
HURRA! Human readable router anomaly detection
Jose M. Navarro, Dario Rossi
Huawei Technologies Co. Ltd.

jose.manuel.navarro, dario.rossi}@huawei.com

Abstract—This paper presents HURRA, a system that aims
to reduce the time spent by human operators in the process
of network troubleshooting. To do so, it comprises two modules
that are plugged after any anomaly detection algorithm: (i) a
first attention mechanism, that ranks the present features in
terms of their relation with the anomaly and (ii) a second
module able to incorporates previous expert knowledge seamlessly,
without any need of human interaction nor decisions. We show
the efficacy of these simple processes on a collection of real
router datasets obtained from tens of ISPs which exhibit a
rich variety of anomalies and very heterogeneous set of KPIs,
on which we gather manually annotated ground truth by the
operator solving the troubleshooting ticket. Our experimental
evaluation shows that (i) the proposed system is effective in
achieving high levels of agreement with the expert, that (ii) even a
simple statistical approach is able to extracting useful information
from expert knowledge gained in past cases to further improve
performance and finally that (iii) the main difficulty in live
deployment concerns the automated selection of the anomaly
detection algorithm and the tuning of its hyper-parameters.

I. INTRODUCTION

Network operation and management, especially concerning
troubleshooting, is still a largely manual and time-consuming
process [1]. We recognize that keeping human operators “in
the loop” is unavoidable nowadays, yet we argue it is also
desirable. On the one hand, the use of machine learning
techniques can help removing humans from the “fast loop”,
by automatically processing large volumes of data to replace
human tasks [2], [3], and overall increasing the troubleshooting
efficiency. On the other hand, data driven algorithms still ben-
efit from human assistance (e.g., providing ground truth labels
to improve the algorithm) and responsibilities (e.g., taking
legal ownership of the action suggested by an algorithm),
thus, it is positive to keep humans in the “slow loop”. Under
these premises, it becomes obvious that the amount of time
spent by human experts in the troubleshooting process is a
valuable resource that should be explicitly taken into account
when designing anomaly detection systems [4]–[7], which is
our focus in this work. As such, it is clear that the ultimate
goal of anomaly detection is to produce a “human readable”
output [8]–[14] that should, furthermore, be presented to the
final users in a way that minimally alters their workflow.

We design a system for Human Readable Router Anomaly
(HURRA) detection by combining simple building blocks, that
are depicted from a very high-level perspective in Fig. 1.
From the left, router KPI data, which can be abstracted as
multi-variate time series, is the input to a 0 preliminary data
preprocessing step: for instance, the heat map representation
of one of our datasets shown in Fig. 1, employs a standard

feature regularization. Next, 1 an anomaly detection (AD)
algorithm is used to identify, along the temporal dimension,
time-regions where the system behavior presents unexpected
patterns. Subsequently, an 2 attention-focus mechanism, im-
plemented as a feature scoring (FS) policy is used to rank
KPIs along the spatial dimension. The purpose is to only
minimally alter the existing troubleshooting system, by letting
users prioritize their focus to KPIs that are likely the most
relevant for troubleshooting the issue at hand.

To further assist human intervention, HURRA additionally
leverages, if available, 3 previous expert knowledge (EK)
with a simple mechanism based on statistical information
that alters the KPI ranking, using separate schemes to pro-
mote/demote KPIs in the ranking. By prioritizing KPIs that
experts have found to be relevant in the solution of previous
troubleshooting tickets, the EK mechanism attempts at pre-
senting KPIs that network operators more often associate with
what they loosely identify as the “root cause” of the issue (we
point out that we are not explicitly making use of causality
theory [15], hence the quotes). By 4 explicitly flagging KPIs,
experts (unconsciously) provide ground truth labels to our
system: from these labels, it is possible to 5 automatically
distill and update expert knowledge, without requiring any
further human interaction.

We benchmark our proposal against a private dataset com-
prising manually labeled troubleshooting data, gathered from
28 operational ISPs deployments, with minute-level telemetry.
Intuitively, the main criterion to evaluate the effectiveness of
HURRA is to measure the extent of agreement between the
ranking of scores produced by the expert vs the algorithmic
output, which is well captured by metrics such as the normal-
ized Discounted Cumulative Gain (nDCG [16]).

Summarizing our main contributions:

• We tackle the issue of attention focus on network trou-
bleshooting, designing a decoupled AD+FS unsupervised
system that can achieve a high agreement with expert
labeling (nDCG up to 0.82 in our data), reducing the
KPIs need to be manually verified (on average 50 KPI
less in our datasets).

• We propose a simple yet effective mechanism to account
for expert knowledge, that is incremental by design and
that can further improve agreement with the expert – even
when an Oracle is used to tackle the anomaly detection
problem.

The rest of this paper overviews related work (Sec. II), de-
scribes the dataset (Sec. III), details our methodology (Sec. IV)
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Fig. 1. High-level view of the building blocks of employed in the Human Readable Router Anomaly Detection (HURRA) system presented in this paper.

and experimental result (Sec. V). We finally discuss our
findings (Sec. VI) and summarize our work (Sec. VII).

II. RELATED WORK

HURRA does not attempt to make any novel contribution
for building blocks 0 - 1 of Fig. 1, for which we employ
state-of-the art techniques. Rather, leveraging unique 4 hu-
man labeled datasets, we instead work on an 2 attention focus
mechanism that can seamlessly integrate 3 expert knowledge.

A. Attention focus

Admittedly, we are not the first attempting at ranking
features [8]–[10], or explaining outliers [11]–[14].

1) Feature ranking: For instance, [8] ranks features based
on how much they deviate from a normal distribution and
extracts “anomaly signatures”: while our work shares the
same spirit of [8], it does not make any assumption about
the underlying data distribution. LSTM and autoencoders are
exploited in [9], where reconstruction errors are interpreted
as anomalies: while this scheme is interoperable with our, the
temporal extent and heterogenity of the data at our disposal
(cfr. Sec. III) do not allow us to properly train a deep neural
network.

CloudDet [10] instead detects anomalies through scoring
seasonally decomposed components of the time series: this
couples 1 and 2 by assigning and scoring anomalies to
each feature independently, which limits the analysis to a set
of univariate features, and is thus orthogonal to our goal.

2) Outlier explanation: The interest for subspace methods
in network domain was first raised in [1], which however
mostly focuses on anomaly detection, instead of explanation
[11]–[14]. In a nutshell, these techniques crop datasets to
specific feature subspaces that better represent the detected
outliers, and can either tackle single (point explanation [11],
[12]) or multiple outliers (summarization explanation [13],
[14]). RefOut [11] performs point explanation by creating
random subspaces, assessing feature importance by comparing
the distribution of the scores produced by an AD algorithm,
increasing the number of relevant KPIs until a target dimen-
sionality is reached. Likewise, Beam [12] builds the most

interesting subspace through the maximization of the AD
scores following a greedy algorithm. Interesting contributions
to summarization explanation are represented by work such as
LookOut [13] and HiCS [14], which are similar and devise
more complex statistics to characterize interaction among
features. These algorithms could, in principle, be used to
perform steps 1 - 2 , however they are not without downsides.
First, outlier explanation methods assume that the points are
independent from each other, which is not true for time series.
A more significant bottleneck is represented by their compu-
tational cost, which becomes prohibitive in high dimensional
datasets, unlike the simple sorting in HURRA.

B. Expert knowledge

Leveraging human expertise in anomaly detection is the
focus of active learning studies such as [4]–[7], which share
similarities with our work. Authors in [4] alleviate the task
of generating labels for AD by using a high recall algorithm
(producing many false alarm) paired with a human analysis
phase, where the experts decide which anomalous “shapes”
they are interested in finding. In our work we employ the
temporal portion of the ground truth information as an AD
“Oracle” only as a reference performance point to contrast re-
sults of AD algorithms. An Operator’s Apprentice is proposed
in [5] to study univariate time series: humans are required to
label a collection of datasets to train an apprentice (Random
Forest), on a set of features extracted from the time series,
iterating until a configurable performance threshold is attained.
Similarly, [6] introduces an iterative process (referred to as
Sequential Feature Explanation), with the explicit objective of
quantifying the number of features needed to be shown to an
expert in order for him to be sure about an anomaly’s nature.
Also [7] includes humans in the AD loop, collecting experts
feedback in an online fashion to improve detection accuracy.

While similar in spirit, several differences arise in the
interaction mode (explicit [5]–[7] vs absent in HURRA),
methodology (iterative [5]–[7] vs one-shot; supervised [5]
vs unsupervised) and final output (sorted timeslots [7] vs
sorted features). Particularly, by seamlessly exploiting ticket



(a) (b) (c)

Fig. 2. Compact view of anomalies and ground-truth in our datasets: (a) heatmap of KPI over time, with annotated anomalous ground truth (red dots) for
four example datasets A-D; (b) time evolution of the topmost anomalous feature for the example datasets A-D (anomalous period in red); (c) zoom of the
topmost 6 anomalous features of dataset A, of which only the first 3 are flagged by the expert.

solution while avoiding any explicit additional interaction,
HURRA improves accuracy and reduces deployment barriers
and training costs (as human interface is unmodified).

III. DATASET DESCRIPTION

We validate HURRA leveraging a collection of real datasets,
that we describe from Network vs Machine learning angles.

1) Network expert viewpoint: Our datasets represent differ-
ent router KPIs, extracted from 28 different ISPs via model-
driven telemetry, overall comprising almost two months worth
of data. As telcos aim for “5 nines” reliability, the occurrence
of anomaly is an unfortunately rare event: hence, these 28
instances represent an ample set of the troubleshooting tickets
occurred during 2019, and each instance has been manually
analyzed by a network expert. The basic properties summa-
rized in Tab. I testify of a large variability across datasets, of
which some example are illustrated in Fig. 2.

Generally, each dataset is collected locally at a single router
of a different ISP, so datasets are completely independent from
each other. Additionally, there is a large amount of telemetry
data (in the order of 70K KPIs) collected by routers and
available for export. At the same time, exhaustive collection is
prohibitive (due to router CPU resources and O&M bandwidth
usage) so that datasets at our disposal only include the smaller
subset of KPIs that have been manually verified by the expert
when solving the case (from 6-373 KPIs). Overall, datasets
comprise 2737 KPIs, of which only 357 are unique: at the
same time, datasets are significantly different, since between
any pair of datasets there is less than 5% of common KPIs,
and there is not even a single KPI common to all datasets.
This makes the datasets significantly different from work that
focuses on data-plane indicators of traffic volume [17] and
video-streaming [18], since KPIs in our work are very diverse
internal router counters, that pertain to both control and data
planes. Also, unlike studies where coarse KPIs are constructed
over long timescales (up to 24hours in [19]), the routers in our
dataset export KPIs at a fast 1 minute timescale.

The expert labels the time at which anomalies occurred, and
additionally writes in his report the KPIs that were found to be
responsible of the issue. In this process the network expert can

TABLE I
SUMMARY OF BASIC DATASET PROPERTIES.

#Timeslots
(rows)

#KPIs
(columns)

Anomalous
Timeslots%

Anomalous
KPIs%

Minimum 211 6 0.01% 0.3%
1st Quartile 1025 27 0.2% 3.0%

Median 1981 73 1.2% 6.0%
3rd Quartile 4394 126 8.2% 16.7%
Maximum 10770 373 64.0% 37.5%

Total 85787 2737 7.5% 5.2%

decide not to report a KPI as anomalous, irrespectively of the
time series behavior, as e.g., he (i) deems other KPIs more rele-
vant, (ii) believes the KPI to be an effect, and not the root cause
of the issue (e.g., in one dataset a large number of packets
are dropped when their TTL reaches 0, which is however not
flagged by the expert as this symptom is caused by a routing
loop, correctly flagged by the expert). The availability of this
very fine-grained KPI-level data makes the dataset peculiar: as
causality is knowingly hard to assess [15], [20], and since our
ground truth does not explicitly provide causal information, a
natural benchmark for HURRA is thus the extent of agreement
between algorithmic and human judgments.

2) Machine learning expert viewpoint: Both the collected
features (KPIs), as well as the binary ground truth labels can be
abstracted as multivariate time series. On the one hand, since
datasets are independently collected and the set of collected
features is also largely varying, supervised techniques such as
those exploited in [21] are not applicable. On the other hand,
the limited number of features reduces the problems tied to the
“curse of dimensionality”. Overall, these observations suggest
unsupervised algorithms to be a good fit.

For the sake of clarity, we compactly visualize the diversity
of our datasets in Fig. 2-(a), which depicts 4 samples datasets
A–D as a heatmap (x-axis represents the time, the y-axis a spe-
cific feature, and the z-axis heatmap encodes the standardized
feature value, with darker yellow colors for greater deviation
from the mean value), with annotated ground truth (red dots).
The figure additionally depicts the temporal evolution of (b)
the topmost anomalous feature found by HURRA in each of



the 4 samples datasets (normal portion in black, anomalous
portion in red) as well as of (c) the topmost anomalous 6
features for dataset A. Fig. 2-(a) and (b) clearly illustrate the
dataset variability, even from the small sample reported, in
terms of the type of outliers present in the data.

Fig. 2-(c) further illustrates the semantic of the available
ground truth: it can be seen that the top-three features (A1,
A2 and A3) are highly correlated and are also widely varying
during the anomaly period; yet the subsequent features (A4,
A5 and A6) also present signs of temporally altered behavior,
yet these time series were investigated by the human oper-
ator, but ruled out in the ticket closing the solution – well
highlighting the cause/effect mismatch.

IV. METHODOLOGY

The main objective of HURRA is to sort the KPIs in a
multivariate time series in a way that reduces the time it takes
to complete its troubleshooting process. We first introduce
some necessary notation (Sec.IV-A), and detail the individual
building blocks (Sec.IV-B through IV-E).

A. Definitions

With reference to the building blocks earlier introduced at
high-level in Fig. 1, we denote the collected multi-dimensional
time-series data in as a matrix x ∈ RFT , with F the number of
existing features and T the number of timeslots in the dataset.
After 0 preprocessing x̂ = f(x) the data becomes an input
to the 1 Anomaly Detection (AD) function, whose output
is a binary vector a = AD(x) ∈ {0, 1}T indicating if the
i-th timeslot is anomalous or not. The 2 Feature Scoring
(FS) function takes both x̂ and a as input, producing a real-
valued vector s = FS(x̂, a) ∈ RF where sj represents an
“anomalous score” associated to the j-th feature. An 3 Expert
Knowledge (EK) function can be used to alter the feature
scoring vector ŝ = EK(s) ∈ RF whenever available, else
ŝ = s. In this paper, we use 4 Ground Truth (GT) labels
to assert the performance of our system, as well as to 5
mimic the update of the expert knowledge (more details later).
Formally g ∈ {0, 1}FT is a ground-truth matrix, with gjt = 1
indicating that at the t-th timeslot the j-th feature was flagged
as anomalous by the expert. It follows that a feature j is
anomalous when

∑
t gjt > 0, and similarly we can identify

anomalous timeslots at as the time instants where at least a
feature is anomalous, i.e., at = 1

(∑
j gjt > 0

)
.

B. Data preprocessing and Anomaly Detection (AD)

Since our focus is on explaining features to a human
operator, in this paper we avoid dimensionality reduction
techniques that perform linear (e.g., PCA) or non-linear (e.g.,
t-SNE) data transformation and limitedly perform standard
normalization per-individual KPI x̂ = (x− E[x])/σX .

As our our main focus is not to propose yet another
anomaly detection algorithm, we resort to standard and popular
unsupervised AD algorithms such as (i) Isolation Forests
(IF) [22] and (ii) DBScan [23], as example of partitioning-
based and density-based techniques respectively (cfr. Sec.V

for hyperparametrization details). We additionally consider
an (iii) ideal ensemble method selecting the best among IF
and DBScan output, as well as an (iv) oracle that uses the
ground truth labels to identify anomalous timeslots at. Note
that (iii) upper-bounds the performance of a realistic system
combining multiple algorithms, whereas (iv) is ment as the
reference performance of an optimum benchmark; additionally,
the oracle allows to decouple the evaluation of the AD and FS
building blocks, i.e., by examining impact of FS under the best
AD settings.

C. Feature Scoring (FS)

The purpose of the FS step is to present human operators
with features that are relevant for the solution of the trou-
bleshooting. From a purely data-driven viewpoint, the intuition
is that network experts would want to look first at KPIs
exhibiting drastic change when anomaly happens.

To avoid introducing arbitrary hyperparameters, we aim
for non-parametric FS functions. In particular, we define a
first FSa function sorting KPIs by their average difference
between anomalous and normal times. Formally, given

∑
t at

the number of anomalous timeslots found by the AD algorithm
(so that T−

∑
t at is the number of normal timeslots), the j-th

feature anomalous score is defined as:

sFSa
j =

∣∣∣∣∑t atx̂jt∑
t at

−
∑

t(1− at)x̂jt
T −

∑
t at

∣∣∣∣ (1)

It is useful to recall that, since x̂ features are normalized, the
magnitude of the scores sFSa

j returned by FSa is directly
comparable.

We additionally define FSr to measure the difference in the
ranking of the j-th feature during anomalous vs normal times.
Letting normal and anomalous ranks r−j and r+j respectively:

r+j = rank (j :
∑

t atx̂jt/
∑

t at) (2)

r−j = rank (j :
∑

t(1− at)x̂jt/(T −
∑

t at)) (3)

the rank-based score becomes:

sFSr
j =

∣∣r+j − r−j ∣∣ (4)

Intuitively, whereas FSa compares variations of normal vs
anomalous features values in the normalized feature value
domain, FSr compares the relative impact of such changes in
the features order domain – somewhat analogous to Pearson
vs Spearman correlation coefficients.

D. Expert Knowledge (EK)

By leveraging previously solved cases, one can easily build
an EK-base. Intuitively, if for cases where KPIs A, B and
C have similar behavior (and thus similar FS scores), only
KPI B is labeled as anomalous, we can assume that KPI
B is the only one that experts are interested in seeing to
correctly diagnose the case: a ranking more useful for the
human operator could be obtained by altering the results of the
FS block, e.g. reducing sA and/or increasing of sB . Tracking



for each KPI1 j the number nj of troubleshooting cases where
j was observed, as well as the number of times n+j it was
flagged as anomalous, one can gather its anomaly rate:

K+
j = n+j /nj (5)

Additionally, EK can also track, over all datasets, the number
n−j of cases where feature named j is not flagged by the
expert (gjt = 0,∀t), despite its score during the anomalous
period being larger than the minimum score among the set A
of other features flagged as anomalous:

sj > min
k∈A

sk, A = {k :
∑

t gkt > 0} (6)

Explicitly considering the fact that the expert actually “ig-
nored” feature j at a rate K−j = n−j /nj can be helpful in
reducing the attention on features that are considered to be
less important by the expert (e.g., as they may be effects rather
than causes). The knowledge base can be queried to alter the
scores of the FS step as in:

ŝj = sj(1 + γ+K+
j − γ

−K−j ) (7)

by positively biasing (K+
j ) scores of KPIs that were found

by experts to be the culprit in previous cases, and negatively
biasing (K−j ) those that were not flagged by the expert despite
having a large anomalous score. In (7) the free parameters
γ+, γ− ∈ R+ allow to give more importance to past decisions
(γ > 1) or to the natural scoring emerging solely from the
current data (γ → 0).

Interestingly, the frequentist approach can assist in the
resolution of common problems (where the K+

j rate is high
and the number of observation nj is equally large), whereas
in uncommon situations (where a new KPI is the culprit), it
would still be possible to ignore EK suggestions by reducing
γ → 0 (requiring a slight yet intuitive addition to the human
interface design). De facto, the use of EK alters FS scores in a
semi-supervised manner (and so is able to improve on known
KPIs), whereas it leaves the AD block unsupervised (and so
able to operate on previously unseed KPIs).

E. Update of Expert Knowledge Base

We remark that EK management is particularly lean in
HURRA. In case of cold-start (i.e., no previous EK base),
K+

j = 0 so that ŝj = sj by definition. Additionally, the
system can operate in an incremental manner and is capable
of learning over time without explicit human intervention: the
information is extracted from the tickets by simple update
rules (5)–(6). Finally, the EK update mechansim supports
tranfer learning, as it is trivial to “merge” knowledge bases
coming from multiple ISPs, by e.g., simple weighted average
of K+

j and K−j rates. As a matter of fact, our datasets already
aggregates multiple ISPs deployment, which can therefore
prove (or invalidate) the transferability of our proposed semi-
supervised mechanism.

1Clearly a given feature named J does not maintain the same index j across
different datasets; however, for the sake of simplicity we prefer to abuse the
notation and confuse the feature name and index name in this sub-section

Fig. 3. Synoptic of the performance metrics for attention focus mechanism.

In this work, we simulate the EK update process by per-
forming leave-one-out cross-validation: i.e., upon analysis of
a given dataset, we only consider knowledge coming from
the other datases, which prevents overfit. Also, in reason
of the significant heterogeneity (very few KPIs in common
across datasets), and the relative low number of datasets,
the evaluation in this paper constitute a stress-test w.r.t. the
expected performance of a massively deployed EK system
having collected thousands of instances.

V. EXPERIMENTAL RESULTS

We now define the metrics (Sec.V-A), that we use to
illustrate the performance at a glance (Sec.V-B) before delving
into the contribution of each building block (Sec.V-C through
V-E) and putting them in perspective (Sec.V-F).

A. Performance metrics

We define metrics to assess the extent of agreement among
the ranking induced by ŝ and the ground truth g, defined by
the expert, that has observed and judged f features to find
the t < f anomalous ones, with the goal of minimizing the
number e of irrelevant features that are presented to the expert.

1) Network expert viewpoint: Fig. 3 illustrates an example
output where the f features are sorted according to their
decreasing anomalous score s so that si > sj for i < j. Ideally,
an expert would want an algorithm to present him these t
most relevant features at the top of the ranking. In particular,
we denote with m = t + e the last position occupied in our
ranking by a feature that the expert has flagged as relevant to
troubleshoot the issue. By definition, all features occupying
a rank higher than m are non-anomalous (true negatives),
whereas e KPIs within the m topmost returned by the ranking
are false positives (feature 2 and m − 1 in the example of
Fig. 3). Formally we define the Reading effort, m = t+ e as
the number of KPIs m that must be examined by an expert
using HURRA to view all t ≤ m anomalous KPI.

2) Machine learning viewpoint: From a machine learning
viewpoint, a robust metric to measure the extent of agreement
between the expert ground truth g and the output ranking
induced by s is represented by the normalized Discounted
Cumulative Gain (nDCG) which is commonly used in infor-



Fig. 4. Experimental results at a glance: nDCG for oracle (grey bar) vs ensemble (black points) across all datasets (left) and example sorting for two nDCG
values (right).

mation retrieval to compare rankings [16] and is defined as
the ratio of two factors:

nDCG = DCG/iDCG (8)

The ideal DCG score (iDCG) is attained when all KPIs flagged
as anomalous by the expert appear in the first t positions (the
order of non-anomalous KPIs after t is irrelevant):

iDCG =

t<n∑
i=1

1

log2(i+ 1)
(9)

The DCG score of any ranking can be computed by accounting
only for the anomalous KPIs:

DCG =

n∑
i=1

1(
∑

t git > 0)

log2(i+ 1)
(10)

where it should be noted that the KPI returned in the i-th
position by a FS policy may not be present in the ground truth
(false positive in Fig.3) in which case it has null contribution to
DCG, as well as it lowers contribution of the next true positive
feature. nDCG is bounded in [0,1] and equals 1 for perfect
matching with the expert solution: although less intuitive, this
metric allow to unbiased comparison across datasets, as well as
quickly grasping the optimality gap of the HURRA solution.

B. Performance at a glance

We start by illustrating performance at a glance over all
datasets in Fig.4. The picture reports the nDCG scores ob-
tained using the best FS function across all datasets (ranked
by increasing nDCG), when the AD task is performed by
an Oracle (grey bar, upper bound of the performance) or by
an Ensemble of unsupervised methods (black points, realistic
results) with (light points and no shading) or without (dark
points and shading) Expert knowledge. It can be seen that,
in numerous troubleshooting cases, the ensemble is able to
attain high levels of agreement with the expert (the dots
approach the envelope). It also appears that leveraging expert
knowledge can assist both the ensemble as well as the Oracle,
which is interesting. Finally, it can also be seen that there are
few cases that are particularly difficult to solve (nDCG<0.25
in 3 cases, where the number of anomalous/total features
is 1/157, 2/335 and 1/346 respectively): anomaly detection

Fig. 5. Impact of Feature Scoring on nDCG and reading effort metrics
(average and standard deviation).

appears difficult for the algorithms we considered due to the
curse of dimensionality, so subspace-based methods [1], [13],
[14] would be more appropriate in these cases (cfr. Sec.VI).

To assist the reader with the interpretation of the nDCG
metric, Fig.4 additionally reports the ranking produced by
HURRA in two examples datasets, that portray cases of
moderate and high nDCG scores. For instance, in the high-
nDCG case (Ex. 2), it can be seen that the t = 6 anomalous out
of f = 39 total features are within a reading effort of m = 8
KPIs with e = 2 false positive for an overall nDCG= 0.97.
Similar observations can be made for the low-nDCG case (Ex.
1), where there is a higher number of false positive (e = 11).

C. Impact of Feature Scoring (FS)

Fig.5 next contrasts FS performance for nDCG and reading
effort metrics considering four different ranking policies. Two
rankings are determined by the (i) average-based FSa and
(ii) rank-based FSr feature scoring defined by (1) and (4)
respectively. We further add two naı̈ve rankings that are
evaluated as the theoretical expectation of an (iii) alphabetical
feature ranking, that represents the current system and (iv) a
random ranking, for the sake of comparison.

It can be seen that FSa and FSr reduce the reading
effort of over 50 features on average, and increase nDCG
by roughly a factor of two with respect to alphabetical (or
random) sorting. The fact that alphabetical and random sorting
have close performance can be also interpreted as an indication
that presenting KPIs in alphabetical order has no value for the
troubleshooting expert.



Finally, notice that FSa is slightly more accurate then
FSr: since the FSr is also computationally more costly (as
it requires, in addition to the final sorting, to perform two
additional sorting to determine rankings r+ and r− that are
needed for computing the score), we limitedly consider FSa
in what follows.

D. Impact of Anomaly Detection (AD)

Fig.6 further allows to grasp the impact of AD choices, us-
ing average-based feature scoring FSa. Particularly, boxplots
report the quartile of nDCG and reading effort for, from left to
right (i) the anomaly detection oracle, (ii) an ideal ensemble
combining best IF and DBScan results (iii)-(iv) the best IF
and DBScan results using a specific hyperparametrization
for each dataset and (v)-(vi) IF and DBScan results using
a single hyperparametrization for all datasets. In particular,
for DBScan the best hyperparametrization for point (iii) is
found by grid optimization of (ε,minPts) settings with ε ∈
{1, . . . , 20} and minPts ∈ {2, 5, 10, 20, 40, . . . , 200}, for a
total of 260 combinations. Out of these hyperparametrizations,
the setting (ε,minPts) = (13, 80) yields to the best average
nDCG over all dataset, and is used for (v). For IF, the
number of trees is fixed to 300 and we explore three options,
for a total of 9 hyperparametrizations: (a) Static contamina-
tion factor set to the top X% of the samples, with X ∈:
{0.1%, 1%, 5%, 10%}; (b) Static threshold θS on isolation
score θS ∈ {0.55, 0.6, 0.65, 0.7}; (c) Dynamic threshold θD,
set by finding an elbow in the topmost 10% of isolation
scores. Any of the above can be used for (iv) whereas a static
contamination factor set to 1% yields the best average nDCG
over all dataset and is used for (vi).

It is useful to observe how performance degrades moving
away from the oracle (i) from left to right. Contrasting (i)-(ii)
it can be seen that, while the nDCG is reduced, the reading
effort remains moderate; this hints to the fact that while the
number of false positive e KPIs is low, these may occupy
positions towards the top of the ranking, which have a more
pronounced effect on nDCG. Further considering (iii) multiple
hyperparametrization of DBScan, it can be seen that while
the median nDCG drops, its performance is still satisfactory.
Similar considerations can be extended, to a lesser extent, to
(iv) Isolation Forest, yet the main difficulty for (iii)-(iv) lies in
setting hyperparameters in a completely unsupervised manner.
Conversely, a single hyperparametrization (v)-(vi) is clearly
insufficient, as it constitutes a too small improvement with
respect to the current naı̈ve alphabetical ranking (recall Fig.5)
to be even worth considering for practical deployments.

We further expand, for each dataset, the different nDCG per-
formance that can be attained depending on the selected hyper-
parametrization. Results for all hyperparametrization explored
are reported in Fig.6, highlighting in red the unique combina-
tion yielding the best average performance across all datasets.
It can clearly be seen that, for any given dataset, performance
can vary widely according to the hyperparametrization. As
the gap between single and multi-hyperparametrization shows,
there is also little hope that classic tuning approaches (e.g., use

Fig. 6. Impact of Anomaly Detection on nDCG and reading effort.

Fig. 7. Impact of AD Hyperparametrization on nDCG: DBScan (top) and
IF (bottom). The red cross indicates the performance of the fixed setting
performing best on average over all datasets.

the system with a single hyperparametrization coming from
a state-of-the art cross-fold validation result of this study)
would work in practice. As such, automatically finding an
hyperparametrization that produces good results for the case
under observation has high practical relevance: we discuss
preliminary comforting results on this critical point in Sec.VI.

E. Impact of Expert Knowledge (EK)

We next gauge the value of the EK block in Fig.8, which
analyzes the impact of leveraging expert knowledge on top
of the anomaly detection Oracle and average-based FSa (the
latter, represented as a solid horizontal black line in the picture
corresponding to an average nDCG= 0.89) over all datasets,
as a function of the EK gain γ. Clearly, improving such a
high nDCG should prove quite difficult, and this should thus
be considered as a conservative scenario to assess benefits
deriving from EK (which is already made difficult by the
heterogeneity of the datasets).

We consider several cases to better isolate the effects of pos-
itive and negative bias, particularly (i) positive only γ+ = γ
and γ− = 0, (ii) negative only γ+ = 0 and γ− = γ and (iii)
both effects with equal gain γ+ = γ− = γ. Several interesting
remarks are in order. First, observe that improvements in the
ranking are already evident for moderate gain γ ≥ 1/10.
Second, observe that positive bias K+

j has a stronger effect
than negative one K−j , yet the effects bring a further slight
benefit when combined. Third, the benefit of positive bias tops
around γ = 2 (in these datasets) and remains beneficial even
for very large gains γ ≈ 10. Fourth, the effects of negative
bias can instead worsen the resulting rank for γ > 2 so that the



Fig. 8. Impact of Expert Knowledge of nDCG on the anomaly detection
oracle.

combination of positive and negative bias (with equal weight)
is also affected for large gains.

These different effects are easy to interpret considering the
different nature of positive and negative biases. In particular,
positive bias K+

j assesses the rate at which observers individ-
ually flag KPI j, as observed by independent observers over
multiple independent datasets. Whereas K+

j does not directly
translate into the probability that KPI j is also anomalous in
the dataset under observation, increasing the score proportion-
ally to it can help shifting the attention toward KPIs that are
often considered valuable toward the troubleshooting solution.
Interestingly, as the the support of the observation grows, the
metric becomes more accurate, and as the bias grows, more
frequent problems can be solved more effectively.

In contrast, the computation of negative bias K−j couples
observations across several metrics, as the numerator in the
expression relates to the number of observations where the
KPI j is flagged as normal despite its score sj exceeds the
score of at least one KPI flagged as anomalous. However, the
subset of KPIs in common among any pair of dataset is small,
so the knowledge distilled in K−j appears more difficult to
transfer across ISPs.

In summary, (i) it appears that simple frequentist represen-
tation of EK are providing measurable advantages, even on top
of oracle anomaly detection with high nDCG; (ii) gain from
positive bias K+

j is more robust than K−j and is furthermore
consistent for very large parameter range γ ∈ [0, 10]; (iii)
overally, we recommend the case of EK gathered with a
positive bias only γ− = 0 and a limited gain γ+ = 1, which
also conservatively assesses EK benefits.

F. Relative impact

Finally, it is insightful to compare the impact of the different
building blocks that compose HURRA, which we compactly
summarize as a scatter plot in Fig.9. Performance of the naı̈ve
Alphabetical system appears on the top-left corner, far from
the bottom-right corner of ideal oracle performance. Improve-
ment in both nDCG (+7%) and reading effort reduction (-30)
of the naı̈ve system can already be achieved by deploying
unsupervised clustering with a unique hyperparametrization
setting (that, however, requires machine-learning experts for
a first tuning). The use of multiple hyperparametrizations
brings a further significant advantage even considering a single

Fig. 9. Relative impact of HURRA’s building blocks: Scatter plot of nDCG
vs Reading effort performance (ideal performance in the bottom right corner).

algorithm (+25% -15 for DBScan and +15%, -28 for IF, not
shown), and of course ameliorate further when results are
combined in the ensemble, which is quite close to the oracle.

Finally, the adoption of expert knowledge, even in the very
simple form presented in HURRA, is beneficial not only
in case of ensembles (+4%, -2) but also when an Oracle
solves the AD problem (+3%, -1) although with diminishing
returns (since the oracle performance are already close to
perfect agreement with the expert, recall Fig.8). The EK
gain even in the presence of an oracle for anomaly detection
can be explained with the fact that not all KPIs with a
manifest anomalous behavior are important, as they may be a
symptom rather than a cause. This confirms that even a simple
frequency-based approach in exploiting expert knowledge can
lead the expert in focusing on KPIs that are closer to the
“root cause”, without directly exploiting causality, and that this
information can be “transferable” in machine learning terms,
across datasets.

VI. DISCUSSION

Network troubleshooting is still a human-intensive process:
HURRA not only assists human operators in their tasks (using
unsupervised learning techniques), but that can also learn from
the final troubleshooting solutions validated by the operator
(without requiring his explicit intervention). HURRA is easily
deployable (as it requires minimal changes with respect to
UI and no human interaction), hot-swappable (as it does not
require an EK base) and is expected to improve over time (as
the EK base grows). While performance benefits are clear, the
limits of HURRA are also worth pointing out, as they leave
interesting open questions.

Stream-mode. While this work focues on classic batch meth-
ods, a natural next step would be to move to stream-mode
operation as in [2], e.g., by replacing Isolation Forest with
Robust Random Cut Forest, or DBScan with DenStream,
which would allow HURRA to not only react on demand,
but to also proactively trigger “human readable” alerts.



Decoupled AD/FS. The fact that the performance of the FS
module is tied to the performance of the AD step is a double-
edged sword: on the one hand, if the AD part is solved, the FS
is easy to apply and will generate useful insights. However, we
have seen few hard-to-solve instances (recall the low nDCG
cases in Fig.4) where subspace methods [1], coupling FS and
AD, would be preferable.

FS Applicability. Given our troubleshooting focus, the pro-
posed FS policies are designed to work well when solving a
single ticket. As such, to let the system running continuously,
FSa would require to maintain online average of normal
samples, whereas FSr would incur prohibitive costs.

AutoML. More generally, our results show that no single AD
algorithm with a single hyperparametrization, can be expected
to work well for all circumstances. Thus, an unsupervised
meta-learning approach recommending the appropriate selec-
tion per dataset would be of invaluable importance.

As the latter point is particularly relevant, we perform a
simple experiment to show that random-hyperparametrization
would allow to quickly produce results under (mild) assump-
tion of being able to compare, in a binary fashion, which of
two solutions is better. In other words, we do not require a
precise quantitatively assessment of a solution (e.g., the value
of the gradient toward the optimum), but we assume of being
able to roughly assess the quality of the solution (e.g., the
sign of the gradient suffices). We then automatically tune the
algorithm by (i) randomizing an hyperparameter settings and
(ii) keeping the most promising between the current settings
and the new ones. Fig.10 depicts as a function of the fraction of
the parameter combination explored on the x-axis, the average
nDCG (with confidence bars gathered from 100 independent
simulations) normalized over the maximum achievable nDCG
over the whole explored combinations. It can be seen that
randomized hyperparametrization quickly converges to over
90% of the asymptotic nDCG gathered via exhaustive grid
exploration: 3 tests (1% of the explored combinations) are
sufficient in DBScan and 2 tests (20%) are sufficient in IF,
with diminishing returns afterward. Devising an unsupervised
randomized strategy able to converge in practice is part of our
future work.

VII. CONCLUSIONS

This paper presents HURRA, a system designed to re-
duce the time taken by human operators for network trou-
bleshooting. HURRA is simple and modular, with a design
that decouples the Anomaly Detection (AD), Feature Scoring
(FS) and Expert Knowlege (EK) blocks. HURRA leverages
unsupervised techniques for AD and FS: our performance
evalution shows that whereas single algorithms with fixed
hyperparametrization do provide only a very limited benefit,
the use of ensembles and multiple hyperparametrization has
the potential of making unsupervised systems of practical val-
ues. Furthermore, HURRA is capable of seamlessly building

Fig. 10. Quality of the solution as a function of the fraction of randomly
tested hyperparametrization settings.

a knowledge base EK, by exploiting the information coming
from troubleshooting solutions validated by the human opera-
tor, without furthermore requiring his explicit intervention. EK
can then be used to refine the unsupervised solution provided
by AD+FS blocks. Numerical results show that such a system
is promising, in that the combined use of ensembles and
expert knowledge approaches ideal performance achieved by
an oracle.
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