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Abstract—Consider an energy harvesting node where gener-
ation of a status update message takes non-negligible time due
to sensing, computing and analytics operations performed before
making update transmissions. The node has to harmonize its
(re)transmission strategy with the sensing/computing. We call
this general set of problems intermittent status updating. In
this paper, we consider intermittent status updating through
non-preemptive sensing/computing (S/C) and transmission (Tx)
operations, each costing a single energy recharge of the node,
through an erasure channel with (a) perfect channel feedback
and (b) no channel feedback. The S/C time for each update
is independent with a general distribution. The Tx queue has
a single data buffer to save the latest packet generated after
the S/C operation and a single transmitter where transmission
time is deterministic. Once energy is harvested, the node has
to decide whether to activate S/C to generate a new update
or to (re)send the existing update (if any) to the receiver. We
prove that when feedback is available average peak age of
information (AoI) at the receiver is minimized by a threshold-
based policy that allows only young packets to be (re)sent or
else generates a new update. We additionally propose window
based and probabilistic retransmission schemes for both cases (a)
and (b) and obtain closed form average peak AoI expressions.
Our numerical results show average peak AoI performance
comparisons and improvements.

I. INTRODUCTION

Age of Information (AoI) measures staleness of available

information at a monitoring receiver. Since the pioneering

work in [1], the AoI metric has been widely used for timely

information updating problems; see [2] for a recent compre-

hensive survey of AoI and its applications.

In this paper, we consider an intermittent status updating

problem that extends the one introduced recently in [3]. In

particular, the problem entails an energy harvesting node send-

ing update packets after a non-preemptive sensing/computing

(S/C) operation and subsequent transmission (Tx) operation,

each costing a single energy recharge of the node. This

problem is motivated by intermittent computing based en-

ergy harvesting systems1 where operations are incrementally

performed one by one through charge/recharge cycles. Once

power is restored after a recharge interval, the node has to

decide whether to maintain forward progress or to start again

with a fresh status update. The new aspects we will tackle in

this paper are the presence of channel erasures and possible

feedback about the sent update.

1We refer the reader to [4], [5] for typical characteristics of intermittent
computing.
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Fig. 1. System model for an EH node performing S/C, Tx and ReTx operations
through an erasure channel using harvested energy with possible feedback.

Energy harvesting communication systems have been a

topic of extensive research interest in AoI analysis and op-

timization [6]–[11] where emphasis is mainly on average AoI

with possible channel erasures and feedback under offline

and online knowledge of energy harvests. See [2] for a more

complete list. A line of research that is closely related to the

status updating in energy harvesting communication systems

in [12]–[14] is on resource constraints and age-energy tradeoff.

We also note references [15], [16] that connect to computation

communication synergies with average cost considerations.

Reference [17] is on peak AoI in data preprocessing based IoT

networks. [18] provides a general optimality of threshold based

schemes to preempt service. On another related research front,

[19] introduces packet management to improve the average

AoI at the monitoring node. Reference [20] considers packet

deadlines to discard outdated packets for data freshness.

In our current work, we build on the intermittent status

updating model in [3] with added new aspects due to channel

erasures and availability of feedback about sent update in an

energy harvesting node as in Fig. 1. In our model, the time it

takes for S/C operation is an independent random variable with

a general distribution, and transmission time is deterministic.

A single unit data buffer is available for storing the latest

packet during recharge interval (also referred as power outage

time). S/C operation can not be preempted. Once energy

recharge is maintained, the node allocates the whole energy

for S/C, Tx or reTx operations. The node may want to reTx

a generated update if it is not successfully delivered in the

presence of feedback or to increase the chances of success in

the absence of feedback. This retransmission attempt stops

when success occurs if channel feedback is present or is

http://arxiv.org/abs/2102.07075v1


simply preempted due to the time spent on sending a given

update. We prove that when feedback is available average

peak age of information (AoI) at the receiver is minimized

by a threshold-based stopping rule that rejects old packets in

the Tx buffer and keeps on retransmitting until a threshold or

successful delivery. Earlier papers [13], [14] consider similar

retransmission schemes under sensing costs. Our results differ

from them due to the new intermittent status updating model

with dynamic energy levels and our exclusive focus on the

average peak AoI with explicit optimality proof in the presence

of feedback. We are interested in the case when there is

partial or no channel feedback available. Our results provide an

opportunity to gauge optimal average peak AoI performance

improvement gained by channel feedback and we plan to shape

our future work toward this direction.

The rest of the paper will flow as follows: In Section II,

we cover details of the model. In Section III, we present

our main result as well as window based and probabilistic

retransmission schemes with feedback. In Section IV, we

cover window based and probabilistic retransmission schemes

without feedback. We present numerical results in Section V

and conclude our work in Section VI.

II. THE MODEL

We consider an intermittent computing based energy har-

vesting node shown in Fig. 1. S/C represents the initial oper-

ation to generate a status update packet while Tx is transmis-

sion. We assume that there is always a packet to generate and

it takes non-negligible time to complete generation through

the S/C operation, which is assumed to be nonpreemptive.

Generated packet starts aging once sensing is activated and

then an update packet enters the transmission queue. There

is a single data buffer to save the latest arriving packet when

the system is in power outage (i.e., recharging). The channel

through which updates travel is an erasure channel.

The transmitter has three choices to make once it recharges

energy: (i) generate a new update through an S/C operation,

which naturally discards the data available; (ii) send an update

through a Tx operation, and (iii) resend an earlier generated

update through another Tx (or reTx) operation. Once Tx or

reTx is completed, the receiver (Rx) has the most recent update

with probability (1 − pe) where pe is the erasure probability

of the channel. Throughout the document, 0 ≤ pe < 1 is

assumed. Energy is depleted at the end of S/C and (re)Tx oper-

ations. Time spent in S/C for update generation is independent

with a general distribution fC(c), c ≥ 0 with well-defined

mean E[C]. The time C could be viewed as the cumulative

time that potentially takes multiple charge/recharge cycles.

Transmission time is a deterministic number D known to the

transmitter and receiver. That is, sent update is received with

probability (1− pe) after D time units. During this time, it is

not possible to recharge energy and generate a new update.

The energy arrives to the EH node incrementally according

to a Poisson process of rate λ. Consequently, time spent

in power outage (or the time to recharge) is independent

exponentially distributed with the same rate. We denote the
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Fig. 2. Example AoI evolution for general transmission schemes.

time in outage as I . Once energy arrives, it is used to activate

either S/C or Tx. If there is no update, energy is used for a

new generation. At the end of an operation, the node is left

with no energy. Upon new energy recharge, the node decides

whether to (re)transmit an update (if any) or to generate one.

We use ti to denote the update i’s start of generation

through sensing/computing, and t′i to denote the time stamp

of the event that the update i is received successfully. Age of

Information (AoI) of update i is the difference of the current

time and the time stamp of the latest update at the receiver:

∆(t) = t− u(t) (1)

u(t) is the time stamp of the latest received packet at time t.

The sample AoI evolution curve in Fig. 2 shows that update 1

starts aging in the S/C server at time 0 when S/C starts. Once it

is finished and the subsequent energy arrives, the node decides

favorably to take the packet to the Tx data buffer right away

and after possible Tx and reTx attempts its service ends at t′1
when receiver successfully receives the sent update. Then, next

energy is used to activate S/C to get the next update and the

node decides to drop the update (shown as a hollow rectangle

in Fig. 2) after potential trials to reTx the generated update.

The next energy arrival restarts the S/C operation and this time

the node moves forward with transmission and the update is

successfully received at t′2.

We define Yi as the length of time between the departures

of updates i− 1 and i and Si as the system time for packet i

as shown in Fig. 2. The average peak age of information is:

E[∆p] = lim
t→∞

1

Nt

Nt∑

i=1

(Si + Yi+1) (2)

Here, Nt is the number of sent updates by time t. Our

underlying assumption is that Nt → ∞ and the system is

ergodic in that the decisions to transmit, retransmit or generate

an update are well behaving to allow existence of above limit.

III. AVERAGE PEAK AOI MINIMIZATION WITH FEEDBACK

In this section, we consider average peak AoI minimization

when strictly causal feedback about the success of transmis-

sions is available. In this case, the transmission policy is

designed with the knowledge of the success or failure of sent



update. If an update is known to be successful, there is no need

to resend that update and the node uses the next energy arrival

for generating a new update. If, on the other hand, the update

transmission is known to fail, the node has to decide whether

to generate a new update or resend it once new energy arrives.

We denote the channel feedback by hi: If hi = 1, transmission

is successful and hi = 0 otherwise.

Our focus is on renewal type Tx policies where deci-

sion to (re)transmit or discard an update is taken based on

observed time and events starting from the last successful

transmission with randomization allowed. Thus, decisions after

t′i are assumed independent of the past before t′i. The same

randomized policy is applied after t′i irrespective of the index

i. Indeed, from our development, it will be clear that any

dependence on the past history does not promise average peak

AoI performance improvement when feedback is available.

In view of the renewal policies, we will work with the

generic variables for inter-departure time Y and system time

S. We express Y and S in this case as:

Y = I0 +

ñ∑

k=1

Ck + Ik + Tk (3)

S = Cñ + Iñ + Tñ (4)

where ñ is a stopping time with respect to {Ci + Ii + Ti}
and possibly I0; that is, whether ñ = n depends only on the

realizations of {Ci + Ii + Ti}
n
i=1 and I0. Here, I0 represents

the initial outage time experienced after a successful update

delivery and Ii, i ≥ 1 are outage times experienced after

the S/C operation. Note that Ii, i ≥ 0 are independent

exponentially distributed. Ti is the time spent to send and

resend the update i including transmission times D and time

waited for new energy to arrive. As a matter of fact, we have

Ti =

{
n̂iD +

∑n̂i

j=1 Iji, hnii = 0

n̂iD +
∑n̂i−1

j=1 Iji, hnii = 1

where n̂k denotes the retransmission index, is naturally condi-

tioned on Ck+Ik, and is a stopping time with respect to {Ijk},

the energy recharge times for each Tx attempt j for update k,

and the channel feedback {hjk}. Tx attempt j for update k

is decided based on the strictly causal past channel feedback

{hmk}, m < j and causal recharge times {Imk}, m ≤ j. If

the node decides not to transmit at all, then n̂k = 0 and hence

Tk = 0. With probability one, n̂k = j∗ if hj∗k = 1 and in

this case Tk includes only a transmission time D for the Tx

attempt j∗. On the other hand, if hjk = 0, transmission fails

and whether n̂k = j or not is decided by the adopted Tx policy

after the energy recharge following the failed transmission.

Additionally, the outer stopping time is ñ = k∗ if and only

if hj∗k∗ = 1. Once update delivery is successful (i.e., when

hj∗k∗ = 1), the renewal cycle is reset and everything starts

anew with the new energy recharge I0. We may allow n̂k

to depend on past history; however, it does not promise any

improvement. This will be clear in the proof of our main result.

We call Ci + Ii + Ti , Ai and ñ is conditioned on natural

filtrations FA
i , i > 0 with FA

i = σ(Ak, k ≤ i) of the sequence

{Ai}. We do not assume dependence on I0 as it does not

improve peak AoI; c.f. [3]. Then, the average peak AoI is:

E[I0 +
∑ñ

k=1 Ak] + E[Añ]. We solve the following problem:

inf
n̂∈M

E[∆p] (5)

where M is the space of all stopping times n̂k with well-

defined mean values. This problem is in the form of a

Markov Decision Process (MDP) with the state definition

(n, x). Here, ñ = n represents the update index. Additionally,

Ci+Ii+ r̂D+
∑r̂

j=1 Iji = x, with r̂ being the retransmission

index, represents the age of the current update before making

decision to Tx, reTx (same action in different r̂) or abandon

it to generate a new update. Hence, action space is binary: (i)

transmit existing update and (ii) abandon to generate a new

update. We next state our main result in the following theorem:

Theorem 1 When feedback is available, optimal rule that

minimizes average peak AoI E[∆p] is to transmit when Ai <

Wth until successful delivery and to stop (or never start)

transmitting when Ai ≥ Wth where Wth is a finite threshold.

The optimal average peak AoI in terms of this threshold is:

D

1− pe
+Wth +D +

1

(1 − pe)λ

Proof: We define the cost to go g(x) as follows:

g(x) , inf
n̂x∈M

E[∆p|C1 + I1 = x]

where n̂x refers to all stopping times with respect to the ensu-

ing energy recharge times for each Tx attempt and following

channel feedback conditioned on the initial state C1+ I1 = x.

Let us first decompose g(x) as follows:

g(x) = E[I0] + x+ s(x)

where we define

s(x) , inf
n̂x∈M

E[T1 +

ñ∑

k=2

Ak] + E[Añ]

and dependence on x is buried in the stopping times n̂k in Tk.

We additionally define fopt as part of the optimal cost:

E[g(C + I)] = E[I0] + fopt =
1

λ
+ fopt

Once the node observes C1 + I1 = x, it has two choices:

To transmit or to abandon and generate a new update. If

transmission is chosen, with probability 1−pe it is successful,

ñ = 1, n̂1 = 1, A1 = x+D and the final cost is 1
λ
+2(x+D),

the cycle ends. With probability pe it fails, the state is carried

to x+D+ I where I is time spent in power outage and since

we are still deciding on update 1, n remains at 1. In this case,

the average cost is 1
λ
+ E[x + D + I + s(x + D + I)] =

1
λ
+ x + D + 1

λ
+ E[s(x + D + I)]. So, if transmission is

chosen at state x, the average cost is

1

λ
+ x+D + (1− pe)(x+D) +

pe

λ
+ peE[s(x +D + I)]



On the other hand, if generating a new update is chosen, the

decision process makes a new start, the outer index is carried

from 1 to 2 and the average cost paid is

1

λ
+ x+ fopt

Therefore, for all x that satisfies the following inequality:

(i): D + (1− pe)(x+D) + pe

λ
+ peE[s(x +D + I)] ≥ fopt

optimal choice is to generate a new update and we have s(x) =
fopt. Similarly, for all x ≥ 0 that satisfies the following:

(ii): D + (1− pe)(x +D) + pe

λ
+ peE[s(x+D + I)] < fopt

optimal choice is to transmit and we have

s(x) = D + (1− pe)(x+D) +
pe

λ
+ peE[s(x +D + I)]

We claim that if for some x, s(x) = fopt, it holds for all larger

x. Indeed, it is clear that for

x ≥ Wub ,
fopt −

pe

λ
− (2− pe)D

1− pe

inequality (i) is satisfied and s(x) = fopt. On the other hand,

for any x satisfying

x < Wth ,
(1− pe)fopt −

pe

λ
− (2 − pe)D

1− pe

the inequality (ii) is satisfied and s(x) < fopt. Note that

Wth < Wub. Also note that x = Wth satisfies inequality (ii)

with equality when E[s(x+D+I)] = fopt. Finally, we observe

that for any δ ≥ 0 and x = Wub − δ that satisfy inequality

(i), we have s(x) = fopt and E[s(x +D + I)] = fopt for all

x ≥ Wub−δ. This, in turn, means that for any δ ≥ 0 satisfying

D + (1− pe)(Wub − δ +D) +
pe

λ
+ pefopt ≥ fopt

s(x) = fopt holds. We conclude that the inequality (i) is

satisfied by all x ≥ Wth where Wth = inf{x : s(x) = fopt}
and Wth satisfies:

D + (1 − pe)(Wth +D) +
pe

λ
= (1 − pe)fopt

This relation is sufficient to assert the expression of optimal

average peak AoI, which is 1
λ
+ fopt, in terms of Wth.

To conclude, we let the node observe n and An = x after

an energy recharge. Also assume I0 and past Ak<n are given.

If the node decides to transmit, the average cost paid is

I0 +

n−1∑

j=1

Aj + x+D+(1− pe)(x+D)

+ peE[I + s(x+ I +D)]

If, on the other hand, the node decides to generate a new

update, then on average it has to pay the cost

I0 +

n−1∑

j=1

Aj + x+ fopt

Then, due to optimal stopping criterion in discrete time (see

e.g. [21]), the optimal stopping time is obtained by comparing

the two costs: If D+(1−pe)(x+D)+peE[I+s(x+I+D)] <
fopt, Tx is chosen and otherwise generating a new update is

chosen. We conclude that when Ai hits Ai = x for x that

satisfies x ≤ Wth, then, existing update must be sent and

resent until Ai goes above Wth or success is achieved. �

A. Window Based Retransmission

In this subsection, we consider a window based retransmis-

sion scheme. The scheme is defined by two parameters: Ws

for threshold and B for maximum number of retransmissions.

When Ci+ Ii < Ws, Tx commits to transmit the update i and

at most B times retransmissions are allowed for successful

transmission. If success is achieved, then transmission stops

and a new update is generated. If no success is observed, then

a new update is generated at the end of B retransmissions.

We first note that in this case Tk are i.i.d. in view of the

identical distribution of inner stopping times n̂k and so are

Ak. In particular, n̂k are independent from Ii and distributed

as geometric with success probability 1− pe truncated at B:

Pr(n̂k = v) =

{
(1− pe)p

v−1
e , 1 ≤ v ≤ B

pBe , v = B+

where B and B+ are taken as two different symbols with the

same value equal to B. This is to differentiate between success

and failure at the end of the Bth transmission. Note also that

Ak are independent of I0. By Wald’s identity [22], we have the

following: E[
∑ñ

k=1 Ak] = E[ñ]E[A] where the outer stopping

time ñ increases as long as Ci+ Ii > Ws or n̂k = B+, which

happens with probability pBe +Pr(Ci+Ii > Ws)−pBe Pr(Ci+
Ii > Ws). Stopping happens in the complement of this event.

Hence, we have

E[ñ] =
1

(1− pBe )Pr(Ci + Ii ≤ Ws)

In this case, expectation of A is: E[A] = E[C] + 1
λ
+ E[T ]

where

E[T ] =Pr(Ci + Ii > Ws)E[T |Ci + Ii > Ws]

+ Pr(Ci + Ii ≤ Ws)E[T |Ci + Ii ≤ Ws]

=Pr(Ci + Ii ≤ Ws)p
B
e E[T |n̂ = B+]

+ Pr(Ci + Ii ≤ Ws)(1− pBe )E[T |n̂ 6= B+]

where E[T |Ci + Ii > Ws] = 0 since no transmission occurs

if initial age is larger than Ws. Note that E[T |n̂ = B+] =
B(D + 1

λ
). We also calculate

(1 − pBe )E[T |n̂ 6=B+] = (
1− pBe
1− pe

−BpBe )D

+ (
1− pBe
1− pe

− (1− pBe )−BpBe )
1

λ

Finally, note that the stopped mean is:

E[Añ] = E[Cñ + Iñ + Tñ]

= E[C + I|C + I < Ws] + E[T |n̂ 6= B+]



We therefore have the average peak AoI

E[∆p] =
1

λ
+ E[ñ]E[A] + E[Añ]

B. Probabilistic Retransmission

In this subsection, we consider a probabilistic retransmission

scheme. The scheme is defined by two parameters: Wp for

threshold and pTx for transmission probability. When Ci+Ii <

Wp, the transmitter commits to transmit with probability pTx

and generates a new update with probability 1− pTx.

In this case, the inner stopping time n̂ = min{F1, F2}
where F1, F2 have independent geometric distributions with

success probabilities (1 − pe) and 1 − pTx, respectively. In

particular, we let F2 start from 0 while F1 starts from 1.

If F1 ≤ F2, the attempted update delivery is successful and

otherwise it is abandoned without a successful delivery. Note

also that n̂ is independent from recharge times Ii. Therefore,

Ai are i.i.d. and by Wald’s identity: E[
∑ñ

k=1 Ak] = E[ñ]E[A]
where the outer stopping time ñ stops when Ci+Ii ≤ Wp and

n̂ = F1, with probability Pr(Ci + Ii ≤ Wp)
pTx(1−pe)
1−pepTx

since

the probability of F1 ≤ F2 is
pTx(1−pe)
1−pepTx

. We get:

E[ñ] =
1− pepTx

Pr(Ci + Ii ≤ Wp)pTx(1− pe)

In this case, conditional expectation of T is:

E[T |C + I ≤ Wp] =
(1− pTx)pepTx

(1− pepTx)2
(D +

1

λ
)

+
pTx(1− pe)

(1 − pepTx)2
(D + pepTx

1

λ
)

To see this, we note that the event n̂ = k happens in two

mutually exclusive ways: First is when k transmissions are

made and all of them are erased and the node decides to

generate a new update on the k+1st time. This happens with

probability Pr(n̂ = k, 1) = pkep
k
Tx(1 − pTx), k = 0, 1, ....

Second is when k transmissions are made, they are erased

until k− 1st trial and the kth one is successful. This happens

with probability Pr(n̂ = k, 2) = (1−pe)p
k−1
e pkTx, k = 1, 2, ....

We then write

E[T |C + I ≤ Wp] =

∞∑

k=0

pkep
k
Tx(1− pTx)E[T |n̂ = k, 1]

+

∞∑

k=1

(1− pe)p
k−1
e pkTxE[T |n̂ = k, 2]

=
∞∑

k=0

pkep
k
Tx(1− pTx)k(D +

1

λ
)

+

∞∑

k=1

(1− pe)p
k−1
e pkTx(kD + (k − 1)

1

λ
)

Each summation corresponds to each group of expressions for

E[T |C + I ≤ Wp]. We then combine to get

E[T ] =Pr(Ci + Ii ≤ Wp)E[T |C + I ≤ Wp]

+ Pr(Ci + Ii > Wp)E[T |C + I > Wp]

=Pr(Ci + Ii ≤ Wp)E[T |C + I ≤ Wp]

since E[T |C + I > Wp] = 0. We obtain E[A] = E[C] + 1
λ
+

E[T ]. We also note that the stopped mean is:

E[Añ] = E[Cñ + Iñ + Tñ]

= E[C + I|C + I < Wp] +
D + pepTx

1
λ

1− pepTx

We therefore have all components of the average peak AoI.

IV. THE CASE WITHOUT FEEDBACK

In the case without feedback, we express Y and S as:

Y = I0 +

ñ∑

k=1

Ck + Ik + Tk (6)

S = Cñ + Iñ + Tñ + Text (7)

where Text is the extra time spent on resending an update

through reTx after its successful reception in Tñ time units.

We can deduce these expressions through inspecting Fig. 2.

The extra time Text is due to the lack of channel feedback and

it must be added to either inter-departure time Y or system

time S but not to both since each peak is affected by this

extra time only once, which is observed in Fig. 2. During

this extra time AoI keeps climbing and it adds to the next

peak. We assume that retransmission policy is of renewal type,

stops retransmitting a given update with probability one and

the extra delay is finite in the mean. Other than the lack

of feedback, the definition of stopping times ñ and n̂ are

identical to the counterparts we used in the previous section.

Specifically, ñ counts the number of generated updates until a

successful update transmission is achieved and n̂ reflects the

retransmission index for a given update albeit this time with

no knowledge of success of previous Tx attempts.

Unlike the case with feedback, when feedback is absent

we will not provide optimality proof of any type of policy.

In the problem without feedback, potentially all past energy

recharge times and instances must be accounted for while

deciding on whether to transmit or generate a new update.

Instead of considering the optimization, we will provide closed

form expressions for the average peak AoI under two types of

retransmission policies we covered in the case with feedback.

A. Window Based Retransmission

For the window based retransmission scheme, when feed-

back is not available, the transmitter commits to retransmit

exactly B times irrespective of the success of transmissions.

This is of course after making sure that the initial age Ci+Ii is

below the set threshold Ws. At the end of B retransmissions,

a new update is generated. Note that E[
∑ñ

k=1 Ck + Ik + Tk]
remains unchanged with respect to the window based retrans-

mission scheme with feedback. We just have to calculate the



average system time S in (7); that is, E[Añ]. Note that the B

transmissions take place irrespective of success and therefore

Text and Tñ sums up to B retransmission times:

E[Añ] = E[Cñ + Iñ + Tñ]

= E[C + I|C + I < Ws] +BD + (B − 1)
1

λ

This way, we obtain the corresponding expression for the

average peak AoI.

B. Probabilistic Retransmission

For the probabilistic retransmission scheme, when feedback

is not present, the transmitter commits to transmit with prob-

ability pTx irrespective of an earlier successful transmission

of the same update. The set threshold Ws again serves the

purpose of constraining the initial age. Similar to the window

based retransmission, we just have to recalculate E[Añ]. Note

that since the node keeps on transmitting with probability

pTx, we observe that Text is the additional count with success

probability 1−pTx starting from 0 conditioned on a successful

update delivery is observed earlier. Due to the memoryless

property of the geometric counting, Text is also geometric

and we have:

E[Añ] = E[Cñ + Iñ + Tñ]

= E[C + I|C + I < Ws] +
D + pepTx

1
λ

1− pepTx

+ (D +
1

λ
)

pTx

1− pTx

This enables us to obtain average peak AoI.

C. Threshold Based Retransmission

We will also include the threshold based scheme in our

experimentation with no feedback. In this case, the transmitter

commits to resend an update until its age hits a specified

threshold WT . If the initial age Ci + Ii > WT , then no trans-

mission occurs and a new update is generated. This scheme is

close to the optimal scheme with feedback. The major differ-

ence in this case is that the node keeps on sending until the age

threshold WT is hit whereas the transmission attempts stop in

a successful delivery when feedback is available. We note that

it is not immediately possible to evaluate the probabilities and

expectations under threshold based scheme. We will therefore

resort to simulations to evaluate performances in the presence

and absence of feedback. The recursive characteristic of the

scheme makes it amenable to implement using MATLAB.

V. NUMERICAL RESULTS

In this section, we provide numerical results illustrating

average peak AoI performances of various schemes with

and without feedback. Following the earlier work in [3],

we consider a binary valued S/C time Ci ∈ {m1,m2}
with probabilities p1, p2 > 0 and E[C] = p1m1 + p2m2,

E[C2] = p1m
2
1 + p2m

2
2. We will aim to test the effects of

arrival rate λ, erasure probability pe and variability of S/C time

in average peak AoI performance. To this end, we consider a

set of S/C time distributions fC with fixed mean E[C] = 5. We

fix m1 = 1 and parametrize m2 and p2 for fixed mean 5. Let

the parameter be θ > 0 so that m2 = 10+θ and p2 = 4
9+θ

that

guarantees fixed mean 5. The variance is Var(C) = 20 + 4θ.

We also set D = 1 throughout.

In all schemes we evaluate, we use closed form expressions

when available to plot the average peak AoI numerically op-

timized over a large range of parameters. We also verified the

correctness of those expressions through random experiment

based evaluations in MATLAB run more than 5× 106 times.

For threshold based schemes, closed form expressions are not

available. We just performed random experiments to obtain

their average peak AoI performances and we optimize over

the threshold. In the case with feedback, Theorem 1 suggests

a relation between the optimal average peak AoI and the best

threshold. In all random experiments we run, we observed that

this relation holds and that other threshold levels yield higher

average peak AoI. For the case without feedback, we observed

in the experiments that the average peak AoI is quasiconvex

with respect to the set threshold (this is typically the case in the

literature on AoI) and made sure its optimality in a large set of

thresholds. We ultimately note that the schemes that we refer

to as “best” are those that we observed as the best achievable

and that we do not claim optimality over those schemes.

Let us define the random variable M , C + I . Its

density function is fM (x) = p1λe
−λ(x−m1)u(x − m1) +

p2λe
−λ(x−m2)u(x − m2) for x ≥ 0 where u(.) is the unit

step function. We get the cumulative distribution (cdf) of M :
∫ x

m∗

fM (α)dα = p1(1− e−λ(x−m1))u(x−m1)

+ p2(1− e−λ(x−m2))u(x−m2)

Similarly, we have the following integral:
∫ x

m∗

αfM (α)dα = p1(m1 +
1

λ
− (x +

1

λ
)e−λ(x−m1))u(x−m1)

+ p2(m2 +
1

λ
− (x+

1

λ
)e−λ(x−m2))u(x−m2)

which we use along with the cdf to evaluate E[M |M < Wth].
We first consider average peak AoI vs λ. We plot in Fig. 3

the average peak AoI performances of all schemes when the

parameter for C is θ = 10 (i.e., Var(C) = 60) and probability

of error is pe = 0.2. We observe that when feedback is avail-

able the best window based and probabilistic schemes perform

almost as good as the optimal threshold scheme, especially

when λ is large. The three schemes look coincident but there

are minor differences observable when zoomed in. We also

observe that when feedback is not available window based and

threshold schemes have significantly smaller average peak AoI

compared to the best probabilistic scheme. We will see this

observation repeats in other plots. Between the threshold and

the window based schemes, the latter outperforms the former

for smaller λ and the order changes for larger λ.

Next, we consider average peak AoI vs erasure probability

in Fig. 4. For this plot, we take θ = 10 (i.e., Var(C) = 60)

and λ = 1. We observe that when feedback is present
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the optimal scheme significantly outperforms the other two

schemes as pe is increased. This is understandable since the

cost paid by committing to retransmit cannot meet the loss

due to increased channel erasures. Therefore, limiting the

retransmission attempts by a fixed threshold (known to be

optimal) provides major improvement for larger pe. The gap

indeed grows for larger pe not shown in the plot. We also

observe that when feedback is not present the best window

based scheme outperforms the best threshold scheme for larger

pe. Nonsmooth behavior of the best window based scheme is

due to the discreteness in the window size and abrupt change

of the best window size as pe is varied.

Finally, we consider average peak AoI vs Var(C) in Fig.

5. We set λ = 1, pe = 0.2 and vary θ. We note that when

feedback is available the three schemes perform almost equally

well with an observable gap for small Var(C) where the

probabilistic scheme has some advantage. The ranking among

the three schemes are similar to other plots when feedback is

absent. We also observe the probabilistic scheme has the worst

performance. We see by comparing the plots that λ, pe,Var(C)
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Fig. 5. Average peak AoI with respect to variance of compute time C.

yield different orders among the three schemes depending on

feedback availability. This calls for a more detailed study.

VI. CONCLUSIONS

In this paper, we consider an intermittent status updating

problem where an energy harvesting node schedules S/C and

retransmissions through an erasure channel with (a) perfect

channel feedback and (b) no channel feedback. The node has

S/C and Tx blocks and once energy is harvested, it decides

whether to activate S/C to generate a new update or to (re)send

the existing update (if any) to the receiver. We prove that

in case (a) average peak AoI is minimized by a threshold-

based policy. We also propose window based and probabilistic

retransmission schemes in both cases and present numerical

results that show average peak AoI performance comparisons.
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