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Absiract—FElectricity load forecasting hos always been o sig-
nificant part of the smarl grid. It ensures sustainability amd
helps Lo take cost-ellicient measures for power syslem planning
and operation. Conventional methods for load forecasting canpol
handle buge data that has a nonlinear relationship with load
power. Hence an integratled approach is needed thal adopls a
cosrdinaling procedure between dilferent modules of electricity
locad Forecasting. We develop a novel electricily loml lorecasiing
architeciure that integrates three modules, nomely data sebection,
extraction, and clesilication inle a single model. First, essential
leatures are selected with the help of rombom forest aml recur-
sive leature elimination methods. This helps o redoce feature
redumndancy and hence computational overhead For the nest iwe
mvisdules. Second, dimensionality reduction is realized with the
help af a testochastic neighborhosd embedding algorithm for
besl extraction. Fimally, the electricity load is lorecasted with
the help of a deep newral metwork. To improve the lEaming
trend and compulational elliciency, we emploved a grid search
algorithm for tuning the critical parameters of DNNe Simulaiion
results confirm that the proposed medel has betber results when
compared 1o the benchmark schemes.

Inder Termy—Big data, Smart grid, Losd forecasting, Classi-
fication, Feature selection

[ INTRODUCTION

A. Background

Electricity is an expensive commodity and its consumption
must be synchronized with generation o avoid wastage. To-
day’s technologies do not allow o store or quewe exira cnergy
in an economical manner. Also, due to limided transmission
capacity of existing power network, it cannot be transpaorted
to other regions and hence makes electricity characteristics
really local and time wvarying in multiple aspects among
different regions [T} B Electricity load in its nature is
one of the volatile and unpredictable commodities, and it
can rise 1o tens and sometimes hondreds of tmes too its
average value. The applications of conventional forecasting
methods such as Awtoregressive Integrated Moving Average
[ARIMA) and Linear Regression have larger emmors, hence
advanced load forecasting models need to be proposed. The
underfoverestimation of power gencration/consumption can
pose severe challenges to the power system network. In other
wards, by accurate forecasting and reducing the mean absolate

crror (MAPE) only by 1%, is so impressive and meaningful o
have the impact of 3-3%. The overall impact of this decrease
can reduce the gencration cost of about 0.1% to 0.3%, [5]. For
this reason, various Artificial Intelligence (Al and Machine
Leaming (ML) hased forecasting models are proposed recently
o achieve better accuracy in the power market.

In a deregulated environment of the power industry, the
rale of electricity demand forecasting has become increasingly
important. The primary porpose of price/load prediction in the
smart grid is to minimize power peak demand and balance
supply-demand gap [7). A precise forecasting method not only
reduces the demand-supply gap but also helps to develop a
stable and efficicnt power management system. AmMOng numer-
ous forecasting methods, shont term load forecasting (STLF)
aims o predict the load from several minutes wp to hours
and weeks into the future [B]. An accuraie and stable STLF
brings an unprecedented bevel of fexibility for its management
and creale a win-win sitnation both for its generation and
consumpion side stakeholders. On one end, it helps the atility
o address uncertain power generation challenges specifically
when penctration of RES is increasing. Besides, it brings
higher reliability and aims to schieve available energy sources
coonomically and rationally in an effective manner. As for ag
customers and end-users are concerned., they are eager to know
clectricity prices, which is mainly based on generation patterns
and power demand for a specific period. Customers have a
predefined power price threshold, and based on forecasting
results; they can decide to control power demand for a specific
time to get financial benefits in terms of energy cost savings.
Duee to this reason, energy suppliers, as well as consumers,
require clectricity pricefload classification. The electricity load
15 affected by many factors such as gencration capacity, fuel
prices, renewahle generation, etc., and most of the factors vary
within short intervals. Accuraie forecasting is essential, but
due to the more extensive data, it is challenging to increase
accuracy. Smart meters continuously monitor the associated
factors such environment, RES gencration, temperature, etc.,
all in real-time, and hence the amount of data available for
forecasting is congiderably large and hence difficult to handle,

especially for STLF [®— [T



E. Related Work

The need for accurate STLF strategies can be iraced back in
the 19k, and perhaps one of the first comprehensive studics
on STLF was conducied by Heinman et al. in 1966 [TT]). The
authors used regression analysis to investigate the relationship
between temperature and energy consumption during summer.
Simce then, many other approaches and methods are proposed
for STLF with variations in the degree of success. The STLF
methods are broadly classified into two categories; classical
statistical methods and anificial intelligence (Al methods.
The statistical methods determine the mathematical relation-
ship between the exogenous factors (independent) and the
load (dependenth. Many statistical methods are discossed in
the literature, such as multiple linear regression, time series
analysis, adaptive filtering. and exponential smoothing ﬂg
The regression method comprises to assume a lincan/non-linear
relationship between dependent and  independent variables
(price, weeckdays, weather variables, ete.).

The statistical methods identify the load pattern, and, based
on the obtaxined pattern, the time series analysis approaches
are utilized to provide the fotwre valee of the measorements.
Regression analysis is then applicd to determine the cocffi-
cients of the independent variables in the assumed model. For
imstance, Amral et al @ used a multiple linear regression
model o forecast the eleciric load up to 24 hours ahead
for the Sulewesi Island Indoncsia, by sclecting the current
and previows hourly values of the temperature as independent
variables. Time series models, on the other hand, achieve
accurate prediction by performing correlation analysis of past
observation. Some of the most widely used time series models
are the auto-regressive integrated moving average (ARIMA)
These models have shown good performance measures based
on the box and Jenkins methodology. Ozozen et all  [[T4).
proposed an ARIMA based Algorithm to capiure the linear
component of the load time series. However, the existence of
various owtliers, computational burden and building a modezl
with raw data tend to make the forecasting accuracy unstable
(T3]

Since the carly 1990s, the Als technigues have been widely
cuplored methods for prediction. One of the popular Als meth-
ods. is neural networks (NMs). In an anificial nearal network
[ANM), the prediction is hased on assuming a non-linear
relationship between historical data and extemnal variables.
The MM: prediction models provide promising  prediction
results, and that is the reason that they are extensively used
in different applications. However, NNs undergoes a number
of weaknesses, which includes overfitting issue, estimation of
connection weight, model construction, and consideration of
cutensive data for mode] training. Due to these reasons, it s
challenging to employ NNs for STLF problems [[[&]. In 1995,
turkey et al |]m proposed an innovative Al technique they
called Suppont Vector Machine (5VM) and Support Vector
Regressor (SVR) to address the shoricoming of NMNs. These
methods employ empirical risk minimization (ERM) princi-
ple o improve the training process and find global optimal

splutions in the search space. However, these methods are
computational very cxpensive and hence make the algonthm
difficult to converge. Also, these methods are not suitable for
large data sets and performs under when training class values
are overlapping.

For short-term boad forecasting strategies, most of the work
is hased either on selection or classification methods where
Drecision Tree (DT algorithms and Artificial Mewral Networks
(ANMs) have gained much attention. Both methods have lim-
ited capahilitics such as DT faces overfitting problems, which
means that model performance is good in training but not in
prediction [[T8]. Similarly, ANN models have limited general-
ization capabilities, limited control over convergencel/stability,
and limited capabilitics to deal with the uncerainty  [T%).
Furthermaore, the leaming-based model does not take into
account the big data characteristics, and the performance
cvaluation criterion is based only on pricefload data which
15 nof large. With the consideration of big data characienistics,
the forecasting accuracy can funther be improved [[HI].

. Key eontributions

In this work, we examine the load forecasting issue for
a smart building. Residential buildings account for 200 -
40 % of total encrgy demand, and hence making buildings
cnergy efficient is essential for sustainable development of
clectric power systems. Apart from a major source of encrgy
consumpiion, buildings are also identified for a substantial
amount of cnergy wastage. Hence, the role of STLF is
critical to minimize encrgy wastage at the building level
and mitigating uncertainties for the reliability of the grid
3. Our objective is to predict the cleciricity load of a
smart building accurstely, considering the numerous factors
{hig data} form the smart grid. To overcome challenging
accuracy objectives, we propose a convolution neural network
(CWIN) reinforced framework that forecasts the electricity
losd accurately. CWNN uoses multiple convolution layers to
transform inpaut into the outpul. Three types of layers, namely
comvolution, pooling, and fully connected layers, are used to
build a CNM architecture. Linear and non-lincar operations
are performed to transform input tensor nto output tensor in
cach layer of CNMN. Although CMN is a promising approach,
the following challenges are necessary to address for accurate
clectricity load forecasting.

o High computarionalcomplexiny: CNN's like any newral
network model is computationally expensive. It is becase
multi-layered architecture, along with multiple layer ab-
straction, are imeolved in learning complex relationships
and patterns between inputs and outpuis in deep leaming.
Hence, redundant and imelevant features can affect the
training process of CHN becanse of greal computational
complexity and can drop the forecasting accuracy.

o Hard to hine paraseeters: Numerous super parameters
are wsed in the training process of CHNNs such as leam-
ing rate, weight decay, haich-size, activation function,
etc. The values of these super parameters greatly affect
the performance of CMN in the forecasting process.
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Fizg. 1: Proposed System Model.

To achieve higher accuracy and better efficiency, cross-
validation needs o be performed to get the optimal
value of the super parameters, Oplimal hyperparameter
values differ depending on the application, and the com-
mon method wsed to adjust these parameters are manoal
search, random search, and Bayesian optimization, How-
ever, these methods are computationally expensive and
may cause the algorithm unable o converge.

To address the challenges, as mentioned above and mo-
tivated from @ we propose a parallelized framework for
electricity load forecasting. As shown in Fig. m the three
components of the parallelized framework are hybrid feature
selection, feature extraction, and regression (HFER). Hybeid
fieature selection is based on two paralell and completely
independent analysis; the feature extraction process is achieved
with a t-distributed stochastic neighboring embedding (i-5NE)
algorithm and grid search base CNM's regression. First, feature
engineering is performed with important feature selection and
dimensionality redwction of electricity load data. We employ
two features selector algorithms to achieve an appropriate
set of features reflecting larger impacts on the electricity
load profile. Instead of using Principal Component Analysis
(PCA) and kernel (PCA), we choose t-SME for dimensionality
reduction of high dimensional nonlinear data. PCA canmot
capture complex polynomial relationship between features and
thus not suitable for nonlinear data @ Similarly, KPCA is
a probabilistic approach with higher vadance and eventually
perfiorm uncertainly to handle larger nonlincar data. The t-5MNE
is wery suitahle for high dimensional data becanse it capiures
local and global structures, as a result of which divergence
between data points I8 minimized. To achieve higher accuracy
and computational efficiency, our main conributions are listed
byl

I} To achieve higher accuracy., an integrated framework

hased on three modules is proposed. Due o cascaded
effect, smart grid big data is efficiently handled and
analysed.

2y To achieve this, we first combine Random Forest (RF)
and Recursive Feature Elimination (REFE) methods to
calculate feature importances independently to perform
feamure selection. Among the selected features, we em-
ploy - SNE algorithm to achieve lower dimensionality
and redundancy of the data. Redundancy analysis is quite
a new stwdy in electricity load forecasting. We also
employ a grid scarch algorithm (GSA) w0 tune the hyper
parameters of CHMN. The ECMN has higher accuracy and
computational efficiency when compared to the pecent
techniques in proposed arca.

3) For performance evaluation, extensive simulations on real
world data waces of grid load have been considered. The
numerical results show that the proposed model shows
better performance statistics than benchmark approach.

The remaining sections of this paper are organized as fol-
lows. The Survey of the proposed load forccasting framework
is described in Section. [l Feature selection and feature
exiraction methodologies are described in Section. [[T] and
Section. [[W] respectively. In Section. [V]. the ECNN classifier is
demonstrated. The Section. [V1] shows the experimental results
fior werifying our proposed framework. The paper is concluded
in Section. [VII) finally.

II. SYSTEM FRAMEWORE

In Fig [1] the framework of the proposed system is shown
that is= based on three modules namely feature selection,
extraction, and classification.

A Design Goals

The main goal of the proposed framework is (o forecast
electricity load efficiently and correctly. For this purpose, raw
data is first processed to identify important features and then
perform classification. The following metrics are important to
measure the performance of proposed framewaork.

« Accuracy af classificarion: The core goal of the proposed

framework is to achieve maximum accuracy.



o Dimensional reduetion rate: Proposed feature engineering
meethod increases classification performance to acheive
bsetter reults.

o Time-egfficiency: The proposed framework muost work fast
when using in electricity load forecasting.

B. Framework (herview

The pramary objective of eleciricity load forecasting is to
achiewve maximum accuracy. However, various factors inflo-
cnce the training process and hence make the forecasting
process difficult. For this purpose, we develop an effective fea-
ture selection method, t-SMNE based feature extraction method,
and GSA-CNN based classification. The first part of Fig. [T]
comesponds to the feature selection part, which starts with the
standardization of the raw data. Standardization is very crucial
because it later affects the overall performance of the classifier.
Secondly, data is fed into the feature selector, which is hased
on RF and RFE algorithms. Feature selector decides whether a
feature needs to be reserved or removed before fed into feature
cxtractor. A feature is kept only in the feature selector index
if it is selected both from RF and RFE algorithms. To remove
redundant features, the 1-SNE algorithm is applied in the thind
stage. Finally, data is wsed to be fed into CNN regressor
for building the forecast model. Since CMN performance is
controlled by many hyperparameters, we use GSA to assign
optimal values to the parameters for better efficiency. A list
of abbreviations used in this work are introduced in Table [
Wi assume a matrix of electericity load data as follows,
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where, rows and columns represent the time stamps and the
feature index of the data, respectively. Hence, the prediced
component of & hour load of data’s jth component can be
represented & xy;. The matrix can be also formulated as,
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te = [ak1, 062, -..akn] k € [1,m]. (3)

The following three sections describe the details of these
modules.

II1. FEATURE SELECTION

This section describes the details of feature selection
methodology 1o identify the most relevant features. Instead
of relying on a single algorithm, we propose a combined
methodology based on two algorithms o control the feature
selection process. In this way, more accurate fealures are
selected o improve the forecasting mechanism. The RF and
RFE algorithms independently give featore importance, and
their combination selects an imponant set of featres. Both
features selection steps are imporant and give a good pee-
dictive performance. First of all, RF is applied, which is an
cnsemble learning technigque and has a higher computational
capability. As the name suggests, it consists of RF with
hundreds of decision trees trained with the bagging method.
RF grows on bootsirap data sets to divide the data into
feature bagging and out of bag ((MIB) data to best separate
the samples. The OOB data is uwsed to calculate festure
imponance in the data set. RF guarantees that all trees are
de comelated and, therefore, reduces variance and overfitting
problems of the decision tree method. During the training
process, cach feature impact on Gind imparity is calculated. A
feature has more importance if it decreases the Gind imparity.
The final importance of the varable is determimed with high
cardinality. Fig. [ shows that combine imponance scofes add
up i 100%. and clearly, 10 out of 15 feamres are the most
prominent features contributing (0080} for creation of the
madel. The second method employed for finding an optimal
number of features is RFE with Cross-Validation (RFECY )
Contrary to the RF method, RFECY recursively eliminates
highly correlated in the data set. Highly correlated featurcs
give same resulis and bring high computational complexity
during classification. With the help of the feature selection
process, much computational overhead is reduced 1o train the
madel. Fig. [§] shows that the RFECY achieves ( >0.85) score
when 6 informative features are found. The performance of the
curve gradually decreases when non-informative features are
added into the model. The shaded area in the curve shows the
variahility of cross-validation above and below the mean score.
Initially, 15 featores are fed and their cumulative score jumps
low to high when 6—8 features are found and decline again
from the optimal number of featres. Both feature selectors
waork independently and can be deployed distributedly to
achicve computation efficiency. To sclect the best ten featunes,
we introduce a threshold (Tge = 0.07) for RE The RFECY
provides the list of ten best features. Combination of RF and
RFE select most imponant features that are more accurate.
There exists a redundancy problem among ten best-selected
featwres for which they are sent to the t-8NE algorithm for
fieatwre extraction.

IV. FEATURE EXTRACTION
Thiz section describes the feature exiraction methodology
for the proposed framework. Feature extraction is useful to
remove redundant features, and models generalize better when
appropriate features are used during the fitting process. To
reduce the redondancy among features, PCA [ 1], and classical



TABLE I: List of Abbreviations

Abbreviation
Hour

Diescription
The index of hours
The dsy-ahesd demand, which consisiz of
fived demand bids, price-semsitive demand
bids, decremeni bids, snd increment offers.
The Non-FTF Demand for IS0-ME LA and |
the load zones = messared by mesering.
Cne day ahend Tocational marginal price.
The dynamsc bocaivonal marginal price.
The energy pan of the dyvnamic load.
The congestion part of the dynamic Toad.
The marginal bess part of the dynamic load.
The dry bulb temperaiure.
The dew paini emperaiure.
The scwal syssem losd measured by meser-

T

inE.

UL The energy supplied by coal.

GAY The elecincity supplied by natural gas.

 HY RO The elecinicity  supplied by  pondage,
pamped Storage, reservoir, ond un of
River.

oA The energy pan of the day ahead sl

Da_MLC The margind loss pan of the day ahead

boad.

multidimensional scaling [28] are the most common methods
fior feature extraction. However, these technigues assume a
lincar mapping from high to low dimension space [11]. Fig. 4
clearly shows that PCA makes the clusters of nonlinear data
that are entirely overlapping and results in high dimension
mapping. However, electricity load forecasting data needs
to be embedded into dimensional embedding with proper
nonlinear mapping.

To addressed nonlinear data mapping issues, Kemnel PCA
(KPCA) is used, which is an extension of PCA. However,
KPCA reguires multiple hyperparameters of the kermel func-
tions (o be ned which increase computation time and hinder
the performance. Morcover, KPCA is nof as interpretable
as PCA because it is not possible o determine how much
variance 15 explained by individoual dimensions.

To address above mentioned 1ssues in PCA and KPCA, we
employ t-5NE to perform nonlinear mapping and dimension
reduction of data altogether. The t- SNE wses "stochastic
neighbours” that means not o have clear border o distinguish
how multiple data points are neighbours of the other points.
This is a major advantage of -5NE to consider both local
amd ghobal structure into considerations. Considering local and
global strocture simuliancously create a well-balanced dimen-
sionality reduction map. The alm is 0 preserve masimum
possible wseful high dimensional data points into the low
dimension map. Fig. B shows how the data points from the
different clusters are well separated in the two-dimensional
spacce.

The ten best selected features are used as an input of -5MNE.
The outpul matrix can be represented as,

X =, 2 mq . 2x)7 {4)

where oy is the ith variable of clectricity boad.

In -SNE algorithm, two imporant steps are performed.
First. in high dimensional data space a probability distribution
F is constructed. Given a set of & high dimensional objects, a
data point x; would pick x; as its neighbour if its probability
is in proportionate to the probability density of a Guassian
centered on ;. The conditional probability (py);) for picking a
nearby data point is relatively high, whereas for far away data
points it is almost infinitesimal. Mathematical expression for
construction P distribution is given by [T,

pxp—li= _x‘f".ﬂr[?ﬂf]
T ﬂ-p—llx-—rflll;.[g,,:fq
such that the probability of selecting the pair x; and x; is

P = %. ]

The probabilities pg; = 0 for i = j. In Eq. [}] o represents
the bandwidth of Gauwssian kernel to set the perplexity of
conditional distribution. Perplexity indicates how well the
bandwidth of local and global aspect is adapted according to
the density of data. The perplexity value has a complex effect
on prediction and model fitting of a sample. To achicve a target
perplexity. the value of bandwidth o; is adjusted according to
the data density.

For the constmct of d-dimensional mag . ..., v where
u; € R, second phase of -SNE defines probability density
distribution. ), through perfect replication of high dimensional
data points (xi. x5} inio low dimensional data poinis (g, uil
Mathematically, q;; is defined as following

Pije = (5)

o= L D P
T Bkt (1 e — we[F)!
The Stedent's t-distribution is uwsed to measure the similar-
ities of high dimensional data i gqg.
To obtain the ;. the Kullback Leibler divergence between
high and low dimensional space is minimized:

(7

KL(P||Q) = ¥ piglog™2 (%)
e ij
iy
In fact, this result reflects the similarities between the high-
dimensional inputs very well
Afier describing feature selection and feature extraction
sections, we progose the ECHN classifier in the next section
o perform the final electricity load forecasting.

V. DPTIMAL CLASSIFICATION

Affter the two-stage feature selection and extraction, unim-
portant and redundant features have been dropped. This section
describes our proposcd approach that accomplishes the final
clectricity price forecasting via the processed data. Since CNN
is mobust and efficiemt enough in electricity load data, we
choose CMM as the classifier. In this section, the classification
problem is investigated first. Afiter that, the GSA based CNN
15 proposed to optimize this problem. The main goal of this
work is o minimize the cross entropy loss function of CNM.



However, there is a strong link between loss function and
value of CNMN super parameters. It is very challenging o get
the optimal value of these super parameters o achieve betber
cfficicncy and higher accuracy. In this work, we employ GEA
to tune these parameters.

In cssence, CWMs are a special kind of neural netwaork,
which processes data that has grid topology. In this perspec-
tive, images are formed because of 20 grids, and time-serics
data such as clectricity load and price data are viewed as a
1D grid. Among multiple layers, at least one layer of CNNs is
dedicated o performing convolutions for specific lincar opera-
tion. The output of the convolution layer for multidimensional
input is calculated with the following equation

S=(r=w) (%)

where x and w denote the input and weighting function of a
CMN and the output in the form of feamure map is denoted
by & The inputs and weights of a CNN are multidimensional
arrays. During the couwrse of itcrations, random weights ane
assigned 1o each input for training purposes. the comvolution
operation for a two dimensional input can be expressed as:

i )= (T K)[i.§) = E Z‘ Tl ) (i 41, f+m) (100
1 m

where I and K represent two dimensional input and kernel
amd 5 is the resulting feature map after the applying the
comvolution. In real, there are three phases to complete the
operation of convolutional layer. As a first step, a feature map
is obtained after performing convolution operation. Then, a
nonlinear activation function is applied on all the elements
of feature map. The rectified lincar activation function 77 is
usually used in this stage ?7. Finally, o achieve modified
and desired feature map, a pooling function is employed. The
pooling operation makes the representation less susceptible
to small varations in the inpot Out of various pooling
technigues, in the presented work, max pooling method is
used. In max pooling, the operation retums the maximum
value of a predefined rectangular neighborhood. Other pooling
technigues such as average pooling, min pooling and weighied
average pooling have been used in literatare 77,

As mentioned, the designed network can consist of one
or more convolutional layers. Once the convolational layeris)
produce their owtputs, the oatpwt is sent to one of more fully
connected layers. Folly connected layers can be thought of as
hidden layers in a standard newral network. The outpat layer
is placed afier the fully connected layers. The output layer
performs a similar function to an ootput layer in a standard
AMNN. Learning process of the CNN is carmied out using back
propagation.

A. Grid Search Algorithm

Among various optimization algorithms, grid scarch method
can be seen as the most basic and fundamental tool. Generally,
the grid search method holds two main unigue merits, iec.,
simple process and effective function. In particular, the hasic

idea of grid scarch method is to simply try all candidates on
grids and find the best one as the optimal solution in terms
of the highest fitness function. With sufficient cnough grids,
the gnd secarch method can theorctically reach the optimal
solution. Therefore, this paper especially introduces the simple
but efficient grid search based optimization algorithm to select
the optimal cutoff value in credit risk asscssment. A typical
optimization problem can be described as follows:

mar F(8y, 8. 8
Bt By S0 € B (i=1,2,

'I'|'Ilrl I -_— .t.: {I ]"
where Fi=)is the fitness function, &, represents the i-th
decision variable with a minimum &, ; and a maximum
Pz i
Generally, the grid search method contains two main steps:
grid creation and grid checking. First, a set of gnds are
gencrated as the candidate solutions with an egual interval
[d; = Bmus '_"""'] for decision variable i, where m; is the
total number of candidates. Accordingly, the j-th candidate
solution for variablei, & ; . can be described as follows:

Second, the grid scarch method tries all candidate solutions
on grids, and finds the optimal solution &7, 85, ... &% with the
best fitness wiility, by enumerating method [7].

In this paper, the fitness function for cutoff selection is
designed as follows:
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where accuracy(TR) and securacy{V 5] represents the
average prediction accuracy by the BECNN model respectively
for the training dataset and validation dataset. According to
Eq. (8, an optimal cutoff should not only guarantec accorate
prediction results for both training and validation datasets (see
the second two parts), but also avoid the overfitting problem in
any dataset {see the third part). In this paper, the grid method
searches the optimal cutoff value on the range of [—1. 1], iec.
between the lower and wpper boundaries of risk scoring, with
the scarching interval of U001,

VI. SIMULATION SETUP

In order o investigate the capability of our proposed
framework, we develop a simulator with Python according
to the system framework designed in Section 2. During the
simulation, the simulator is anning on the platform with MAC
i7. 16GE RAM, and 128GB hard disk. Hourly clectricity price
data and energy generation data of the 150 Mew England
Contral Area (IS0 NE-CA) from 2010 to 2015 are taken
as the input for this framework [5], which consists of over
SO000 real-world electricity price records. The data includes
attributes shown in Table. ] Simulation results are organized
as follows: (1} Feamre selection performance based on two
independent algorithms; (2) The t-SMNE performance compared
with PCA for redundant featwres; (3) ECMNN performance
compared with benchmark CNN algorithm in terms of MAPE
ST

A Simulation Results

I} Performmance of Hybrid Featwre Selection: HFS s
applicd to roughly select features form howrly electricity
load data during 20010-1-1 o 2015-12-31 in IS0 NE-CA.
In feamre selection, every feature sequence has a form as a
vector. The components of this sequence represent the feature
values in different timestamps. Since our goal is o predict
the electricity load, which is named regulation clearing price
(RegCP) in the data, features that have little effect on the
load can be removed. First of all, RF is applied to calculate
the feature impomance as shown in Fig. [{] The optimum
number of features grade by RFE method is shown in Fig.
which indicates that 68 most important features achieve
above 34% score. We drop four features with obvious low
grade, ie., features DA_CC, RT_MLC, RT_CC, TDA_MLC
and RSP It is pertinent to mention here that with increased
in threshold value, more features are dropped, resulting in the
increase of training specd and the decrease of accuracy.

2] The -SNE PFerformance Compared with PCA o
Redwee Dimension: In order to eliminate the redundant
information within the featmres, -SNE and PCA are used to
extract the principle components. PCA is a linear algorithm,
it does not interpret the complex polynomial relationship
between features while 1-SNE captures exact relationship
between data points. PCA performs a linear mapping of the
data to a lower-dimensional space in such a way that the
variance of the data in the ow-dimensional representation

is maximized. As shown in Fig. §] PCA concentrates om
placing dissimilar data points far apart in a lower dimension
representation with higher ranges. The -5NE extracts meost
of the principle components, as shown in Fig. [ within low
range. Thus, we select the -5NE 1o guarantee the accuracy
of forecasting. The data points of -SNE distribote along
coordinate axes, Le., extract the principle components that
are more representative than the PCA.L

A} ECCN Performance Metries Comparizion with Bench-
mark CNN Algorithm: We compare the performance of
ECNM with benchmark classifiers CNM to forecast day ahead
electricity load. To comprehensively understand the character-
istic of the proposed method, we calculate MEAN Absolute
Percentage Ermor (MAFPE) as a performance indicator. This is
expressed as following,

wape = Ly =) 100% 14
] = F;'T % (14

In EqTd, y; and §; are the actual and forecasting values
respectively. The ECNM is shown to be the best model,
vielding MAPE values of 8% when compared to the MAPE
value of CNN 14%. The results are shown in Fig. [T]and FigE]
respectively. The accuracy of ECNN achieves higher accuracy
s its curve fits well with the real valoe. The CNMN have
some outliers due to which it deviates from original value.
The GSA optimizes the super parameters of CNN jointly.
Therefore, ECNM performs better at the accuracy of electricity

load forecasting than CMN.

VII. CONCLUSION

In this paper, we have investigated the electricity load
forecasting problem in smar grid wia joint consideration
of feature engineering and classifier parameters adjustment.
An electricity load forecasting framework which consists of
rwo-stages feature processing and enhanced CNN classifier
has been proposed o solve this problem. Specifically, to select
those important features, a new combined two stage model
is employed to process the n-dimensional time sequence
as an inpul. Additionally, -SNE is applied to extract new
features with less redundancy, which boosts CNM classifier
in accuracy and speed. Moreover. the GSA algorithm obtains
the appropriate super parameters for ECNN  aotomatically
and efficiently. The numerical results have shown that oor
proposed framework is more accurate than the benchmark
CHNN.
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