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Abstract—We consider the problem of minimizing the time
average cost of sampling and transmitting status updates by users
over a wireless channel subject to average Age of Information
constraints (AoI). Errors in the transmission may occur and
the scheduling algorithm has to decide if the users sample a
new packet or attempt for retransmission of the packet sampled
previously. The cost consists of both sampling and transmission
costs. The sampling of a new packet after a failure imposes
an additional cost in the system. We formulate a stochastic
optimization problem with time average cost in the objective
under time average AoI constraints. To solve this problem, we
apply tools from Lyapunov optimization theory and develop a
dynamic algorithm that takes decisions in a slot-by-slot basis.
The algorithm decides if a user: a) samples a new packet, b)
transmits the old one, c) remains silent. We provide optimality
guarantees of the algorithm and study its performance in terms
of time average cost and AoI through simulation results.

I. INTRODUCTION

The Age of Information (AoI) is a new metric that captures
the timeliness or freshness of the data [1], [2]. It was first
introduced in [3], and it is defined as the time elapsed since
the generation of the status update that was most recently
received by a destination. AoI can play an important role in
applications with freshness-sensitive data, e.g., environment
monitoring, smart agriculture, sensor networks, etc. Consider a
cyber-physical system, where a number of sensors sample and
transmit freshness-sensitive data (e.g., temperature, humidity,
solar radiation level) to a destination over a wireless channel.
Under ideal conditions, the destination receives fresh data,
continuously. However, due to the fluctuating nature of the
channels and the limited resources, this is often impractical.
In such cases, it is vital for the system to manage the resources
efficiently to keep the data fresh. In this paper, we consider
both the sampling and the transmission costs and propose a
dynamic low-complexity algorithm that minimizes the time
average cost of the system while keeping the time average
AoI below a threshold.

Recently, the performance analysis in terms of AoI in
queueing systems has attracted a lot of attention. In [4], the
authors consider a source that randomly generates packets
and transmits them to a remote monitor over a network
with dynamic routes. The authors provide the approach for
computing the analytical status age under different queueing
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models such as M/M/1, M/M/2, and M/M/∞. In [5], the
authors introduce the notion of cost of update delay, and the
value of information. By considering queue management in an
M/M/1 system, the authors in [6] provide analytical results
for the age of information and peak age of information of the
system. Also, recent studies consider the application of AoI
in Internet of Things (IoT) [7]–[10] systems or systems with
energy harvesting capabilities [11], [12].

The age minimization problem under different network
scenarios is considered in [13]–[15]. In [13], the authors
consider the AoI minimization problem in a system with users
that sample fresh information and transmit it to a destination
over a wireless channel. In [14], the authors consider the
minimization of AoI problem in a system which packets
randomly arrive in a base station. The packets are enqueued in
separate queues and they are transmitted to the corresponding
destinations for keeping the information fresh. The authors
in [15] formulate the age minimization problem as a Markov
Decision Process and provide the optimal on-line and off-line
scheduling algorithms. In [16], the authors consider the power
minimization problem in a wireless network with average AoI
constraints. The authors apply tools from Lyapunov optimiza-
tion theory and provide an algorithm that minimizes the power
consumption while keeping the data fresh in the destination. In
an AoI-constrained wireless network, authors in [17] consider
the link activation problem for energy minimization. To the
best of our knowledge there is no work that considers both
transmission and sampling costs in a wireless network with
time average AoI constraints.

In this paper, we formulate the time average cost min-
imization problem of an AoI-constrained system. The cost
consists of both transmission and sampling costs. Due to
the probable failures of transmissions, the following question
arises: should the users sample or attempt for re-transmission
of the old packet? To address this question, we formulate
a stochastic optimization problem for minimizing the time
average cost under time average AoI constraints. We apply
tools from Lyapunov optimization theory in order to solve
this problem and provide a dynamic low-complexity algorithm.
We prove that the algorithm provides arbitrarily close to the
optimal solution. In addition, we analyze the performance of
the algorithm in terms of time average cost and AoI through
simulation results.
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II. SYSTEM MODEL

We consider a set of users N = {1, . . . , N} who sam-
ple fresh information and send this information, in form of
packets, to a receiver over a wireless fading channel. Time is
assumed to be slotted, let t ∈ Z+ be the tth slot. We consider
a scheduler that decides at every time slot the sampling and
transmission scheduling of the users. At every time slot, each
user is either decided to sample fresh information and send
it to the receiver, or to transmit an old packet that has been
sampled previously, or to remain silent. We denote by si(t)
the decision of user i to sample in time slot t, where

si(t) =

{
1, if user i is decided to sample,
0, otherwise.

(1)

Note that each user samples the information at the beginning
of the slot, if it is decided, and transmits the packet to the
receiver by the end of the same slot. We denote by µi(t) the
decision of user i to transmit in the tth slot where

µi(t) =

{
1, if user i is decided to transmit,
0, otherwise.

(2)

Note that if user i samples new information in the tth slot,
it attempts for transmission in the same slot. Therefore, if
si(t) = 1 then, µi(t) = 1. However, in the case which
user i does not sample new information but it has an old
packet, variable µi(t) can take either the value of 0 or 1.
Furthermore, we assume that the users always transmit with
fixed power transmission. Since we consider fading channels,
errors in the transmission may occur. We assume that a packet
is successfully transmitted from user i to the receiver with a
probability pi1. The success probability remains the same over
the time, but it can be different from one user to another. We
assume that the receiver sends an instantaneous ACK for a
successful packet reception. We impose that we can have up
to one user transmitting in one slot which is described by the
following constraint

N∑
i=1

µi(t) ≤ 1, ∀t. (3)

At each time slot we can have up to one packet reception in the
receiver. We denote by di(t) the successful packet reception
from user i to the receiver, where

di(t) =

{
1, if user i transmits successfully a packet,
0, otherwise.

(4)

If µi(t) = 1, then di(t) takes the value of one with probability
pi and zero with probability 1 − pi. On the other hand, if
µi = 0, then di(t) takes the value of zero with probability
one. Note that there are two cases which µi(t) can take the
value of one; a) when user i is decided to sample and transmit,
b) when user i is decided to transmit an old packet. It follows

1pi captures fading and noise in a wireless channel.

that E{di(t)|µi(t), si(t)} = piµi(t) + pisi(t) − pisi(t)µi(t).
By applying the law of iterated expectations, we obtain

E{di(t)} = piE{µi(t)}+ piE{si(t)} − piE{si(t)µi(t)}.
(5)

A. Age of Information

The Age of Information (AoI) represents how “fresh” is the
information from the perspective of the receiver. Let Ai(t) be
a strictly positive integer that depicts the AoI associated with
user i at the receiver. If the received packet has been sampled
at the beginning of the current slot, then Ai(t + 1) = 1. On
the other hand, if the received packet has been sampled in
a previous slot, then the age of information depends also in
the time of the packet waiting for successful transmission. In
order to characterize the waiting time of a packet in user i,
we first define the sampling time, i.e., the time slot that the
packet has been sampled. We denote the last sampling time
by ts. Thus, the age of the packet that is in user i is

Api (t) = t− ts, ∀i ∈ N , (6)

where t is the current slot. Therefore, the evolution of the total
age of information at the receiver with respect to the user i is
written as

Ai(t+ 1) =

{
Api (t) + 1, if di(t) = 1,
Ai(t) + 1, otherwise.

(7)

Note that if a packet is successfully transmitted in the same
slot which has been sampled, then Api (t) = 0 and therefore,
Ai(t+ 1) = 1. The evolution of AoI can be written as

Ai(t+ 1) = (Api + 1)di(t) + (Ai(t) + 1)(1− di(t)). (8)

Furthermore, for each sampling or transmission, we con-
sider an associated cost for each user. We denote by cs and
ctr the cost for sampling and transmission for each user,
respectively. We consider that the costs remain constants over
time. The cost function of user i in a time slot is described
below

ci(t) = µi(t)ctr + si(t)cs, ∀i ∈ N . (9)

The total cost of the system is described as

c(t) =

N∑
i=1

ci(t), (10)

and the expected time average cost as

c̄ = lim
t→∞

1

t

t∑
τ=0

E{c(τ)}. (11)

The expected time average age for user i is described as

Āi = lim
t→∞

1

t

t∑
τ=0

E{Ai(τ)}, ∀i ∈ N , (12)

where the expectations are with respect to the channel random-
ness and the scheduling policy. Let Amax

i be a strictly positive



real value that represents the maximum expected time average
age requirement of user i, and it is described by the constraint:

Āi ≤ Amax
i , ∀i ∈ N . (13)

B. Optimization Problem

With the definitions of AoI and expected time average costs,
we define the stochastic optimization problem as following.

min
s(t), µ(t)

c̄ (14a)

s. t.
K∑
i=1

µi(t) ≤ 1, ∀t, (14b)

Āi ≤ Amax
i , ∀i ∈ N , (14c)

s(t), µ(t) ∈ {0, 1}N , (14d)

where µ(t) = [µ1(t), . . . , µN (t)] and s(t) =
[s1(t), . . . , sN (t)]. The interference and maximum expected
time average age constraints are depicted in (14c) and (14b),
respectively. Our target is to find a policy, with optimality
guarantees, that minimizes the system cost while providing
time average age below a threshold for each user i.

C. Proposed Solution

In this section, we provide a low-complexity scheduling
algorithm that satisfies the time average age constraints and
provides solution arbitrarily close to the optimal one.

We apply the technique, first developed in [18] and further
discussed in [19] and [20], in order to satisfy the time average
age constrains in (14c). Each inequality constraint is mapped
into a virtual queue. We show below that the time average age
problem is transformed into a queue stability problem.

Let {Xi(t)}i∈N be the virtual queues associated with con-
straints in (14c). We update each virtual queue i at each time
slot t as

Xi(t+ 1) = max[Xi(t)−Amax
i , 0] +Ai(t+ 1). (15)

Process Xi(t) can be viewed as a queue with “arrivals” Ai(t)
and service rate Amax

i . Before describing the details of the
analysis, let us recall a basic theorem that is based on the
general theory of the stochastic processes [21]. Consider a
system with K queues. The number of unfinished jobs of
queue k is denoted by qi(t) and q(t) = {qk(t)}k∈K. The
Lyapunov function and the the Lyapunov drift are denoted by
L(q(t)) and ∆(L(q(t))) , E{L(q(t + 1) − L(q(t)))|q(t)},
respectively.
Definition 1 (Lyapunov Function): A function L : RK → R
is said to be a Lyapunov function if it has the following
properties

1) It is non-decreasing in any of its arguments.
2) L(x) ≥ 0, ∀x ∈ RK .
3) L(x)→ +∞, as ‖x‖ → +∞.

Theorem 1. (Lyapunov Drift): If there are positive values B,
ε such that for all time slots t we have ∆(L(q(t))) ≤ B −

ε
K∑
k=1

qn(t), then the system q(t) is strongly stable.

D. Drift-Plus-Penalty Policy

The Drift-Plus-Penalty (DPP) algorithm is designed to min-
imize the sum of the Lyapunov drift and a penalty function
[19, Chapter 3]. First, we define the Lyapunov drift as

∆(X(t)) = E{L(X(t+ 1))− L(X(t))|St}, (16)

where St = {Ai(t), Xi(t)}i∈N is the network state at the
beginning of slot t and X(t) = {Xi(t)}i∈N . The associated
Lyapunov function is defined as

L =
1

2

N∑
i=1

X2
i (t). (17)

The above expectations are with respect to the channel
randomness and the scheduling policy. We apply the DPP
algorithm to minimize the time average cost while stabilizing
the virtual queues {Xi(t)}i∈N . In particular, this approach
seeks to minimize an upper bound of the following expression

∆(X(t)) + V E{c(t)|St}, (18)

where V is an importance weight to scale the penalty. An
upper bound for the expression in (18) is shown below

∆(X(t)) + V E{c(t)|St} ≤ B +

N∑
i=1

E{Xi(t)[(A
p
i (t) + 1)Wi(t)

+ (Ai(t) + 1)(1−Wi(t))−Amax
i ]|St}+ V E{c(t)|St},

(19)

where Wi(t) = pisi(t) + piµi(t) − pisi(t)µi(t), and B ≥
N∑
i=1

E{(Ai(t+1)2|St}+(Amax
i )2

2 . The complete derivation of the

above bound can be found in Appendix A. For B =
N∑
i=1

(Ai(t)+1)2+(Amax
i )2

2 , we see that B is not affected by the

decisions s(t), µ(t) at each slot t. Therefore, we can exclude
it from the optimization problem and minimize the second
term of (19). The DPP algorithm takes sampling and trans-
mission decisions at each time slot by solving the following
optimization problem.

min
µ(t),s(t)

N∑
i=1

{Xi(t)[(A
p
i (t) + 1)Wi(t)

+ (Ai(t) + 1)(1−Wi(t))−Amax
i ]}+ V c(t)

(20a)

s. t.
K∑
i=1

µi(t) ≤ 1, ∀t, (20b)

s(t), µ(t) ∈ {0, 1}N . (20c)

Theorem 2. (Optimality of the DPP algorithm and virtual
queue stability): The DPP algorithm guarantees that the
virtual queues are strongly stable and therefore, the time
average age constraints in (14c) are satisfied. In particular,
the time average expected value of Xi(t) is bounded as

lim
t→∞

sup
1

t

t∑
τ=0

N∑
i=1

E{Xi(τ)} ≤ B + V (c∗(ε)− copt)

ε
. (21)



In addition, the expected time average cost is bounded as

lim
t→∞

sup
1

t

t−1∑
τ=0

E{c(τ)} ≤ copt +
B

V
. (22)

Proof. See Appendix B.

Remark 1. Theorem 1 indicates that the DPP algorithm
provides a solution arbitrarily close to the optimal one. We
can get better performance in terms of time average cost by
increasing the value of V . However, we observe from (21)
that the time average age increases as V increases. Therefore,
there is a trade-off between the time average cost and time
average age.

III. SIMULATION RESULTS

In this section, we provide results in order to evaluate the
performance of our algorithm in terms of average AoI and
cost of system. We consider a system with two users that
transmit fresh information to the receiver over an unreliable
wireless channel. First, we provide results to observe the effect
of the importance factor V on the average AoI and cost. In
addition, we observe the behavior of the scheduler for the case
where one user has lower success probability than the other.
Second, we provide results for different values of the success
probabilities and the effect on the average AoI and cost of the
system.

In Figs. 1 and 2, we provide results for a system that
consists of user 1 and user 2 with p1 = 0.6 and p2 = 0.9,
respectively. Fig. 1 depicts the average AoI of user 1 over
time for different values of the importance factor V . Recall
that V is a factor that is multiplied by the cost. Therefore,
if our goal is to decrease the cost of the system we increase
V . However, higher values of V affect the average AoI of the
system as shown in Fig. 1a. We observe that as V increases,
the convergence time of the algorithm increases as well. For
example, for V = 50, we observe that Ā1(t) takes values
less than Amax

1 during the first slots. On the other hand, for
V = 300, we observe that Ā1(t) takes values less than Amax

1

after 1500 slots. In Fig. 1c, we observe that average AoI for
different values of V . We observe that small values of V , i.e.
values between 1 and 100, user 1 has a higher average AoI
because of the smaller success probability. Furthermore, we
verify our theoretical results regarding the time aveage AoI
constraints.

In addition, we observe from Fig. 1a and 1b the effect of
value of the success transmission probability on the average
AoI and its evolution over time. As the success probability
decreases the average AoI increases because we need more
time to accomplish a successful transmission. Therefore, the
packet arrives after some attempts to the receiver from user 1,
thus, AoI increases.

In Fig. 3, we observe the average AoI for user 1 and user 2
and the cost for different values of the success probabilities,
p1, p2. In this setup, we have Amax

1 = 8 and Amax
2 = 9. We

observe that as the success probability increases, it is less
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(a) Average AoI of user 1 for different values of V .
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(b) Average AoI of user 2 for different values of V .
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Fig. 1: System with 2 users. p1 = 0.6, p2 = 0.9,
Amax

1 = Amax
2 = 5.

costly for the system to satisfy the AoI constraints for both
users. Therefore, the algorithm utilizes efficiently the resources
of the system. Furthermore, we observe that for large values
of success transmissions, the average AoI of user 1 decreases.
Therefore, the algorithm utilizes the resources such that not
even to satisfy the constraints but also to provide a better
performance in terms of average AoI. The constraints for user
2 are also satisfied. Note that the average AoI constraints of
user 1 are harder than user 2. This does not allow the algorithm
to give a better performance for user 1 without increasing
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Fig. 2: Average number of transmissions and average
number of samplings. p1 = 0.6, p2 = 0.9, Amax

1 = Amax
2 = 5.
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Fig. 3: Average AoI for user 1 and user 2 and the total cost
for different values of p1 and p2. Amax

1 = 9 and Amax
2 = 8.

V = 200.

the cost and therefore, the scheduler selects to satisfy the
constraints with the lowest possible cost.

IV. CONCLUSIONS

In this paper, we propose an algorithm that decides the
sampling and transmission scheduling at each time slot by
minimizing the time average cost of an AoI-constrained wire-
less system. The proposed algorithm is based on Lyapunov
optimization theory. We prove that the algorithm can provide
a solution arbitrarily close to the optimal. We consider cost
for both the transmission and sampling. Due to the fading
channel, errors may occur and therefore, transmissions need
to be optimized. We provide simulation results to evaluate the
performance of our algorithm in terms of average AoI and cost.
The results show the trade-off between the cost and average
AoI and how different values of success probabilities affect
the performance of the system.

APPENDIX A
UPPER BOUND ON THE LYAPUNOV DRIFT OF DPP

Using the fact that (max[Q− b, 0] +A)
2 ≤ Q2+A2+b2+

2Q(A− b), we rewrite (15) as

X2
i ≤ X2

i (t) +A2
i (t+ 1) + (Amax

i )2

+ 2Xi(t)(Ai(t+ 1)− (Amax
i )2). (23)

Rearranging the terms in (23) and dividing by 2, we take
N∑
i=1

X2
i (t+ 1)−X2

i (t)

≤
N∑
i=1

A2
i (t+ 1) + (Amax

i )2 + 2Xi(t)(Ai(t+ 1)−Amax
i )

2
,

(24)

taking expectations in (24), we obtain

∆(X(t)) ≤
N∑
i=1

E{A2
i (t+ 1)|St}+ (Amax

i )2

2

+

N∑
i=1

Xi(t)[E{Ai(t+ 1)|St} −Amax
i ]. (25)

To obtain the expression associated with AoI, we calculate
E{Ai(t+ 1)|Si(t))} and E{A2

i (t+ 1)|St} using the evolution
in (8). It follows that

E{Ai(t+ 1)|St} =

= E{di(t)(Api (t) + 1)|St}+ E{(1− di(t))(Ai(t) + 1)|St}
= E{(Api (t) + 1)(pisi(t) + piµi(t)− pisi(t)µi(t))|St}
+ E{(Ai(t) + 1)(1− pisi(t)− piµi(t) + pisi(t)µi)|St},

(26)

and

E{A2
i (t+ 1)|St} = E{(Api (t) + 1)2di(t)|St}

+ E{(Ai(t) + 1)2(1− di(t))|St}. (27)
By applying (27) and (26) in (25), we obtain

∆(X(t)) ≤
N∑
i=1

E{(A2
i (t+ 1))|St}+ (Amax

i )2

2

+

N∑
i=1

E{Xi(t)[(A
p
i (t) + 1)× (pisi(t) + piµi(t)− pisiµi)

+ (Ai(t) + 1)(1− pisi(t)− piµi(t) + piµi(t)si(t))]

−Xi(t)A
max
i |St}. (28)

We consider that there is a B such that

B ≥
N∑
i=1

E{A2
i (t+ 1)|St}+ (Amax

i )2

2
. (29)

By setting Wi(t) = pisi(t)+piµi(t)−piµi(t)si(t) in (28), we
obtain the result in (19). In addition, we know that given the
current state of the network, St, the largest value that Ai(t+1)
can take is Ai(t) + 1, i.e., there was not packet arrival from
user i to the receiver in the tth slot. Therefore, we can select

B =
N∑
i=1

(Ai(t)+1)2+(Amax
i )2

2 ≥
N∑
i=1

E{A2
i (t+1)|St}+(Amax

i )2

2 .



APPENDIX B
PROOF OF THEOREM 2

Proof. Suppose that a feasible policy ω exists, i.e., constraints
(14c) are satisfied. Suppose that, for the ω policy, the follow-
ings hold

E{(Api (t) + 1)(pisi(t) + piµi(t)− pisi(t)µi(t))
+ (Ai(t) + 1)(1− pisi(t)− µi(t)pi + piµi(t)si(t))}
≤ Amax

i − εi, ∀i ∈ N , (30)
E{c∗(ε)} = c∗(ε), (31)

where ε > 0, c∗ is a suboptimal solution, and
N∑
i=1

εi = ε.

(19)
(31),(30)
====⇒

E{L(X(t+ 1))} − E{L(X(t))}+ V E{c(t)} ≤

B − ε
N∑
i=1

E{Xi(t)}+ V c∗(ε), (32)

taking ε→ 0, we obtain

E{c(t)} ≤ E{L(Xi(t)} − E{L(Xi(t+ 1))}
V

+
B

V
+ c∗,

taking the sum over τ = 0, . . . , t− 1, we have

1

t

t−1∑
τ=0

E{c(τ)} ≤ −E{L(X(t+ 1))}+ E{L(X(0))}Bt
V t

+ copt

≤ E{L(X(0))}
V t

+
B

V
+ copt, (33)

taking t→∞, we obtain

lim
t→∞

sup
1

t

t−1∑
τ=0

E{c(τ)} ≤ copt +
B

V
. (34)

That concludes the result of the second part of Theorem 1.
For proving stability of the virtual queues, we manipulate

(32) as
N∑
i=1

{Xi(t)} ≤
B

ε
− E{L(X(t+ 1))} − E{L(X(t))}

ε

− V E{c(t)}
ε

+
V

ε
c∗(ε). (35)

By taking the sum over τ = 0, . . . , t− 1 and divide by t, we
obtain

1

t

t−1∑
τ=0

N∑
i=1

E{Xi(t)} ≤
B

ε
− E{L(X(t))} − E{L(X(0))}

tε

(36)

− V E{c(t)}
ε

+
V

ε
c∗(ε),

neglecting the negative term and taking t→∞, we have

lim
t→∞

1

t

t−1∑
τ=0

N∑
i=1

E{Xi(τ)} ≤ B + V (−E{c(t}+ c∗(ε)})
ε

,

considering that E{c(t)} ≥ copt, we get the final result as
following

lim
t→∞

sup
1

t

t−1∑
τ=0

N∑
i=1

E{Xi(τ)} ≤ B + V (c∗(ε)− copt)

ε
. (37)

This shows that the virtual queues {Xi}i∈N are strongly
stable.
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