
accepted authority. The guard validates by applying the logic
rules in Listing [2| We added a builtin operator (< :) to the logic
engine to validate containment of IPv4 prefixes specified in a
standard string format.

Listing 1: A template script to post a statement of IP prefix allocation
to anther principal, with a link to a certificate chain proving that the
issuer controls the allocated IP prefix.

defcon ipAllocate (?Holder, ?Prefix, ?Cert)
{
link ($Cert) .
allocate (?Holder, SPrefix) .

Listing 2: Logical rules to validate prefix ownership. A principal owns
(holds) an IP prefix if an upstream issuer asserts that it does, and
the issuer controls a containing prefix. “<:” is a boolean operator for
containment of prefix values, built into the logic engine. Its arguments
are unified to prefix values before testing containment.

ownPrefix (?Holder, ?Prefix) :

STrustRoot: allocate (?Holder, ?Prefix) .
ownPrefix (?Holder, ?Prefix) :—
?UpStream: allocate (?Holder, ?Prefix),
ownPrefix (?UpStream, ?SupPrefix),
?Prefix <: ?SupPrefix.
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G. Route Validation

The NSP API in Table |[II] allows peers and customers to
attach to an NSP dataplane at specified peering points, register
attached subnets, and enable traffic flows between prefix pairs.
After attaching, a neighbor may advertise a new prefix or
routing policy at any time by passing a certificate link (token)
through the APIL. The receiving NSP validates it, integrates it
with its routing base, installs SDN rules to implement it in its
data plane, and propagates it to peer NSPs through their APIs.

Each route advertisement is represented by a logic cer-
tificate. Listing [3] shows the template script for a customer
network to originate a route for its IP prefix. It links its cus-
tomized path control rules and the certificate for its allocated
IP prefix. Listing 4| shows the template script for an NSP to
sign an advertised route. To propagate a route, an NSP invokes
this script to issue an advertise statement for each eligible
peer, adding itself to the head of a sequence of NSPs on the
path. It then invokes its peer’s control API, passing the token
to inform it of the route.

Listing 3: A template script for a customer network to originate a

route advertisement with links to its customized routing policies and
a certificate chain proving ownership of the advertised prefix.

defcon originateRoute (?DstIP, ?Path, ?Target,
?IPCert) : -
?Policy
?NspAcl

label ("custom policy"),
label ("nsp-tag-acl"),

link ($IPCert) .

link ($Policy) .

link (NspAcl) .

advertise ($DstIP, $Path, $Target) .

Listing 4: A template script for an NSP to sign a route advertisement
with a link to the signed statements of the previous hop and a link to a
certificate chain that proves the tags of its network.

defcon advertiseRoute (?DstIP, ?Path, ?Target,
?Cert) : -
?TagSubjectSet

label ("tags"),

link ($Cert) .

link ($TagSubjectSet) .

advertise ($DstIP, $Path, $STarget) .
}.

Each route advertisement links to the certificate for the
previous hop. The links create chains of certificates, enabling
standard logical rules to validate an entire path. List [5] shows
the logic policy that an NSP enforces to verify a route
advertisement.

Listing 5: SAFE routing logic. The NSP(Self) verifies a received
advertisement by authorizing the route advertisement chain from the
prefix owner. (Path is a list of NSPs. eq([?Head|?Tail],?Path) is a

built-in function that assigns the first element of Path to Head and the
rest to T'ail.

authorizedRoute (?0wner, ?DstIP, ?Path, ?AS):-
eq([?Owner|?Tail], ?Path),
eq(?Tail, [1),
?0wner: advertise (?DstIP, ?Path, ?AS),

ownPrefix (?Owner, ?DstIP).



authorizedRoute (?0wner, ?DstIP, ?Path, ?AS):-
eq([?Head|?Tail], ?Path),
?Head:advertise (?DstIP, ?Path, ?AS),
authorizedRoute (?Owner, ?DstIP, ?Tail, ?Head).

Listing 6: A path control policy for a customer endpoint network. The
path is compliant to the policy iff each hop of the path is authorized by
the customer policy.

compliantPath (?SrcIP, ?DstIP,
eq([?Head|?Tail], ?Path),
eq(?Tail, [1),
authorizedAS (?SrcIP,

?Path)

?DstIP, ?Head).

compliantPath (?SrcIP, ?DstIP, -
eq([?Head|?Tail], ?Path),
authorizedAS (?SrcIP, ?DstIP,
compliantPath (?SrcIP, ?DstIP,

?Path)

?Head),
?Tail) .

authorizedAS (?SrclIP,
nspTagAclEntry (?SrcIP,
tagAccess (?Tag, ?AS).

?DstIP, ?AS):-—
?DstIP, ?Tag),

A subnet owner can specify path control rules for its traffic
and link them to the route advertisement. Listing [6] shows an
example inbound path control policy that allows NSPs with
specific tags to carry traffic from the source prefix to the
subnet. Listing [/| shows a template script for a prefix owner
to endorse NSPs with the specific tag to carry traffic from the
source prefix to its prefix.

Listing 7: A template script for a customer network to specify required
attributes of NSPs for its inbound traffic.

defcon inboundPolicy (?Tag,
{
nspTagAclEntry ($Tag,
label ("nsp-tag-acl").

?Src, ?Dst)

$Src, $Dst).

H. Discussion: Governance

As described in the off-the-shelf rules for secure
routing in ExoPlex depend on additional logic for governance
policy. A governance policy is a set of logical statements
comprising facts to identify roots of authority and rules to
validate certified delegations of authority from those roots.
Each participant executes code to configure its own policy
by installing a set of logic statements. Of course, interaction
depends on compatible policies: the security logic blocks
unsafe interactions that conflict with a participant’s policy.

Rather than specify a “one size fits all” governance struc-
ture, we use logical trust as a foundation to build and evolve
governance structures and enable customers to specify their
policy within those structures. Governance in the demon-
stration experiments works as follows. Each principal has
a keypair. Slices and projects are objects approved by a
controlling authority, which may make statements about them.

e A common federation root endorses a set of campus
network authorities (CNA), one for each participating
campus or enterprise. The root also publishes a common
governance policy (see below).
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A common authority for the IP address space delegates
disjoint prefixes to CNAs. The CNAs delegate sub-
prefixes to owners of edge subnets.

Subnet owners control traffic on their subnets, e.g., they
may install the prefix on a testbed slice and/or “opt in”
to an edge NSP (an SDX) S by issuing network bypass
commands to stitch to S at L2, register S as the local
gateway for traffic to selected prefixes, and accept traffic
sourced from selected prefixes from S.

Once attached, subnet owners may advertise routes and
publish path control policies to S.

Testbed slices have security metadata mirroring the ide-
alized federation governance structure for GENI [16].
NSP authorization policies for stitching may reference
this metadata (§IV-E).

A common network authority endorses NSP public keys,
binds them to slices, and asserts security attributes of
NSPs for use in path control (§IIT-C). Local policies may
accept other endorsing authorities on a per-attribute basis.

Any participant may validate compliance with its locally
accepted governance policy. Delegations result in chains or
DAGs of linked logical certificates. The governance rules
represent safety predicates for these structures. Any principal
can apply its own rules to check validity for itself end-to-end,
or delegate checking to another party, such as an edge NSP
that acts as its provider. Local governance policies are freely
mobile: given a link to a policy of another principal, it is easy
to import the policy’s facts and rules and apply them.

This property of the logic system also makes it easy for a
participant to delegate their governance policy to an authority.
In our demonstration prototype, all participants subscribe to
a common package of governance logic posted by a common
root of authority that is trusted by all parties. The governance
policy set installed by the local operator at each participant
comprises simply a link to the remote policy set and a
statement that accepts its conclusions: “If the policy authority’s
rules conclude P(x) then believe P(z).”

V. EXPERIMENTS

The ExoPlex prototype is suitable for experiments with
secure routing and policy flexibility involving modest numbers
of customer prefixes and NSPs. We conducted demonstration
experiments on the ExoGENI testbed and I12-AL2S research
fabric. The performance and scale of these experiments are
bounded primarily by the current limitations of the fabric, the
VM-based OpenV Switch routers we use on ExoGENI, and the
Ryu SDN controllers for each NSP. All compliance checks and
crypto operations are off of the dataplane, and so affect only
the setup times, and not the transit performance. There is an
obvious tradeoff between policy granularity and scale: fine-
grained policies lead to fragmentation of the prefix space and
routing/SDN flow tables, which could be a scaling barrier.

We conducted several demonstration experiments based on
the topology shown in Figure[I] involving ten ExoGENI slices.
Each slice is instantiated under its own keypair and runs
with its own controller, SDN, and SAFE logic engine, as in



Figure @ The customer networks A, B, C and D advertise
subnet prefixes delegated to them through common governance
authorities, which also endorse the networks with various
security properties (tags), as described and shown in the figure.
The NSP controllers interact via REST APIs to peer and
propagate edge-to-edge routes and policies.

A. Experiment 1: Inbound Path Control

table=0,
table=0,

n_packets=1, ip, nw_dst=192.168.10.0/24
n_packets=1, ip, nw_dst=192.168.30.0/24

(a) Flow table of N1.
n_packets=1, ip, nw_dst=192.168.20.0/24
n_packets=1, ip, nw_dst=192.168.40.0/24

(b) Flow table of N2.

table=0,
table=0,

Fig. 5: Flow tables of NSP switches in Experiment 1. We dump the NSP
flow tables manually, filter the output flow entries by IP prefixes and
packet counters for clarity, and omit unnecessary fields and the tables
for S1 and S2. The packet counters confirm that traffic between subnets
A and C traverses the path (S1, N1,.S52) and traffic between subnets B
and D takes the path (S1, N2, 52).

We evaluated inbound path control for the scenario shown
in Figure [I] but omitting NSPs N3 and N4. On ExoGENI
it takes about 6.5 minutes to provision this topology and
stitch the peering links, limited by provisioning times for
12-AL2S circuits. The customer subnets stitch to their SDX
providers concurrently, and then advertise their routes and path
control policies when the stitches complete. NSPs validate
those advertisements and policies, configure their dataplanes
via SDN accordingly, and propagate them to their peers.

For this experiment, customers A and C both authorize only
the NSPs with secure attribute “tag0” to carry their inbound
traffic, and authorize connectivity only with edge subnets
bearing the same attribute “tag0”. Customers B and D similarly
authorize only “tagl” for their network traffic. Upon receiving
the route advertisement with linked inbound policy from A,
S1 propagates the route to N1 only, based on A’s policy.
N1 validates the route, adds it to its cache of known routes,
and propagates it to its authorized neighbor. Other routes and
policies are advertised and propagated throughout the network
similarly. Then, customer pairs A-C and B-D each request a
flow to the partner.

It takes about 3 seconds for each route advertisement to
propagate throughout the network and enable flows between
the pairs. After these requests complete, we ping between
subnet pairs with 1 packet and dump the flow tables from
NSP switches, shown in Figure [5] to verify that traffic follows
the compliant paths as shown in Figure [T}

B. Experiment 2: Outbound Path Control

For this experiment we extended the inter-domain network
with NSPs N3 and N4, as shown in Figure El, and added
outbound policies. The routing policies in our experiment
settings are shown in Table [TV]

We carry out the experiment in the following steps: (1)
Stitch all NSPs. (2) Stitch subnets A, B and C to its NSPs.
(3) Subnets A, B and C advertise routes with both source and
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Subnet Inbound/Outbound Policies

Owner Src/Dst Subnet Required Tags
C tag0

A D tag2

B D tag0, tagl

B C (only at step 6) tag0

C A tag0, tagl
A tag2

D B tagl

TABLE 1IV: The inbound and outbound path control policies of subnets
in Figure [T} In this setting, the inbound and outbound path control
policies of a subnet are symmetric (but not necessarily symmetric), i.e.,
they require the same set of security tags for NSPs. The route between
two subnets must be compliant to the path control policies of both the
source subnet and destination subnet. For example, “tag 0” is the only
legal security tag for routes between subnet A and C.

destination address specified and their outbound policies. The
NSPs authorize and propagates those routes and policies and
make dataplane configurations accordingly. (4) Stitch subnet
D to S2 and advertise its routes and policies. (5) Stitch S2 and
N2 directly to provide a shorter routes for subnet B to reach
subnet C and D. (6) Subnet B and C advertise inbound and
outbound path control policies that require “tag0” for traffic
between their subnets. It takes about 12 minutes to stitch all
NSPs and subnets A, B and C. Figure E] shows a timeline of
the experiment starting at step (3).

Connections between subnet B and C,
B and D swap to the shorter path
1 i
: Traffic bet'meen B and C swap to
: Ping between subnets Iongerlbut compliant path
1 I 1 I
N2 and S2 e)('changeI
routes and plblicies:

Ping between subnets

Subnet D advertises
routes and ‘Jolicies
() [} 1
i [ 1
() [} 1
OO—0 O-O0—00
1 1
S2 peers with N2 Subnet B and C advertise
outbound path control policies
for traffic between B and C

Subnets A, B and t advertise
routes and plblicies

1
Stitch subnet D to 52

T T T T T
3 4 6 7 8

Time (min)

Fig. 6: Timeline of experiment 2.

We try sending a packet between connection pairs A and C,
A and D, B and C, as well as B and D each time after step
3,4, 5 and 6. Table shows the paths that different flows
take at different steps. The paths are compliant to the path
control policies of the subnets as expected. Figure [/| shows the
flow tables of NSP switches after step 6. The packet counters
of the flow tables proves the correctness of Table Before
step 6, traffic between subnet B and C are subject to the
default policies that require “tag0” or “tagl” for the NSPs.
In our run, traffic between subnet B and C took the route
(S1,N2,N4,52) before step 5 and (S1, N2,S2) when the
shorter route became available at step 5. After step 6, only
the route (S1, N1, N3,52) is compliant for traffic between
subnet B and C. We verify the actual route that those packets
take by checking the packet counters of the flow tables of the
NSPs after each step.



n_packets=4,nw_src=192.168.10.0/24,nw_dst=192.168.30.0/24
n_packets=4,nw_src=192.168.30.0/24,nw_dst=192.168.10.0/24
n_packets=3,nw_src=192.168.40.0/24,nw_dst=192.168.10.0/24
n_packets=3,nw_src=192.168.10.0/24,nw_dst=192.168.40.0/24
n_packets=1,nw_src=192.168.20.0/24,nw_dst=192.168.30.0/24
n_packets=1,nw_src=192.168.30.0/24,nw_dst=192.168.20.0/24

(a) Flow table of N1.

n_packets=3,nw_src=192.168.40.0/24,nw_dst=192.168.20.0/24
n_packets=3,nw_src=192.168.20.0/24,nw_dst=192.168.40.0/24
n_packets=3,nw_dst=192.168.20.0/24
n_packets=3,nw_dst=192.168.30.0/24

(b) Flow table of N2.

n_packets=4,nw_src=192.168.10.0/24,nw_dst=192.168.30.0/24
n_packets=4,nw_src=192.168.30.0/24,nw_dst=192.168.10.0/24
n_packets=1,nw_src=192.168.30.0/24,nw_dst=192.168.20.0/24
n_packets=1,nw_src=192.168.20.0/24,nw_dst=192.168.30.0/24

(c) Flow table of N3.

n_packets=3,nw_src=192.168.40.0/24,nw_dst=192.168.10.0/24
n_packets=1,nw_src=192.168.40.0/24,nw_dst=192.168.20.0/24
n_packets=1,nw_src=192.168.20.0/24,nw_dst=192.168.40.0/24
n_packets=3,nw_src=192.168.10.0/24,nw_dst=192.168.40.0/24
n_packets=2,nw_dst=192.168.20.0/24
n_packets=2,nw_dst=192.168.30.0/24

(d) Flow table of N4.
Fig. 7: Flow tables of NSP switches in Experiment 2 after step 6.

Flow [3 [ 4 [3 [6

AC {51, N1, N3,52)

A<D [ (51, N1, N4, 52)

BC (51, N2, N4, 52) {S1,N2,52) [ (S1,N1,N3,52)
B<D [ (S1,N2,N4,52) {51, N2, 52)

TABLE V: The path for traffic between subnet pairs at each step.

C. SAFE Routing Authorization Performance

We conducted experiments to evaluate the cost of logical
authorizations in isolation. We evaluated the inference per-
formance of a SAFE server for validating routes and check-
ing policy compliance under a throughput-limited synthetic
workload. The figure of merit is authorization ops per second
(authz-ops/sec) for the checks performed by an NSP when
it receives an advertisement. We run the SAFE server on a
machine with 16 2.6 GHz cores (Intel Xeon E5-2650 v2) and
saturate it with concurrent authorization queries through its
REST API. The evaluation measures the cost to process the
network calls and the cost to run the logic query on logic
content extracted from a linked certificate DAG.

We generated a synthetic topology of 1.8K NSP networks
with a pattern of random peering among them: NSPs originate
routes for their own IP prefixes and propagate routes to
authorized neighbors randomly. We also generated synthetic
governance principals to delegate NSP security tags and cus-
tomer IP prefixes from a common root. As in the previous
experiments, the customer path control policies query NSP
attributes (tags) endorsed from the authorities. We chose a tag
delegation depth of 3 and IP prefix delegation depth of 3.
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Figure [§] shows route authorization throughput as a function
of route length for three sets of policies. There is a fixed cost
to verify IP prefix ownership and validate routes, and an ad-
ditional cost to check compliance with inbound and outbound
path control policies at each NSP in the path. Thus the most
expensive policy is PBR-1 (Policy-Based Routing), which
checks both inbound and outbound policies. PBR-2 checks
inbound path control policy only. We compare the results to
basic BGPsec-like route validation and prefix ownership alone
without customer-specified path control (labeled as BGPsec).

® PBR-1 4 PBR-2 BGPsec

8
Q)
13
&
~ 6
=
3
=
=
g
3 4
=
=
c
2
s 2
N
S
=
=
3
< 0

0 2 4 6 8 10
Route Length

Fig. 8: SAFE logic engine throughput to validate routes with logical origin
authentication and route attestation (equivalent to BGPsec), with inbound
path control policies (PBR-2), and with both inbound and outbound path
control (PBR-1).

The results show that even for the most costly workload an
NSP controller can check more than 2K routes per second.
These checks occur only when the NSP receives a new route
or policy, and do not impact the dataplane. While Figure [§]
does not include any crypto overhead (signature validation),
these costs are fundamental for any routing security approach
based on public-key cryptography (e.g., BGPsec). SAFE does
impose additional costs to fetch linked certificates on demand,
but the SAFE engine validates them once and caches their
logic content until the TTL expires, which minimizes these
costs for policies, governance endorsements, etc. (Figure
ran on a hot cache pre-warmed with all relevant certificates.)
These results suggest that logical trust is fast enough to be
practical at substantial scale.

D. Prefix Pair Matching with AQT

We implemented AQT in Java that supports prefix pair
updates and queries. We randomly generated IP prefixes with
prefix length 8, 16 and 24, and IP prefixes with longer prefix
length are children of IP prefixes with shorter prefix length. We
randomly generate different numbers of prefix pairs from those
IP prefixes and default prefix “0.0.0.0/0”, with average prefix
length about 23.8 and different average overlapping sizes. We
insert, query and delete all prefix pairs with AQT and measure
the performance. The result is shown in Figure 0] The results
are consistent to the theoretical time complexity.
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Fig. 9: Processing time for each prefix pair insertion, deletion and query
operation with AQT. The time for insertion and deletion don’t change
much with the number of prefix pairs, as prefix lengths are about the
same for all groups of prefix pairs. The time for query increases as the
size of overlapped prefixes increases.

E. Dataplane Overhead for Source-Specific Routing

We evaluate the overhead of source-specific routing with
OpenVSwitch (OVS) [17]. OVS runs the virtual switches in
the ExoGENI NSP deployments for our experiments. The ex-
emplary policies for connectivity and path control in this paper
require SDN routing rules that match packets on both source
and destination. For example, with outbound path control
policies, packets to a given destination D might take different
routes depending on the source S. This fine-grained policy
control of routing may inflate routing tables and complicate
packet classification at the SDN layer. The purpose of this
section is to explain and quantify this cost, using the OVS
software switch as a reference point.

OVS manages OpenFlow tables in userspace and a mi-
croflow cache and a megaflow cache in kernel. The megaflow
cache is a single table of disjoint entries that caches the recent
flows. The megaflow cache has a capacity of 200,000 flow
entries in the latest mainstream OVS versions. The number of
rules in megaflow cache are related with both the number of
OpenFlow entries and the number of active flows. Packets in
cached microflows or megaflows are fast processed in kernel.
When the number of OpenFlow entries and active flows are
both large, the megaflow cache will overflow and there will
be cache misses. OVS will match the missed packet with
OpenFlow tables in userspace, which is slow and expensive.

OVS classfies packets in both OpenFlow tables and the
megaflow table with tuple space search. A tuple is a set of
fields matched in the flow entries. Flow entries that match
on the same tuple are put in the same hash table, where the
keys are the hashes of the matched fields. The cost of tuple
space search depends on the number of unique tuples (i.e. the
number of hash tables) specified in the flow entries.
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We evaluate the CPU overhead of packet classification with
OpenFlow entries that match on both source and destination
IP addresses in OVS. We create an ExoGENI slice with three
“XO Extra Large” nodes in linear topology on the same rack
working as source node, OVS node and sink node respectively.
We run Open vSwitch 2.12.0 in Ubuntu 19.10 on the second
node with 4 2.2 GHz cores (Intel(R) Xeon(R) CPU E5-2660
v2). We evaluate nine sets of policies. For the three sets of
destination-based OpenFlow entries(dst entries), we randomly
generate OpenFlow entries with the destination prefix within
32.0.0.0/8 and the length of the netmask between 8 and 24.
The distribution of generated prefix lengths are subject to the
IPv4 prefix cumulative distribution in [18]]. There is also a
default destination based OpenFlow entry that matches on
“32.0.0.0/8” with lowest priority. For source-based OpenFlow
entries(src entries), we randomly generate entries that match
on both source and destination IPv4 prefix with source IP
prefixes in 16.0.0.0/8 and the same destination IP prefixes as
in dst entries. For each set of dst entries, we add 1x and 64x
src entries additionally, resulting in six sets of mixed entries.
We generate 8 pcap files with different number of tcp packets
and with empty payload(66 Byte/packet) whose source and
destination IP addresses are uniform randomly distributed in
16.0.0.0/8 and 32.0.0.0/8.

With this worst-case synthetic traffic mix, the number of
flows identified by source and destination IP address is about
the same as the number of packets. We replay the traffic with
tepreplay at fixed rate 50K packets per second for multiple
rounds and collect total CPU utilization of the OVS VM in
a 10-minute period. We also collect how many packets are
received on sink node. The CPU utilization in the first round
is higher than following rounds, as OVS needs to process every
new flow with userspace OpenFlow tables. We omitted CPU
utilization results in the first few rounds to illustrate the impact
of source-specific routing for long-lived flows. We also sample
and counter megaflow entries with ovs-appctl in separate runs.

The CPU cost for packet classification is related to the
number of OpenFlow entries, the type of the entries and the
number of flows. Compared with dst entries, src entries leads
to more packet classification cost due to two major factors.
First, there are more hash tables for each packet to be matched
against. Second, the number of flow entries could be much
larger with src entries. Given limited capacity, the megaflow
cache for src entries overflows more easily, increasing the
costs to fall back to tables in userspace.

Figure[I0]shows the CPU utilization and the number of sam-
pled megaflows with different numbers of flows and different
numbers and types of OpenFlow entries. The CPU utilization
with mixed entries is higher than that with dst entries. With
a small number of flows or a small number of OpenFlow
entries, the packets are processed in the fast path with the
cached microflows and megaflows in kernel for both dsz entries
and mixed entries. And the CPU utilization for mixed entries
are about lx to 20z higher than that for dst entries with
less than 200,000 flows. When the megaflow cache is not
full, the number of OpenFlow entries has limited impact on



CPU utilization, as the classification cost mainly depends on
the number of unique tuples in megaflow table. However,
the number of OpenFlow entries still matters: the number of
megaflows with more OpenFlow entries is also larger. The
megaflow cache for more/larger OpenFlow entries overflows
earlier as the number of flows increases, as we can see from the
Figure [I0] With more than 200,000 flows and a large number
of mixed entries, the megaflow cache overflows, generating
much higher processing overhead in userspace. The CPU
utilization with mixed entries could be more than 50x higher.
In our experiment, the maximum number of megaflows for
dst entries is capped at 6.5K as the destination IP address are
sampled from a relatively small prefix 32.0.0.0/8. Therefore,
we the megaflow cache for dst entries does not overflow, and
the CPU utilization for dst entries is low. But with dst entries
specified in a larger address space, we also expect to see the
performance drop with a large number of OpenFlow entries
and flows.
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Fig. 10: The CPU utilization and the number of sampled megaflows with
different numbers of flows and different numbers and types of OpenFlow
entries. The packet loss rates are all less than 2%.

VI. CONCLUSION

We propose a logical trust approach to network security
for testbed-hosted Network Service Providers (NSPs), imple-
mented in the ExoPlex network controller platform, and extend
it for secure policy-based routing for interdomain networks
with multiple NSPs. ExoPlex can be the basis for a “testbed
for trust” for inter-domain networks that are constructed on
the fly and span multiple slices, testbeds, and campuses.
NSP owners and customers may experiment with policy for
peering, routing, path control, and governance by specifying
custom policies in logic, without changing the ExoPlex code.
In particular, the trust plane supports customer policies for
permissioning the NSPs themselves, so that customer traffic
does not pass through untrusted NSPs (path control). A
secure foundation with at least these features is a necessary
prerequisite for safe testbed opt-in by real customer traffic—an
important aspirational goal.
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